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Multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central
nervous system, is one of the most common neurodegenerative diseases worldwide.
MS results in serious neurological dysfunctions and disability. Disturbances in coding and
non-coding genes are key components leading to neurodegeneration along with
environmental factors. Long non-coding RNAs (lncRNAs) are long molecules in cells
that take part in the regulation of gene expression. Several studies have confirmed the role
of lncRNAs in neurodegenerative diseases such as MS. In the current study, we
performed a systematic analysis of the role of lncRNAs in this disorder. In total, 53
studies were recognized as eligible for this systematic review. Of the listed lncRNAs, 52
lncRNAs were upregulated, 37 lncRNAs were downregulated, and 11 lncRNAs had no
significant expression difference in MS patients compared with controls. We also
summarized some of the mechanisms of lncRNA functions in MS. The emerging role of
lncRNAs in neurodegenerative diseases suggests that their dysregulation could trigger
neuronal death via still unexplored RNA-based regulatory mechanisms. Evaluation of their
diagnostic significance and therapeutic potential could help in the design of novel
treatments for MS.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS) and one of the most common neurodegenerative diseases worldwide (1). Pathogenic
mechanisms underlying MS development have not been determined up to now. Clinically,
different MS subtypes have been identified, including relapsing–remitting (RR), secondary
progressive (SP), and primary progressive (PP) subtypes. These subtypes are heterogeneous among
org December 2021 | Volume 12 | Article 7740021
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affected individuals in terms of clinical course as well as
genetic background (2). Complex interactions between genetic
susceptibility and environmental factors lead to this
neurodegenerative disease. Both innate and adaptive immune-
mediated inflammatory mechanisms contribute to the
demyelination and neurodegeneration in the context of MS.
Previous studies have demonstrated that the inflammatory
immune cells such as CD4 T-helper cells (Th1 and Th17) are the
main contributors in disease pathogenesis (3, 4). The presence of
these cells in the CNS is associated with neuronal demyelination,
which can subsequently result in neuroinflammation and
neurodegeneration (5, 6). Th17 cells that produce IL-17 are
regarded as important inflammatory effectors in this disorder (7).
However, the impact of Th17 cells in the pathogenesis of MS is not
entirely dependent on the production of this cytokine, and it is
supposed that an array of inflammatory factors is responsible in
this regard (8). For example, expression of high amounts of the C-C
chemokine receptor 6 (CCR6) on the cell surface of Th17 cells (9)
facilitates the entry of these cells into the CNS via the choroid
plexus (10). Th17 cells also participate in the pathoetiology of MS
through production of other proinflammatory cytokines including
TNF-a (11).

In recent years, genome-wide association studies (GWAS)
and genetic mapping have nominated several candidate loci and
variants in autoimmune conditions. However, MS pathogenesis
cannot be explained by the genetic susceptibility factors alone. A
large amount of evidence has revealed that long non-coding
RNAs (lncRNAs) have critical roles in the regulation of cellular
immunological pathways and autoimmunity. This new class of
non-coding RNA (ncRNAs) contains a large part of the
transcriptional output in the human genome but low protein-
coding potential (12).

In the current review, we focus on recent reports performed on
the roles of lncRNAs in MS pathogenesis. Then, we illustrate the
role of some specific lncRNAs and their target genes. Therefore,
our manuscript provides new insights into understanding the
molecular etiology, diagnosis, and management of MS.

Long Non-Coding RNA Classification
and Function
LncRNAs are a class of ncRNAs with sizes more than 200 nt and
no protein-coding potential. They are commonly transcribed by
RNA Pol II (13). LncRNAs have been detected in a variety of
species such as animals, plants, and prokaryotes. The majority
of them have a 5′ cap structure, multiple exons, and 3′
polyadenylated tails and are spliced in a way similar to mRNAs
(14). Since lncRNAs do not encode proteins, they used to
be called as “dark matter.” However, recent studies have
demonstrated that they are regulatory molecules and play
important roles in several biological processes (14, 15),
including gene expression at the epigenetic, transcriptional, and
posttranscriptional levels. The vital mechanisms of epigenetic
regulation consist of DNA methylation, histone modification,
and ncRNA-mediated regulation. Emerging evidence revealed
that the normal execution of biological events is controlled by a
combination of ncRNAs and transcription factor (TF)-mediated
Frontiers in Immunology | www.frontiersin.org 2
epigenetic modifications (16). Studies on the role of lncRNAs
suggest that their dysregulation could trigger neuronal death via
still unexplored RNA-based regulatory mechanisms (17). Gene
signature in human CNS is precisely regulated by several
mechanisms. LncRNAs have a substantial impact on normal
neural development, so their abnormal expression affects
development and progression of neurodegenerative diseases (18).

According to databases such as the NONCODE (version v5.0)
(19), the number of lncRNAs in human has been estimated to be
higher than the number of protein-coding genes. The
classification of lncRNAs is based on subcellular localization,
function, interaction with the protein-coding gene, their size, and
their association with protein-encoding genes. Based on their
association with protein-encoding genes, they can be categorized
to different classes such as sense, intergenic, bidirectional,
intronic, antisense, and divergent lncRNAs (20, 21). Long
intergenic non-coding RNA (lincRNA) genes are an important
group of ncRNAs that participate in many biological processes,
such as regulation of gene expression. They also play an essential
role in many autoimmune and inflammatory diseases (22). In the
current study, we performed a systematic analysis of the role of
lncRNAs in MS.
METHODS

Review question: Which lncRNAs have been dysregulated in
multiple sclerosis?

Inclusion/Exclusion Criteria
The inclusion criteria were as follows: 1) original studies,
2) studies focusing on the expression of lncRNAs in MS
patients, 3) studies that confirmed results by RT-PCR,
4) studies with a sample of blood or tissue of human or animal
model, and 5) studies that evaluated polymorphisms on
lncRNAs. The following documents were excluded from this
study: letters, reviews, in vitro studies, or papers with
insufficient data.

