
Frontiers in Immunology | www.frontiersin.

Edited by:
Attila Mócsai,
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Neutrophil extracellular traps (NETs), a web-like structures containing chromatin, have a
significant role in assisting the capture and killing of microorganisms by neutrophils during
infection. The specific engagement of cell-surface receptors by extracellular signaling
molecules activates diverse intracellular signaling cascades and regulates neutrophil
effector functions, including phagocytosis, reactive oxygen species release,
degranulation, and NET formation. However, overproduction of NETs is closely related
to the occurrence of inflammation, autoimmune disorders, non-canonical thrombosis and
tumor metastasis. Therefore, it is necessary to understand neutrophil activation signals
and the subsequent formation of NETs, as well as the related immune regulation. In this
review, we provide an overview of the immunoreceptor-mediated regulation of NETosis.
The pathways involved in the release of NETs during infection or stimulation by
noninfectious substances are discussed in detail. The mechanisms by which
neutrophils undergo NETosis help to refine our views on the roles of NETs in immune
protection and autoimmune diseases, providing a theoretical basis for research on the
immune regulation of NETs.

Keywords: neutrophil extracellular traps, chemokine receptor, Fc receptors, complement receptors, pattern
recognition receptors
1 INTRODUCTION

Faced with daily exposure to various pathogens, humans rely heavily on the innate immune system
as a first responder to intruders. Neutrophils are the most abundant and fastest responding innate
immune effector cells. These cells play a central role in innate immunity by acting when
inflammation occurs and then subside (1). When pathogens invade the body, neutrophils kill
them through three major strategies: phagocytosis, degranulation and the release of neutrophil
extracellular traps (NETs) (2). NETs are extracellular, web-like structures consisting of DNA-
histone complexes and decorated by a set of neutrophil granule proteins, such as cathelicidin,
cathepsin G, myeloperoxidase (3) and neutrophil elastase (NE) (4–6). These extracellular structures
trap pathogenic microbes, preventing them from spreading, and ensure a high local concentration
of antimicrobial agents to degrade virulence factors and kill microorganisms (7). However,
molecules released during NET formation can often become autoantigens involved in the
org November 2021 | Volume 12 | Article 7752671
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pathogenesis of autoimmune diseases. For example, citrullinated
proteins (such as histone H3, histone H4 and vimentin) are new
neoepitopes for anti-citrullinated protein antibodies (ACPA) in
rheumatoid arthritis (RA); NET-derived extracellular nucleic
acids and dsDNA are the targets of systemic lupus
erythematosus (SLE) autoantibodies; NET-associated MPO and
proteinase 3 (PR3) enzymes are major autoantigenic targets of
anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV) (8–10). However, although NETs play a very
important role in the occurrence, development and resolution of
gout induced by monosodium urate (MSU) crystals, there are
currently no reports of related autoantibody abnormalities, and
the specific mechanism remains to be further explored (11).

Receptors in the innate immune system are specialized
surface proteins that recognize foreign particles and pathogenic
bacteria. Receptors can detect or perceive the type of foreign
pattern during infection, so these are also called pattern
recognition receptors (PRRs) (12). Following ligand
recognition, the triggered intracellular signaling cascade leads
to the transcription and/or secretion of inflammatory mediators,
coordinating the elimination of pathogens and infected cells.
Neutrophils are at the forefront of identifying and subsequently
killing invading pathogens. These immune cells express a vast
repertoire of PRRs, from members of the Toll-like receptor
(TLR) family to dendritic cell-associated C-type lectin 1
(Dectin-1) molecules that specifically recognize a large number
of glycoproteins (13). Neutrophils are also stimulated by a variety
of substances, including opsonized particles, immune complexes
and chemokines. Binding to PRRs leads to degranulation,
production of reactive oxygen species (ROS), and NETs and
ultimately to the elimination of invasive pathogens (14).
Therefore, it is of major importance to understand the specific
mechanisms of neutrophil activation that facilitate the
identification of therapeutic targets for abnormal neutrophil
activation in disease.

In this review, we summarize the different receptors expressed
on neutrophils and the formation of NETs, which first requires
the activation of neutrophil receptors. We also describe in detail
the receptors known to be expressed on human neutrophils
involved in NET formation and discuss their specific
mechanisms for participation in the release of NETs.
2 NETosis

Neutrophils release NETs via a multistep process called NETosis.
To date, two key mechanisms by which neutrophils release NETs
in host defense are known as suicidal NETosis and vital NETosis
(15). The specific mechanisms that regulate these forms of cell
death have not yet been completely clarified.

Suicidal NETosis was first observed in response to phorbol-
12-myristate-13-acetate (16), an effective activator of multiple
signaling pathways in neutrophils (7). Fuchs et al. used detailed
in vitro cell imaging technology to define NET release as the
NOX-dependent cell death process. This form of suicide is a
step-by-step progression after chromatin decondensation,
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nuclear swelling, overflow of nucleus to cytoplasm, and finally
membrane perforation mixing of nucleic acids and granular
proteins (17). Suicidal NETosis involves the triggering of
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX)-dependent pathways, the generation of ROS,
and receptor-interacting protein kinase/mixed lineage kinase
domain-like-mediated signals (18). Briefly, the activation of
receptors increases calcium ions and stimulates the activity of
protein kinase C (PKC) and NOX, leading to the formation of
ROS. Under ROS, activation of MPO not only participates in
the depolymerization of chromatin and the rupture of the
nuclear membrane, forming the main components of NETs
with other proteins and DNA, but also further activates NE,
which promotes the transfer of NE from the cytoplasm to the
nucleus, cleaving chromatin and releasing it into the cytoplasm.
In addition, MPO also contributes to the decondensation of
chromatin, but the enzymatic activity of MPO is not required
at this stage. Interestingly, in this process, the peptidyl arginine
deiminase 4 (PAD4) enzyme is also activated (19). Subsequently,
the combined action of PAD4, NE, and MPO results in
citrullination of histone H3 and subsequent chromatin
decondensation, discharging into the extracellular space and
resulting in neutrophil death. This process is also called NOX-
dependent NETosis.

In contrast to the relatively slow suicidal NETosis pathway, vital
NETosis involves the rapid release of NETs stimulated by
microorganisms, activated platelets (PLTs), or complement
proteins through neutrophil surface receptors, which appears to
be independent of NOX activity (20, 21). In this pathway, the main
feature of vital NETosis is activation by Ca2+-activated PAD4,
citrullinating H3 and participating DNA decondensation with the
cooperation of MPO and NE (22). Next, the nucleus loses its
classical lobular shape, and decondensed chromatin is expelled to
form NETs. Under this condition, the release of DNA, granular
proteins and histones occurs with the formation and extrinsic
distribution of vesicles, so the cell is still alive and has the capacity
to perform cellular functions, such as cell migration (5). The influx
of Ca2+ is considered to require the participation of mitochondrial
ROS (mitoROS).However, it is still controversial whethermitoROS
are involved in NOX-independent NETosis.
3 RECEPTORS THAT TRIGGER NETosis

3.1 Pattern Recognition Receptors
PRRs are essential for detecting invading pathogens and
initiating innate and adaptive immune responses. The ligands
of these receptors consist of specific pathogen-related molecular
patterns (PAMPs) of microbial molecules and damage-related
molecular patterns (DAMPs) exposed on the surface of damaged
cells (12). There are multiple families of PRRs, including
membrane-associated TLRs, C-type lectin receptors (CLRs),
nucleotide-binding oligomerization domain-like (23) receptors
(NLRs) and RIG-I-like receptors (RLRs) (12). Among these,
TLRs, CLRs and NLRs have been reported to be involved
in NETosis.
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3.1.1 Toll-Like Receptors
TLRs play a vital role in host cell recognition and responses to
microorganisms. To date, 11 TLR family members have been
identified, of which TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11
are located on the cell surface and primarily recognize the
microbial membrane, while the other members are located in
endosomes/lysosomes and recognize foreign nucleic acids (24).
As the first line of defense, these receptors play key roles in
pathogen invasion, innate immune responses and antigen-
specific adaptive immunity (25). Human neutrophils express
all TLRs except TLR3 (26). Neutrophils mainly recognize
PAMPs through their TLRs, thereby triggering responses to
invading pathogens. TLR activation leads to important cellular
processes, including ROS generation, degranulation, NET
formation, and cytokine production (27). When signal
transduction is dysregulated, chronic inflammation might
result. In chronic inflammation, NET imbalance maybe can be
considered to one of the main factors.