Search Strategy
The current scoping review was performed according to the
PRISMA statement (23). PubMed, Web of Science, ProQuest,
and Scopus databases were searched to identify all published
studies up to August 10, 2021.

Study Selection
Following the abovementioned search method, all obtained
papers were loaded into EndNote version 20. Then, duplicate
studies were removed. The title and abstracts of the remaining
studies were evaluated, and their full texts were screened using
the inclusion criteria. Then, lncRNAs with a role in the
pathogenesis of MS were included.

Data Extraction
The required data were extracted using a self-constructed data
extraction table. Author and year of publication, origin, sample
December 2021 | Volume 12 | Article 774002
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type, studied patients, method for lncRNA analysis, identified
lncRNAs and expression pattern, and polymorphisms were
extracted from the studies.

Figure 1 shows the flowchart of the study.
RESULTS

As shown in Figure 1, a total of 931 studies were identified
through searching PubMed, Web of Science, ProQuest, and
Scopus databases, and 26 studies were identified from other
databases. After removing duplicated articles, 716 studies
remained. In the next step, based on the evaluation of titles and
abstracts, 656 studies were excluded and 60 studies remained. The
full text of the articles was evaluated based on our inclusion
criteria. After evaluation of the full text, seven studies were
removed due to lack of inclusion criteria. At last, 53 studies
remained for our systematic review. Among the included
studies, 47 studies were conducted on human samples (24–70),
7 studies used animal models (45, 71–76), and only 1 research was
conducted on both human samples and animal model (45). Also,
33 studies were conducted in the Iranian population (24–26, 28–
34, 36, 38–43, 45–55, 57, 58, 61, 66, 67), 9 studies were in China
(68–76), 5 studies were in Egypt (37, 62–65), 4 studies were in Italy
(27, 35, 59, 60), 1 study was in Russia (44), and 1 study was in the
Netherlands (56). A total of 44 studies evaluated the expression of
lncRNAs in MS patients (24, 26–31, 34–43, 45, 46, 48, 50–54, 56–
61, 63–65, 67–76), while 9 other studies analyzed polymorphisms
of lncRNAs (25, 32, 33, 44, 47, 49, 55, 62, 66). The details of the
included studies are summarized in Tables 1, 2.

Recently, several studies revealed the involvement of lncRNAs
in the pathogenesis of MS. Figure 2 demonstrates the function of
several lncRNAs that are involved in the pathogenesis of MS.

The Role of LncRNAs in the
Pathophysiology of MS
LncRNAs Participating in Adaptive Immune
Response or Inflammation
Linc-MAF-4 and lnc-DDIT4 are two upregulated lncRNAs in
MS patients which are involved in the regulation of immune
responses and inflammation (69, 70). DDIT4 is a cytoplasmic
protein that is upregulated during DNA damage. Also, it inhibits
the mTORC1 pathway which is a crucial regulator of the
immune response (77). Since the mTOR pathway causes
differentiation of Th17 and subsequent production of IL-17, it
can be a key pathogenic player in MS (78, 79). Lnc-DDIT4
directly binds to and increases DDIT4 expression; thus, it
suppresses the differentiation of Th17 (69). Therefore, lnc-
DDIT4 might directly regulate Th17 cell differentiation and
contribute to the pathogenesis of MS. Linc-MAF-4 is a
lincRNA located in the minus strand of 16q23.2, almost 150
kb apart from the gene encoding MAF (19). This lincRNA has an
important role in regulating differentiation of Th1/2 cells. MAF
is the Th2 lineage-specific TF facilitating Th2 differentiation (70).
Linc-MAF-4 is a Th1 lineage-specific factor that recruits
chromatin remodeling factors LSD1 and EZH2 to inhibit MAF
Frontiers in Immunology | www.frontiersin.org 3
transcription and elevate Th1 differentiation and IFN-g
production (15). So, linc-MAF-4 can contribute in the
pathogenesis of MS. Another study has identified six lncRNAs
with abnormal expression in MS. ENSG00000231898.3
(MYO3B-AS1), XLOC_009626, and XLOC_010881 were
upregulated, while ENSG00000233392.1 (AC104809.2),
ENSG00000259906.1 (AC120045.1), and XLOC_010931
showed downregulation (68).

LincR-Gng2-5′, LincR-Epas1-3′as, and LincR-Ccr2-5′AS
LincR-Gng2-5′ and lincR-Epas1-3 loci were firstly identified by
Hu et al. in Th1 and Th2 cells regulated by signal transducer and
activator of transcription 4 (STAT4) and (STAT6), respectively
(22). According to the data from lncRNAdb (80), LNCipedia
(version 5.2), and Ensemble genome browser 99, LincR-Gng2-5′ is
located on chromosome 14q22.1 on the plus strand and has a
transcript size of 1,233 bp. LincR-Epas1-3′as is located on
chromosome 2p.21 on the positive strand and has 758 bp
length. They are located in an important place rich in genes
with immune regulatory functions. Since they act as enhancers,
they might participate in the regulation of neighboring genes, thus
modulating immune responses (63). LincR-Gng2-5′ is
upregulated in MS patients, while LincR-Epas1-3′as is
downregulated in these patients. Dysregulation of these
lncRNAs has a role in the pathoetiology of MS through affecting
the balance between Th1 and Th2 cells (22, 81). LincR-Ccr2-5′AS
is another lncRNA that is expressed in Th2 and has association
with GATA-binding protein 3 (GATA3), the “master regulator” of
Th2. Shaker et al. have reported the downregulation of lincR-
Ccr2-5′AS in MS patients and the subsequent decrease in the
production of Th2 cytokines (64).

GSTT1-AS1 and IFNG-AS1
Glutathione S-transferase, Theta1-Anti Sense1 (GSTT1-AS1),
also known as lncRNA-CD244, is a novel 284-bp lncRNA,
located on the minus strand 22q11.23 with partial overlap with
5′ UTR of the GSTT1 gene (19, 82). This lncRNA was originally
discovered as an lncRNA with a crucial role in the pathogenesis
of tuberculosis (83). Ganji et al. show downregulation of GSTT1-
AS1 in MS patients. Since this lncRNA suppresses the expression
of TNF and INFG through recruitment of the epigenetic complex
PRC2 and via the EZH2 enzyme complex, it might be involved in
the pathogenesis of MS (36).

IFNG-AS1 has been firstly identified as a transcript with a
possible role in the regulation of immune system function (84).
Also known as Tmevpg1, it is a 1,791-bp intergenic lncRNA
located on the plus strand on 12q15 (19), adjacent to the INFG
gene (85). It has been shown to be dysregulated in several
immune-related disorders (83, 86). This lincRNA acts as an
important checkpoint for the expression of IFNG in Th1 cells (87).

AC007278.2 (Expression in T Cells)
Another lncRNA is a 1,200-bp intronic lncRNA, AC007278.2,
also known as Lnc-IL18R1-1. This lncRNA is located on the plus
strand of the 2q12.1 chromosome and has two exons (19).
AC007278.2 has a specific expression in Th1 cells. It is located
within the introns of the protein-coding genes IL18RAP and
IL18R1, with important roles in Th1 cell differentiation (43).
December 2021 | Volume 12 | Article 774002
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FIGURE 1 | Flowchart of the study (23).
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TABLE 1 | Details of the included human studies.

Author Year Origin LncRNA measurement
technique

Sample
type

Number of
studied
patients

Identified lncRNA/expression
pattern

Polymorphism Ref

Bahrami
et al.

2021 Iran RT-PCR PBMCs 50 RRMS Lnc-DC ↑ (24)

50 controls
Bahrami
et al.

2020 Iran T-ARMS PCR PBMCs 300 patients TRPM2-AS1, rs933151
HNF1A-AS1, rs7953249

(25)

300 controls
Bina et al. 2017 Iran RT- PCR PBMCs 36 RRMS Inc-IL-7R [NS] (26)

30 Controls
Cardamone
et al.

2019 Italy Microarray assay validation by
RT-PCR

PBMCs 190 cases MALAT1 ↑ (27)
182 controls

Dastmalchi
et al.

2018 Iran RT-PCR PBMCs 50 RRMS NEAT1 ↑ (28)
50 controls TUG1 ↑

PANDA ↑
Dastmalchi
et al.

2018 Iran TaqMan RT-PCR PBMCs 50 RRMS UCA1 ↑ (29)
50 controls CCAT2 ↑

Dehghanzad
et al.

2020 Iran RT-PCR PBMCs 39 MS TOB1-AS1 ↑ (30)
32 controls

Eftekharian
et al.

2019 Iran T-ARMS-PCR Confirmed by
the Sanger method

PBMCs 428 MS MALAT1 rs619586,
rs3200401

(32)
505 controls

Eftekharian
et al.

2019 Iran T-ARMS PCR PBMCs 400 MS GAS5 ↑ rs2067079 (33)
410 controls rs6790

Eftekharian
et al.

2019 Iran TaqMan RT-PCR PBMCs 50 RRMS NNT-AS1 ↑ (34)
50 controls

Eftekharian
et al.

2017 Iran TaqMan RT-PCR PBMCs 50 RRMS THRIL ↑ (31)
50 controls FAS-AS1 ↓

PVT1 ↓
Fenoglio
et al.

2018 Italy–
Belgium

Real-time PCR validated with
TaqMan and lastly confirmed
by droplet digital PCR

PBMCs 27 RRMS MALAT1 ↓, MEG9 ↓, NRON ↓, ANRIL
↓, TUG1 ↓, XIST ↓, SOX2OT ↓,
GOMAFU ↓, HULC ↓, BACE-1AS ↓

(35)
13 PPMS
31 controls

Ganji et al. 2019 Iran RT-PCR PBMCs 50 RRMS GSTT1-AS1 ↓ (36)
50 controls IFNG-AS1 ↓

Ghaiad et al. 2020 Egypt RT-PCR PBMCs 72 MS APOA1-AS1 ↑ (37)
28 controls IFNG-AS1 ↑

RMRP ↑
Gharesouran
et al.

2019 Iran TaqMan RT-PCR PBMCs 50 RRMS MALAT1 ↑ (39)
50 controls HOTAIRM1 ↑

Gharesouran
et al.

2019 Iran TaqMan RT-PCR PBMCs 50 RRMS OIP5-AS1 ↓ (40)
50 controls

Gharesouran
et al.

2018 Iran TaqMan RT-PCR PBMCs 50 RRMS GAS5 ↑ (38)
50 controls

Gharzi et al. 2018 Iran RT-PCR PBMCs 50 RRMS BDNF-AS1 [NS] (41)
50 controls

Ghoveud
et al.

2020 Iran RT-PCR PBMCs 50 RRMS RP11-530C5.1 ↑ (42)
25 controls AL928742.12 ↓

Hosseini
et al.

2019 Iran RT-PCR PBMCs 50 RRMS AC007278.2 ↑ (43)
25 controls IFNG-AS1-001 ↑

IFNG-AS1-003 ↑
Kozin et al. 2020 Russia PCR-RFLP performed by

TaqMan RT-PCR
PBMCs 444 RRMS PVT1 (44)

96 SPMS rs2114358
406 controls rs4410871

Masoumi
et al.