In recent years, a majority of TLRs have been identified to
participate in NETosis, as these receptors can specifically
recognize a variety of pathogenic microorganisms, such as
viruses, bacteria, parasites and fungi. Giving examples, the
smallest prokaryotic microorganism in the biological world,
Mycoplasma agalactiae (M. agalactiae), was the first reported
to induce NET release via the TLR2 signaling pathway, but its
mechanism is not yet clear (28). Additionally, in the natural
immune confrontation between fungus and host, the receptors
TLR2 and TLR4 are essential for ROS-dependent NETosis
induction by Fonsecaea pedrosoi (F. pedrosoi) (29). Regarding
parasites, Eimeria bovis (E. bovis) can increase TLR2 and TLR4
expression on the PMN and induce TLR2/4-dependent NF-kB
activation, resulting in NETosis (30). Regarding bacteria,
Streptococcus suis serotype 2 (SS2) can be recognized by TLR2
and/or TLR4, initiating NETosis in a NOX - dependent manner.
And, blocking TLR4 signaling could further inhibit the activation
of ERK1/2 without p38 MAPK (31). Another kind of bacteria,
Wolbachia endobacteria (W. endobacteria), interacts with TLR2/
6 to trigger NETosis through direct ligation of Wolbachia
lipoprotein (32). Moreover, various types of viruses reported to
be involved in NETosis are common. For instance, activation of
PLT receptor C-type lectin member 2 (CLEC2) by dengue virus
(DV) (33) or H5N1 influenza virus (IAV) enhances NETosis and
proinflammatory cytokine production via TLR2 (34), while
respiratory syncytial virus (RSV) F protein leads to NET
production dependent on TLR4 activation, NOX-derived ROS
production and ERK and p38 MAPK phosphorylation (35).
Additionally, human immunodeficiency virus 1 (HIV-1) is
captured and killed in NETs formed by neutrophils using
TLR7 and TLR8 to recognize viral nucleic acids (36), and
chikungunya virus (CHIKV) induces NETosis through a
mechanism dependent on TLR7 activation and ROS generation
(37). These pathogenic microorganisms are captured and killed by
activating TLRs to participate in neutrophil-mediated NETosis.
Although the specific mechanism needs to be further explored, the
generation of ROS and the activation of the ROS-dependent
NETosis pathway play irreplaceable roles in this process.
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In addition to pathogens, DAMPs are also involved in NET
release by triggering TLRs. During liver ischemia/reperfusion (I/R)
injury, histones and high-mobility group box 1 (HMGB1) released
from damaged hepatocytes function as DAMPs to promote PAD4
activation via TLR4 and TLR9 signaling pathways, which
subsequently activate NETosis (38). Oxidized low-density
lipoprotein (oxLDL) can induce NETs by TLR4 and TLR6 via the
ROS-dependent pathway (39). In patients with antiphospholipid
syndrome (APS), anti-b2GPI/b2GPIantibodies induceNETosis to
promote thrombogenesis via the TLR4/MyD88/MAPK signaling
pathway (40). In addition, activated PLTs can induce NETs in a
TLR4-dependent manner, promoting the trapping of bacteria
within blood vessels in septic patients (41). Moreover,
mitochondrial DNA (mtDNA) activates neutrophils via the cyclic
GMP-AMP synthase (cGAS) and TLR9 pathways to induce
NETosis (42).
3.1.2 NOD-Like Receptor
NLRs are cytosolic receptors that provide a second line of defense
against pathogen invasion. NOD1 and NOD2 are two well-
characterized NLRs belonging to the NLRC subfamily that
recognize components of bacterial peptidoglycan. Other NLRs,
such as NOD-like receptor family pyrin domain containing 1
(NLRP1), NLRP3 and NLRC4, are activated by a number of
different pathogens and damage signals and oligomerize to form
multiprotein inflammasome complexes.

There are very few reports on NLR family involvement in
NETs, and the first report was in 2019 by Alyami and his team.
They found that Fusobacterium nucleatum upregulated NOD1
and NOD2 to activate neutrophils in a time-dependent manner
and induce strong NETosis. Furthermore, employing CRISPR/
Cas9 knockout of NOD1/NOD2 in HL-60 cells and inhibitors of
NOD signaling, Fusobacterium nucleatum (F. nucleatum) has
been confirmed to mediate NETosis through the activation of the
PAD4 enzyme and the release of MPO and NE (43). In addition
to NOD1 and NOD2, NLRP3 has recently been reported to be
involved in NETosis, but its role in NET formation is rather
complicated. While there is no specific mechanism to show the
connection between NLRP3 and NETosis, the assembly of
NLRP3 inflammasomes requires PAD4 to participate in the
rupture of nuclear and plasma membranes. PAD4 activity and
rupture of nuclear and plasma membranes are the key steps in
the formation of NETs. This phenomenon was verified in mouse
and human neutrophils, and it was found that pharmacological
inhibition of NLRP3 also reduced NETosis and that NLRP3
deficiency resulted in a lower density of NETs in thrombi
produced in a stenosis-induced mouse model of deep vein
thrombosis (44). Considering the clinical importance of
excessive IL-1b and NET generation, PAD-dependent
regulation of NLRP3 protein levels could be an important
mechanism in inflammasome-driven diseases. Targeted
blockade of NLRP3 may reduce the nocive effects of NETs.
NLRP3 is expected to become a new target for the treatment of
several diseases, including acute gouty arthritis, thrombosis and
type II diabetes.
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3.1.3 C-Type Lectin Receptors
CLRs compose a transmembrane protein family, with members
having at least one C-type lectin-like domain (CTLD) at the cell
surface. Classical CLRs are proteins that bind various
carbohydrate moieties in a calcium-dependent manner through
conserved residues within the CTLD. Immune cells, including all
myeloid cells and lymphocytes, express various CLRs. Some
CLRs, such as L-selectin, Galectin-1 (Gal-1), macrophage
inducible C-type lectin (Mincle), myeloid inhibitory C-type
lectin (MICL), Dectin 1 and C-type lectin-2 (Dectin 2), are
commonly expressed on neutrophils (45). These CLRs can
directly recognize microbial membrane glycans and activate
innate immunity by triggering inflammatory cytokine
secretion, NET formation and the antibacterial response in
neutrophils (46).

Interestingly, unopsonized Candida albicans (C. albicans)
yeast-induced NET formation requires the Dectin 2-mediated
Syk-Ca2+- PAD4 signaling pathway through a NOX-
independent pathway to restrain the spread of C. albicans from
the peritoneal cavity to the kidney (47). However, opsonized C.
albicans induced NETosis via NOX to capture and kill the
pathogen (48). Protectively, the host regulates NETosis
through dual mechanism-dependent and independent NOX
pathways, which quickly fight pathogenic microorganisms and
exert antibacterial effects. In addition, CLEC2 and C-type lectin
member 5A (CLEC5A) are critical in microbe-induced NET
formation, such as that caused by dengue virus or H5N1
influenza virus (34, 49). Moreover, CLEC5A is needed for
optimal ROS production, NET formation and other immune
responses to Listeria monocytogenes in mice (50). Thus, CLR-
mediated NETosis pathways are potent endogenous danger
signals, and blocking C-type lectins may be a promising
strategy to inhibit virus-induced NETosis and cytokine storm.
Another CLR, Mincle, can mediate NET formation via
modulation of autophagy without being affected by ROS,
which is a major discovery in this field (51). Mincle is
considered a therapeutic target that selectively inhibits NETs
without affecting ROS generation.