2019 Iran RT-PCR Human
brain
tissue

5 RRMS MALAT1 ↓ (45)
5 controls

Mazdeh et al. 2019 Iran RT-PCR PBMCs 50 RRMS AFAP1-AS1 ↑ (46)
50 controls

Mazdeh et al. 2019 Iran T-ARMS PCR PBMCs 402 RRMS LncRNA H19 (47)
392 controls rs2839698

rs217727
Moradi et al. 2020 Iran RT-PCR confirmed by RFLP PBMCs 300 RRMS GAS5, rs55829688 and

NR3C1, rs6189/6190,
rs56149945, rs41423247

(49)
300 controls

(Continued)
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TABLE 1 | Continued

Author Year Origin LncRNA measurement
technique

Sample
type

Number of
studied
patients

Identified lncRNA/expression
pattern

Polymorphism Ref

Moradi et al. 2019 Iran RT-PCR PBMCs 20 RRMS NR003531.3(MEG3a) ↓ (48)
10 controls AC00061.2_201 [NS]

AC007182-6 [NS]
Pahlevan
Kakhki et al.

2019 Iran, North
Khorasan,
Sistani

RT-PCR PBMCs North
Khorasan 30
MS, 30
controls

THRIL, North Khorasan ↑ (51)

Sistani 21
MS, 21
controls

Sistani ↓
Inc-DC [NS] both groups

Pahlevan
Kakhki et al.

2018 Iran RT-PCR PBMCs 42 RRMS HOTAIR ↑ (50)
32 controls ANRIL [NS]

Patoughi
et al.

2020 Iran RT-PCR PBMCs 50 RRMS PINK1-AS ↑ (53)
50 controls

Patoughi
et al.

2019 Iran TaqMan RT-PCR PBMCs 50 RRMS GAS8-AS1 ↑ (52)
50 controls

Rahmani
et al.

2020 Iran RT-PCR PBMCs 83 RRMS RORC ↑ (54)
44 controls DDX5 ↑

RMRP ↑
Rezazadeh
et al.

2018 Iran T-ARMS-PCR PBMCs 410 RRMS ANRIL, rs1333045,
rs4977574, rs1333048,
rs10757278

(55)
419 controls

Rodrıǵuez-
Lorenzo

2020 Netherlands Ref-seq validated by RT-PCR Brain
tissue

6 MS
patients

HIF1A-AS3 ↑ (56)

6 controls
Safa et al. 2020 Iran RT-PCR PBMCs 50 RRMS LINC00305 ↓ (57)

50 controls lnc-MKI67IP-3 ↓
HNF1A-AS1↓
MIR31HG [NS]
NKILA [NS]
ADINR [NS]
CHAST [NS]
DICER1-AS1 [NS]

Safa et al. 2020 Iran RT-PCR Venous
blood

40 RRMS SPRY4-IT1 ↓ (58)
40 controls HOXA-AS2 ↓

LINC-ROR ↓
MEG3 ↓

Santoro et al. 2020 Italy RT-PCR Serum 16 SPMS,
12 PPMS

TUG1 ↑ (59)

8 controls LINC00293 ↑
RP11-29G8.3 ↑

Santoro et al. 2016 Italy RT-PCR Serum 12 RRMS NEAT1 ↑ (60)
12 controls TUG1 ↑

RN7SKRNA ↑
Sayad et al. 2019 Iran TaqMan RT-PCR PBMCs 50 RRMS HULC ↑ (61)

50 controls
Senousy
et al.

2020 Egypt TaqMan RT-PCR Serum 108 RRMS GAS5 ↑ rs2067079 (62)
104 controls rs1625579

Shaker et al. 2021 Egypt RT-PCR PBMCs 74 RRMS,
SPMS

LincR-Ccr2-5′AS ↓ (64)

60 controls THRIL ↑
Shaker et al. 2019 Egypt RT-PCR PBMCs 42 RRMS LincR-Gng2-5′ ↑ (63)

18 SPMS LincREpas1-3′as ↓
60 controls

Shaker et al. 2019 Egypt RT-PCR Serum 45 RRMS MALAT1 T ↑ (65)
45 controls Inc-DC ↑

Taheri et al. 2020 Iran T-ARMS-PCR PBMCs 403 MS
patients

HOTAIR, rs12826786,
rs1899663, rs4759314

(66)

420 controls
Teimuri et al. 2019 Iran RT-PCR PBMCs 25 RRMS AL450992.2 ↓ (67)

25 SPMS AC009948.5 ↓

(Continued)
Frontiers in Imm
unolog
y | www.fron
tiersin.org
 6
 December 20
21 | Volume 12 | Article 774
002

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jalaiei et al. LncRNAs and Multiple Sclerosis
Several studies revealed significant correlations between IL18RAP
and IL18R1 and their association with the lncRNA AC007278.2.
On the other hand, elevated expression of IL18RAP and IL18R1 is
involved in the differentiation of Th1 cells and the pathogenesis
MS. During Th1 differentiation, STAT4 and IL-12 recruit
chromatin remodeling complexes. Induction of histone acetylases
and DNA methylases promotes the expression of IL18RAP and
IL18R1 and the release of IL-18 and IL-12 which trigger the
differentiation of Th1 and the release of pro-inflammatory
cytokines and eventually the progression of MS (43, 88, 89).

TOB1-AS1
TOB1 antisense RNA 1 (TOB1-AS1) is transcribed from the
opposite orientation of the TOB1 gene on chromosome
17q21.33, a region with an important role in maintaining
immune tolerance (19). Dehghanzad et al. demonstrated the
abnormal expression levels of TOB1-AS1 and its targets genes
TOB1, TSG, and SKP2 in the blood of MS. Downregulation of
TOB1-AS1 might cause dysregulation of the target genes and
participate in the progression of MS (30). TOB1-AS1 enhances
Frontiers in Immunology | www.frontiersin.org 7
the expression of the TOB1 gene via suppressing the production
of IL-2 (90). An in vitro study revealed the positive feedback
between TOB1 and S-phase kinase-associated protein 2 (SKP2).
Elevation of TOB1-AS1 levels causes increased TOB1 and thus
increased the TSG levels (30).