Interestingly, in addition to participating in the formation of
NETs, CLRs can also prevent NET release. NET release is
dependent on neutrophils sensing the size of microorganisms
and selectively releasing NETs in response to large pathogens,
such as C. albicans hyphae and Mycobacterium bovis (M. bovis),
but not small yeasts or single bacteria. As a size sensor for
neutrophil phagocytosis of microorganisms, Dectin-1 can
prevent NETosis by inhibiting the transport of NE to the
nucleus to cleave chromatin (52). Therefore, this regulatory
mechanism underlying the size-dependent release of NETs via
TLR signaling allows selective implementation of neutrophil
antibacterial strategies to eliminate fungal infections while
minimizing tissue damage.

3.2 Complement Receptors
Complement receptors (CRs), expressed notably on myeloid and
lymphoid cells, exert critical functions in the modulation of
innate and adaptive immune responses, which interact
Frontiers in Immunology | www.frontiersin.org 4
specifically with complement factors to eliminate antigens
from the circulation, clear apoptotic cells and control certain
bacterial infections (53). However, recent studies have clearly
demonstrated the pathophysiological importance of the
complement system in NET-mediated autoimmune diseases.
To date, the most commonly identified CRs that contribute to
neutrophil NET release are CR1 (CD35), CR3 (Mac-1 or CD11b/
CD18), CR4 and CR5.

A g g r e g a t i b a c t e r a c t i n omy c e t em com i t a n s (A .
actinomycetemcomitans) and Actinomyces viscosus (A.
viscosus) can induce NETosis in neutrophils through CR1
(54). By interacting with CR3, Aspergillus fumigatus (A.
fumigatus) and Staphylococcus aureus (S. aureus) activate
downstream NOX to induce NET formation (54, 55). In
addition to bacteria, some viruses seem to be recognized by
neutrophils via CRs. For instance, work on Hantaan virus
(HTNV) has indicated that CR3 and CR4 are critical for NET
formation, relying on a ROS-dependent pathway (56). Emerging
data indicate that during coronavirus disease 2019 (COVID-19),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
triggers complement activation by interacting with C3, which
leads to C3a, C5a, and sC5b-9 (TCC) generation. Subsequently,
C3a might activate PLTs, while C5a and PLT-derived thrombin
induce both neutrophil tissue factor (TF) expression and NETs
carrying active TF (57). This important discovery provides the
basis for the key roles of complement and NETs in COVID-19
immunothrombosis. Therefore, these studies support the use of
complement or NETosis inhibition to fight viral infections and
help eliminate the corresponding complications. Yeasts are
eukaryotic, single-celled microorganisms classified as members
of the fungal kingdom, which are also reported to fight against
host neutrophils to form NETs. Histoplasma capsulatum var.
capsulatum (H. capsulatum) yeast is a dimorphic fungus with a
global distribution that causes histoplasmosis. H. capsulatum
yeast induces NETosis through an oxidation mechanism that is
dependent on ROS and the Src and Syk kinase pathways by
targeting CR3 (58). Another pathogenic yeast opsonized C.
albicans, one of the top leading causes of healthcare-associated
bloodstream infection, can interact with CR3 to trigger NETs by
activating downstream Syk-dependent NADPH oxidase (59).
Based on these observations, by releasing NETs, neutrophils
create a favorable extracellular microenvironment for yeast
trapping and killing, which may explain why people with
strong immune capabilities can resolve infections or develop
subclinical symptoms, while immunosuppression may cause a
disseminated disease.