RMRP
Rahmani et al. demonstrated that RORC, DDX5, and RMRP
have been significantly upregulated in patients with MS (54).
RORC and DDX5 can affect MS pathogenesis through regulation
of Th17 differentiation and the production of inflammatory
cytokines such as IL-17A, IL-17F, and IL-22.

LncRNAs With Roles in Innate Immune Response
Lnc-DC and THRIL
TNF and HNRNPL-related immunoregulatory long non-coding
RNA (THRIL) is a lincRNA located on the minus strand of the
12q24.31 chromosome. This lncRNA plays an important role in
the regulation of the innate immune system (19). This lncRNA
has been among the dysregulated lncRNAs in MS (31). THRIL
TABLE 1 | Continued

Author Year Origin LncRNA measurement
technique

Sample
type

Number of
studied
patients

Identified lncRNA/expression
pattern

Polymorphism Ref

25 controls RP11-98D18.3 ↓
AC007182.6 ↓

Zhang et al. 2018 China Microarray assay validation by
RT-PCR

PBMCs 36 RRMS lncDDIT4 ↑ (69)
26 controls

Zhang et al. 2017 China RT-PCR PBMCs 34 RRMS Linc-MAF4 ↑ (70)
26 controls

Zhang et al. 2016 China RT-PCR PBMCs 26 RRMS MYO3B-AS1 (ENSG00000231898.3)
↑

(68)

26 controls AC104809.2 (ENSG00000233392.1)
↓
AC120045.1 (ENSG00000259906.1)
↓
LncRNA XLOC_010931 ↓
LncRNA XLOC_009626 ↑
LncRNA XLOC_010881 ↑
December 20
21 | Volume 12 | Article 774
RT-PCR, real-time PCR; T-ARMS-PCR, tetra-primer amplification refractory mutation system-PCR; PBMCs, peripheral blood mononuclear cells; RRMS, relapsing–remitting multiple
sclerosis; SPMS, secondary progressive multiple sclerosis; upregulation, ↑; downregulation, ↓; NS, not significant; rs, reference SNP.
TABLE 2 | Details of the included animal studies.

Author Year Origin LncRNA measurement
technique

Sample type Type of EAE model Identified lncRNA/expres-
sion pattern

Ref

Bian et al. 2020 China Microarray assay validation
by q-PCR

Spleen tissue Not mentioned GM15575 ↑ (71)

Duan et al. 2018 China RT-PCR Microglia Cuprizone-induced demyelination HOTAIR ↑ (72)
Guo et al. 2017 China Microarray confirmed by RT-

PCR
Spleen tissue Myelin oligodendrocyte glycoprotein (MOG)

peptide-induced EAE
1700040D17Rik ↓ (73)

Liu et al. 2021 China RT-PCR Spinal cords or
astrocyte

MOG peptide-induced EAE GM13568 ↑ (74)

Masoumi
et al.

2019 Iran RT-PCR Lumbar spinal cord
tissue

MOG peptide-induced EAE MALAT1 ↓ (45)

Sun et al. 2017 China Microarray assay validation
by RT-PCR

Microglia MOG peptide-induced EAE GAS5 ↑ (75)

Yue et al. 2019 China RT-PCR Western blot Microglia BV2 cells MOG peptide-induced EAE TUG1 ↑ (76)
RT-PCR, real-time PCR; EAE, autoimmune encephalomyelitis; upregulation, ↑; downregulation, ↓.
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regulates TNF-a expression via its interaction with heterogeneous
nuclear ribonucleoprotein L (hnRNPL) and persuades a
transcriptional-activating complex, finally connecting to the
TNF-a promoter (91). THRIL can suppress STAT3 (51).

Lnc-DC (also known as Wfdc21) is a non-coding RNA gene
on the minus strand of chromosome 17q23.1, which was firstly
identified by Wang et al. to have an important role in the
differentiation of dendritic cells and the regulation of the
immune response (92, 93). Lnc-DC positively regulates STAT3
resulting in the differentiation of monocyte cell to dendritic cells
(92). This lncRNA is involved in the pathogenesis of sepsis (93),
coronary artery disease (94), pre-eclampsia (95), MS (51), and
systemic lupus erythematosus (SLE) (96). Xie et al. showed the
role of lnc-Dc on the regulation of TLR4 (93). Lnc-DC through
the TLR9/STAT3 axis can regulate apoptosis and immune
responses, thus can participate in the pathogenesis of MS (97,
98). Bahrami et al. demonstrated the upregulation of lnc-DC
level in HLADRB1*15:01-negative MS patients compared with
healthy controls (24).
Frontiers in Immunology | www.frontiersin.org 8
LncRNAs Having a Role in Response
to DNA Damage
LincRNA-p21 (Expression in T Cell)
P21-associated ncRNA DNA damage-activated (PANDA) is a
lincRNA located on the minus strand 6p21.2. It has a role in
response to DNA damage in a p53-dependent pathway (15).
Dastmalchi et al. revealed the upregulation of this lncRNA in the
peripheral blood of MS patients (28). PANDA controls the cell
cycle through suppression of proapoptotic-related genes (15, 99).
Dysregulation of the expression of this lncRNA in
oligodendrocytes and neurons is associated with the release of
free radicals and activation of the apoptosis process (100).

LncRNAs Involved in the Regulation
of the Cell Cycle
TUG1, UCA1, and CCAT2
UCA1, CCAT2, and TUG1 are a subgroup of lncRNAs that have
a role in the regulation of the cell cycle. UCA1 is located in the
plus strand of chromosome 19p13.12 (19). It participates in the
FIGURE 2 | A schematic diagram of the role of several lncRNAs involved in the modulation of the main molecular cascades in multiple sclerosis (MS). One of the
main pathophysiological mechanisms associated with the MS involves T cells subsets [regulatory T cells (Treg), Th1, Th2, and Th17 cells]. Dysregulation of these
subsets activates inflammatory cascades and cytokine secretion and ultimately leads to demyelination within the brain and spinal cord and neuronal damage.
Lnc-DC has been shown to be upregulated in PBMCs of MS patients. Upregulation of this lncRNA activates Toll-like receptor 4 (TLR4) and TLR9. TLR4 has a
central role in the secretion of inflammatory cytokines such as IL-1, IL-6, and IL-17 and suppresses Treg cells. Also, TLR4 increases the differentiation of Th17
through inhibition of miR-30a (24, 65). Moreover, lnc-DDIT4 is upregulated in the PBMCs of MS patients. This lncRNA binds to DDIT4 and regulates immune
response and differentiation of Th17 (69). BDNF-AS has a role in the recruitment of PRC2 and inhibition of the neuroprotective factor BDNF (41). GSTT1-AS1
inhibits the progression of MS through inhibition of secretion of IFN-g and TNF-a (36). TUG1 activates p38 MAPK signaling pathway through suppression of miR-
20a-5p, so downregulation of TUG1 decreases Th17 differentiation. UCA1 has a role in the regulation of activity of PI3K–AKT, ERK1/2, and MAPK cascades and
Th17 differentiation. Also, this lncRNA has interaction with another lncRNA, namely, CCAT2. CCAT2 induces WNT cascade signaling and enhances the
production of inflammatory cytokines (28, 59).
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pathogenesis of several cancers such as colorectal, breast, and
bladder cancer through increasing cell proliferation, apoptosis-
resistant cells, invasion, and drug resistance induction (101).
UCA1 via modulation of the PI3K–AKT, ERK1/2, and MAPK
pathways can regulate the proliferation of cells in various cancers
(102). Dastmalchi et al. revealed the upregulation of UCA1 in the
blood of MS patients. This lncRNA via inhibiting cell cycle
inhibitors such as p27 may cause increased proliferation of T
cells (29).

CCAT2 is an intergenic lncRNA on the plus strand of the
8q24.21 chromosome (19). This lncRNA acts as an oncogene and
participates in the metastasis, chromosomal instability, and
tumor growth in colon cancer (103). Both UCA1 and CCAT2
can regulate the expression of genes participating in WNT
pathway (104).

Fenoglio et al. showed the downregulation of TUG1 in MS
patients compared with controls (35). TUG1 exerts a repressor
function via recruitment of the PRC2 complex. Its promoter has
many conserved binding sites for p53, thus after DNA damage,
p53 regulates cell cycle and apoptosis via upregulation of TUG1
(35, 105, 106). TUG1 has been found to be upregulated in the
serum and PBMCs of RRMS patients (28, 59, 60). TUG1 targets
and suppresses different miRNAs such as miR-20a-5p, which has
a role in the regulation of p38 MAPK signaling pathway. p38
MAPK promotes the production of proinflammatory cytokines.
Downregulation of miR-20a-5p by TUG1 activates p38 MAPK
signaling and MS progression (60).

The growth arrest-specific 5 (GAS5) has been recognized as a
lncRNA with a possible role in normal growth arrest in T cells.
This lncRNA plays a central role in the suppression of
glucocorticoid receptor (GR). Gharesouran et al. revealed the
correlation between GAS5 and nuclear receptor subfamily 3
group C member 1 (NR3C1) (38). Sun et al. demonstrated that
GAS5 can inhibit the transcription factor IRF4, thus suppressing
the generation of T cells (75).

LncRNAs With a Role in the CNS
GOMAFU
MIAT or GOMAFU is a lincRNA on the plus strand of 22q12.2
(19), which is highly expressed in the CNS and is suggested to
have an important role in regulating the neural stem cell
differentiation into oligodendrocytes (107). Fenoglio et al.
showed the downregulation of this lncRNA in the blood of MS
patients (35). GOMAFU using its repetitive sequence binds to
the splicing factor 1 (SF1) protein and prevents the function of
the spliceosome complex. Thus, deregulation of GOMAFU
causes advent of alternative splicing patterns (108). GOMAFU
has a possible role in inflammatory and neurodegenerative
processes (35).

OIP5-AS1
OIP5-AS1 (Cyrano) was firstly detected in zebrafish models and
it was suggested that it has a role in the development of the CNS
(109). Kim et al. revealed that OIP5‐AS1 causes a reduction in
the stability a cyclin G‐associated kinase (GAK) mRNA with
important roles for mitotic progression (110). It seems that this
lncRNA exerts its role in the suppression of cell proliferation
Frontiers in Immunology | www.frontiersin.org 9
through reducing GAK levels by associating with the RNA-
binding proteins (RBPs) like HUR1 (ELAV-like protein 1).
HuR1 is a protein that in humans is encoded by the ELAVL1
and is regarded as a member of the ELAVL proteins. HUR1
contains three RNA-binding domains and binds to cis-acting
AU-rich elements. Since the HuR1 gene is expressed in
astrocytes, it might have a role in autoimmune diseases such as
encephalomyelitis and MS (111).

BDNF-AS
Brain-derived neurotrophic factor-antisense RNA (BDNF-AS) is
a 191-kb-long conserved lncRNA (112), located in the opposite
orientation of BDNF on the 11p14.1. It negatively regulates the
expression of BDNF at the mRNA and protein levels (113).
BDNF is a neuroprotective factor that is synthesized in the brain
and is expressed at a high level in the CNS. It has diverse
functions such as the promotion of neuronal survival and
elevation of growth, maturation, and synaptic plasticity. BDNF
is produced and released by neurons and immune cells such as T
and B cells under the circumstance of inflammation of the CNS
in MS patients (114). BDNF-AS recruits PRC2 and inhibits
BDNF expression (113).