In addition, high expression of C5aR1 was confirmed to be
associated with the NET marker MPO-DNA in a cohort of
patients with stable coronary artery disease (60), indicating that
there is a clinically relevant interaction between complement
activation and NETosis (61). Moreover, ICs have also been
confirmed to participate in activating neutrophils by binding to
surface CR3 on neutrophils. The specific mechanism is still
unclear, but it has been confirmed that the activation of the
receptor CR3 by ICs relies on the ROS-dependent NETosis
pathway (62).
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3.3 Fc Receptors
Fc receptors (FcRs) are expressed on various immune cells and
can initiate an immune response at the initial antigen
presentation step by facilitating IC uptake to drive cellular and
humoral immune responses. Human neutrophils constitutively
express two antibody receptors that are members of the FcR
family recognizing IgG molecules, namely, FcgRIIa (CD32a) and
FcgRIIIb (CD16b) (63).

Recent research has indicated that ICs are capable of inducing
NETosis. In one report, FcgRIIIb promoted endocytosis of ICs,
and FcgRIIa mediated the activation of NETosis (23). However,
another report suggested that FcgRIIa promoted phagocytosis
and that only FcgRIIIb participated in the induction of NET
formation, triggering NETosis via the FcgRIIIb cross-linking
TAK1-dependent MEK/ERK signaling pathway (64, 65).
Therefore, it is not possible to determine which receptor plays
the primary role; furthermore, their interaction may be essential
in NET formation. In addition, FcRs also seem to take part in
NETosis during bacterial infections. The results presented for
neutrophils in contact with opsonized S. aureus or hypervirulent
Klebsiella pneumoniae (hvKp) suggested that activation of FcRs
could enhance the release of NETs (54, 66). Moreover, coating
bacteria with IgA could also enhance NETosis against viral
pathogens via FcaIR on neutrophil signaling through a TLR-
independent NOX-dependent pathway (67). Neutrophils
expressing FcRs are the first to respond to sites of injury or
infection, and IgA virus ICs potentiate NETosis to trap and
inactivate viruses, consistent with an antiviral function. NETosis
plays a role in protecting the body but can also have pathogenic
consequences when poorly regulated.

3.4 Chemokine Receptors
Chemokine receptors, which are seven-transmembrane G
protein-coupled receptors, are recognized as the most critical
mediators for recruiting neutrophils during inflammation.
Furthermore, they are also considered to regulate the short
lifetime of neutrophils, mobilizing these cells from the bone
marrow to the blood to execute immune effects and driving
homing to the bone marrow for apoptosis and clearance (68).
Certainly, chemokine receptors are also important mediators of
neutrophil effector functions, such as oxidative burst and
inflammatory cytokine production, degranulation, and
NETosis. Among several chemokine receptors, only CXCR1,
CXCR2 and CXCR4 have been identified to participate in
NET formation.

It’s well known that cholesterol crystals act as danger signals
in atherosclerosis (AS), which triggered neutrophils to release
NETs. Then, NETs activate macrophages and Th-17 cells,
amplifying the recruitment of immune cells in atherosclerotic
plaques (69). The role of CXCR2 in the activation of NETosis
was confirmed in atherosclerosis (AS), as well as diffuse large B-
cell lymphoma (DLBCL) (70, 71). This receptor plays notable
roles in aggravating AS and DLBCL progression in vivo,
cooperating with its ligand IL-8 to release NETs via Src kinase,
extracellular signal-regulated kinase, and p38 mitogen-activated
protein kinase (MAPK) signaling. Moreover, Ca(2+) signaling
Frontiers in Immunology | www.frontiersin.org 5
contributes to p38 MAPK activation (72). The effect of Ca 2+
signaling inhibitors has also been reported to reduce the production
of IL-8 (73). So far, although there is no evidence that Ca2+ is
directly related to IL8-inducedNETosis, previous research supports
our conclusion that Ca2+ also plays an important role in it.
Moreover, CXCR2 can also send out a signal to recruit
neutrophils by cooperating with P-selectin glycoprotein ligand-1
(PSGL-1) to induce NET formation, which further enhances deep
vein thrombosis (74). Interestingly, in a recent study on circadian
regulationofneutrophilNETosis, itwas found thatCXCR2notonly
recruits neutrophils to local sites of inflammation but also
participates in regulating the circadian rhythm to change the
NET-forming capacity by disarming the process involving the
neutrophil proteome (75). In addition, CXCR4 was identified as
an important surface recognition molecule in patients suffering
from severemalaria, inwhom it functions by releasingmacrophage
migration inhibitory factor (MIF), which in turn causes NET
formation (3).

NETosis has also been reported to be involved in cancer
progression, metastatic dissemination, and tumor-associated
complications, such as thrombosis and kidney-associated
damage (76). CXCR1 and CXCR2 have been proven to be the
major mediators of tumors exhibiting ELR+ CXCL chemokine-
promoted NETosis (77). Significantly, the study also clarified the
protective effect of NETs, which can coat and shield tumor cells
against cytotoxic effects mediated by CD8+ T cells and NK cells
(77). This protective mechanism is mainly mediated by NETs,
degrading extracellular DNA and reducing toxicity, which
reduced the interaction between effector cells and target cells.
In this sense, NETs are a double-edged sword in tumors that can
be responsible not only for capturing metastatic emboli in the
bloodstream but also for protecting immune cells from NK cell-
mediated cytotoxic attacks. However, the DNA component of
NETs (NET-DNA) can promote cancer metastasis through
coiled-coil domain containing protein 25 (CCDC25), a specific
DNA sensor. After extracellular amino acids 21–25 are induced by
NET-DNA, CCDC25 interacts with integrin-linked kinase
through its intracellular C-terminus and triggers the b-parvin-
RAC1-CDC42 cascade reaction, which induces bone
rearrangement and directional migration of tumor cells. In an
in vivomouse model, targeting CCDC25 reduced NET-mediated
distal metastasis (78). However, the functional role and clinical
importance of NET-DNA in metastasis in cancer patients are
still unclear.

3.5 Other Neutrophil Receptors
In addition to the classic neutrophil receptors, other receptors
have been reported to mediate NETosis. For instance, NETs have
been confirmed to be involved in COVID-19 pathophysiology.
angiotensin converting enzyme 2 (ACE2), with the simultaneous
involvement of human transmembrane protease, serine 2
(TMPRSS2), interacts with the S protein of SARS-CoV-2,
which helps SARS-CoV-2 enter the host cell and induce
PAD4-dependent NETosis, leading to fatal respiratory failure
associated with an excessive inflammatory response (79). The
increases in MPO-DNA and histone-DNA complexes observed
November 2021 | Volume 12 | Article 775267
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in the blood indicate that the release of NETs is involved in the
early host response to SARS-CoV-2 infection. Therefore, the
blood level dynamics of NETs can predict the severity of
COVID-19 in a larger population (80–82). Moreover, NETs
have potentially harmful effects on lung epithelial cells and
endothelial cells, so synthesis inhibitors or fragmentation
promoters will become prognostic targets for COVID-19 in the
Frontiers in Immunology | www.frontiersin.org 6
future and lead to improvements in multiple-organ damage
prevention in the clinic.

Ca2+ signaling, a universal intracellular messenger, is the key
process associated with neutrophil functions, such as the
regulation of proinflammatory functions, the formation of
NETs and the secretion of cytokines (83). An intracellular Ca2+