Other LncRNAs
NEAT1
This lncRNA has been shown to be upregulated in MS patients
compared with healthy individuals (59). NEAT1 plays an
important role in the formation of paraspeckle, a nuclear body
that comprises numerous protein factors. NEAT1 has been
shown to be co-localized with splicing factor proline/
glutamine-rich (SFPQ) and NonPOU domain containing,
octamer-binding (NONO) (115). Also, NEAT1 is activated by
the Toll-like receptor 3 (TLR3)–p38 pathway in antiviral
response or endogenous agonists that bind to TLR3 (116, 117).
Imamura et al. revealed that upregulation of NEAT1 causes
activation and excess IL-8 production via enhancing the
relocation of SFPQ proteins from the IL-8 promoter (118).

RN7SK RNA
The lincRNA 7SK small nuclear (RN7SK RNA) is transcribed
from the plus strand of the 6p12.2 chromosome. It is involved in
the formation of the 7SK snRNP complex with other specific
proteins (HEXIM1/2, LARP7, and PIP7S) that can inhibit
approximately half of the activity of the cellular kinase P-TEFb
complex (119, 120). The P-TEFb complex and its protein
component Cdk9/cyclin T1 heterodimer have a role in the
activation of CD4+ T cells. So, upregulated RN7SK RNA may
cause disturbance in the P-TEFb complex with resulting
regulation effects on CD4+ T cells, thus participating in
autoimmune diseases such as idiopathic inflammatory
myopathy (IIM) and MS (59).

AFAP1-AS1
Actin Filament-Associated Protein 1 Antisense RNA 1 (AFAP1-
AS1) is a conserved non-coding RNA transcribed from the plus
strand of chromosome 4p16.1 on the opposite strand of the
AFAP1 locus. This lncRNA regulates the expression of AFAP1 at
the translation level (121). AFAP1-AS1 was found to modulate
December 2021 | Volume 12 | Article 774002
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AFAP1 and act as an adapter molecule that links other proteins
such as SRC and PKC with a hypothetical function in blood–
brain barrier (BBB) integrity. BBB dysfunction in MS patients
allows the enormous influx of immune cells into the brain and,
after a series of interactions, leads to demyelination (122). Based
on the bioinformatics analyses, AFAP1-AS1 affected the
expression of molecules with a vital role in the actin
cytoskeleton signaling pathway such as multiple small GTPase
family members. As small GTPases are involved in the regulation
of immunity and inflammation response, its dysregulation leads
to disease progression in many diseases such as autoimmune
diseases (123). Upregulation of AFAP1-AS1 promotes metastasis
via modulation actin filament integrity (124). Due to its
antiapoptotic properties in peripheral immune cells, it might
be involved in the pathogenesis of MS (40).

GAS8-AS1
A previous study showed that GAS8-AS1 is a tumor suppressor
and regulates the expression of another lncRNA, namely,
AFAP1-AS1 (125). GAS8-AS1 has been downregulated, while
AFAP-AS1 has been upregulated in MS patients. Regarding the
role of AFAP1-AS1 in the pathogenesis and progression of MS, it
can be hypothesized that dysregulation of GAS8-AS1 might be
involved in the pathogenesis of MS (40, 125). Zha et al. revealed
that GAS8-AS1 negatively regulated the expression of UCA1.
UCA1 has been shown to regulate various signaling pathways
such as FGFR1/ERK and TGF-b (126). TGF-b has a role in the
inflammatory condition and acts as an anti-inflammatory factor
to inhibit Th1 and Th17 cells (127), so upregulation of GAS8-
AS1 resulting in the downregulation of UCA1 and reduced TGF-
b might cause progression and aggregate MS.

PINK1-AS
PTEN-induced kinase 1-AS (PINK1-AS) is an intronic non-
coding RNA transcribed from the minus strand of chromosome
1p36.12 on the opposite strand of the PINK1 locus. This lncRNA
regulates the expression of PINK1. Patoughi et al. (53) revealed
the upregulation of the expression level of the PINK1-AS in male
MS patients compared with male healthy controls. This might be
due to the existence of a gender-based regulatory direction for
PINK1-AS expression or variance in the pathogenic process of
disease in female and male MS patients. PINK1 is a serine/
threonine kinase that preserves the mitochondria and supports
its normal function (128). Further studies by Fenoglio et al. have
identified 10 lncRNAs with abnormal expression. These
lncRNAs consist of MALAT1, MEG9, NRON, ANRIL, TUG1,
XIST, SOX2OT, GOMAFU, HULC, and BACE-1AS (35).

The highly upregulated liver cancer (HULC) is another
lncRNA found to be upregulated in MS patients in one study
(61), whereas Fenoglio et al. have reported an opposite result (35).
This lncRNA attaches to miR-200a-3p and also acts as an
endogenous sponge for miR-122. Since miR-122 has an anti-
inflammatory effect and is significantly downregulated in the
blood of MS patients, HULC may be involved in the progression
of MS. On the other hand, HULC activates miR-200a-3p/ZEB1
signaling. miR-200a plays an important role in the regulation of
the TLR4 pathway and ZEB1 has a neuroprotective protein (129).
Frontiers in Immunology | www.frontiersin.org 10
Dysregulated LncRNAs in the Animal Model of MS
One of the useful animal models of MS is EAE mice that share
several characteristics with MS. However, there are few studies in
this area. Yue et al. (76) demonstrated the abnormal activity of
the TUG1/miR-9-5p/NF-kB1/p50 axis in the mouse model of
MS. In fact, upregulation of TUG1 causes suppression of miR-9-
5p and an increase in the expression of NF-kB1/p50. This
transcription factor causes activation of Th17 cell and the
production of IL-17 and IL-6. NF-kB also regulates matrix
metalloproteinases (MMPs). Downregulation of TUG1 leads to
increased levels of miR-9-5p and a decrease in NF-kB1/p50.

Another study by Guo and colleagues showed that lncRNA-
1700040D17Rik is a specific mouse lincRNA that is located
adjacent to the RORgt gene on chromosome 3 and is
downregulated in EAE (73). Then, an in vitro approach
revealed that IL23R-CHR is a soluble IL23R that counteracts
IL-23 and blocks its signaling pathway, thus inhibiting
differentiation of Th17 cell (130). These findings demonstrated
that 1700040D17Rik regulates the expression of RORgt, which is
an essential transcription factor for Th17 (73).

Liu et al. revealed that IL-9 inducing lncRNA Gm13568 in
astrocytes has interaction with CBP/P300. It promotes Notch1
pathway activation and is involved in the construction of
inflammatory cytokines in astrocytes in the progression of EAE
development (74).

Variants Within LncRNAs and Association With MS
According to the important roles of lncRNAs in the regulation of
immune responses, it is expected that functional variants within
their coding region or adjacent to them can affect the risk of MS.
However, there are few studies on this issue. Bahrami et al. have
evaluated the association between rs933151 and rs7953249
polymorphisms in TRPM2-AS and HNF1-AS1, respectively,
and MS risk in the Iranian population. They revealed that
rs7953249 within HNF1-AS1 has an association with C-
reactive protein (CRP) (25).

Taheri et al. assessed the association between three SNPs
(rs12826786, rs1899663, and rs4759314) within HOTAIR and
MS in 403 Iranian MS patients and 420 controls. Their results
showed that the G allele of rs4759314 might be involved in the
risk of MS (66).
CONCLUSION

In conclusion, the pathogenesis of MS is highly complex
including several molecular signaling pathways. Most of the
abovementioned studies have assessed the expression of
lncRNAs in serum or PBMCs. Although several of these
lncRNAs have essential roles in the CNS processes, modulation
of peripheral immune responses is the most appreciated route of
participation of lncRNAs in the pathogenesis of MS. Few studies
have assessed the expressions of lncRNAs in the brain tissues of
EAE models. An important study in this field has identified
dysregulation of Gm14005, Gm12478, mouselincRNA1117,
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AK080435, and mouselincRNA0681 in brain tissues of affected
animals. Notably, inflammation has been among the mostly
enriched pathways among dysregulated genes (131). This
observation further emphasized the importance of
inflammation-related lncRNAs in the pathoetiology of MS.

In the current review, we highlighted the function of various
lncRNAs in the MS pathway. Although few studies have
addressed this issue, it is predicted that genomic variation
within lncRNAs affecting their function or expression may
contribute to the risk of MS or response of subjects to
treatments. It has been determined that lncRNAs have roles in
the development of the immune system and nerve cells. Further
studies are required for understanding the mechanism of
lncRNA involvement in the pathogenesis of MS.
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GLOSSARY

lncRNA long non-coding RNA
MS multiple sclerosis
RT-PCR real-time polymerase chain reaction
AFAP1-
AS1

actin filament-associated protein 1 antisense RNA 1

RRMS relapsing–remitting multiple sclerosis
SPMS secondary progressive multiple sclerosis
CNS central nervous system
HOTAIR Hox transcript antisense intergenic RNA
miRNAs microRNAs
CD4+ T
cells

T helper cells

CD8+ T
cells

cytotoxic T cells

GWAS genome-wide association studies
BDNF brain-derived neurotrophic factor
BDNF-AS BDNF antisense RNA
NR3C1 nuclear receptor subfamily 3 group C member 1
PRC2 polycarbonate 2 suppressor complex
DDIT4 DNA-damage-inducible transcript 4
mTORC1 mammalian target of rapamycin complex 1
lncDDIT4 lncRNA DDIT4
Th17 T helper 17 cell
Tregs regulatory T cells
IFN-g interferon gamma
hnRNPs heterogeneous nuclear ribonucleoproteins
DC dendritic cells
lnc-DC lncRNA expressed in DC
PANDA P21-associated ncRNA DNA damage-activated
FAS-AS1 FAS antisense transcript 1
linc-MAF-
4

A lncRNA

THRIL TNF-a and heterogeneous nuclear ribonucleoprotein L

(Continued)
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PVT1 plasmacytoma variant translocation 1
GAK cyclin G-associated kinase
HuR1 Huantigen R
SIRT1 silent information regulator 1
OIP5-AS1 OIP5 antisense RNA 1
TUG1 taurine-upregulated gene
IL-8 interleukin 8
SFPQ splicing factor proline- and glutamine-rich
IL-17 interleukin 17
STAT4 signal transducer and activator of transcription 4
EZH2 enhancer of zeste homolog 2
TNF-a tumor necrosis factor alpha
TLR4 Toll-like receptor 4
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
MAPK mitogen-activated protein kinase
PI3K phosphoinositide 3-kinases
ERK1/2 extracellular signal-regulated kinases 1/2
AKT protein kinase B
WNT Wnt signaling pathway
SF1 splicing factor 1
GAK G-associated kinase
NonPOU non-POU domain-containing octamer-binding protein
P-TEFb positive transcription elongation factor
BBB blood–brain barrier
FGFR1 fibroblast growth factor receptor 1
ERK extracellular signal-regulated kinase
TGF-b transforming growth factor beta
CRP C-reactive protein
PINK1-AS PTEN-induced kinase 1-AS
HIF1-AS3 hypoxia-inducible factor 1-AS3
RMRP RNA component of the mitochondrial RNA-processing

endoribonuclease (RNase MRP)
GATA3 GATA-binding protein 3
GR glucocorticoid receptor
HULC highly upregulated liver cancer
ZEB1 zinc finger and homeodomain transcription factor 1
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