concentration ([Ca2+]i) capable of inducing PAD activation is
FIGURE 1 | Overview of NETosis. Trigger factors, such as pathogenic microorganisms, ICs, HMGB1, oxLDL, H2O2, and mtDNA, induce NOX-NETosis. In response to
different stimuli, neutrophils participate in a response through their surface receptors, including Toll-like receptors (TLRs); C-type lectin receptors (CLRs); complement
receptors (CRs); Fc receptors (FcRs); chemokine receptors (CXCRs); NOD-like receptors (NOD1/2); transient receptor potential melastatin 2 (TRPM2); and protease
activated receptor-2 (PAR-2), initiating p38 mitogen-activated protein kinase (MAPK) signaling and producing ROS, which activate MPO, NE and PAD4. Afterward,
activated NE and MPO are transferred to the nucleus to promote further unfolding of chromatin, thereby destroying the nuclear membrane. However, in the NOX-
independent NETosis pathway, unopsonized C. albicans yeast interacts with CLRs (Dectin 2) and SARS-CoV-2 bonds with angiotensin converting enzyme 2 (ACE2)
and transmembrane protease serine 2 (TMPRSS2) to activate PAD4, which can lead to histone citrullination and participate in chromatin decondensation. Subsequently,
chromatin is released into the cytoplasm, where it is decorated with granules and cytoplasmic proteins. However, for some other microorganisms (M. agalatiae, SS2, M.
bovis, A. actinomycetemcomitans, A. viscosus, SARS-CoV-2), IL-8, PSGL-1 and anti-b2GPI/b2GPI, it is still unclear whether the specific mechanism of NET formation
requires ROS.
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crucial in NETosis formation. Ca2+ receptors/channels are
divided into six classic pathways: transient receptor potential
(TRP), TRP channels, voltage-gated calcium channels, ryanodine
receptors, inositol-1,4,5-triphosphate receptors, store-operated
Ca2+ entry, and mitochondrial calcium uniporters. However,
only the calcium-permeable channel transient receptor potential
melastatin 2 (TRPM2), a cation channel that senses ROS, has
been reported to trigger NETosis by activating the AMPK/p38
MAPK pathway and autophagy machinery in a highly oxidative
environment (84). Now that the importance of Ca2+ in
neutrophil NET formation and cytokine secretion has been
emphasized, it is necessary to further explore the mechanism
of Ca2+-dependent NETosis to provide a theoretical basis for
therapies that regulate neutrophil function, such as Ca2+ influx
inhibitors, to block the formation of NETs and prevent
autoimmune and chronic inflammatory diseases.

Recently, Caspase-11, a cytosolic endotoxin receptor, was
reported to be involved in the morphological features of NETosis
induced by caspase-11/gasdermin D (GSDMD) signaling (85, 86).
In the final stage of NET release, neutrophil plasma membrane
rupture requires caspase-11 and GSDMD, but it is independent of
MPO, NE, and PAD4 (86). During caspase-11-driven NETosis,
PAD4-dependent NETs may flow through the GSDMD pore
through calcium influx and histone H3 citrullination, but this
accompanying process may not be necessary for NETosis. The
specificmechanismofNETosis inducedby these twoprocessesmay
occur through different signaling mechanisms converging on the
common executioner protein GSDMD in response to different
challenges. Therefore, characterizing the functions of Caspase-11
and GSDMD in inducing NETosis could reveal these molecules as
previously neglected therapeutic targets in autoimmune
inflammatory diseases.

Importantly, NETs play a role in the pathogenesis of
periodontitis and RA (87). However, the mechanism of NET
information in periodontitis is unclear. Recently, a new signaling
pathway was discovered. Porphyromonas gingivalis (P. gingivalis)
hijacks a host strategy for disarming pathogens by triggering
NETosis through gingipain-dependent cleavage of protease
activated receptor-2 (PAR-2), which is the most abundant PAR
on human andmurine neutrophils (88). Mechanistically triggering
NETosis, PAR-2 is activated by cleavage of the extracellular N-
terminus at a canonical site (Arg36#Ser37), exposinga tethered ligand
at the new N-terminal receptor sequence by proteolytically active
gingipain depending on NOX activation and ERK-dependent
signaling (88). Therefore, under the pathological conditions of
excessive NETosis, inhibition of PAR signaling should be
regarded as a new treatment in patients with RA and periodontitis.
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NETs are key in coordinating the innate immune response and
participating in the elimination of pathogenic microorganisms.
The formation of NETs is triggered by receptor-ligand binding
events and is regulated by a series of intracellular signaling
pathways. However, dysregulated NETs may cause excessive
collateral damage to the host, such as inflammation and
autoimmune diseases. Therefore, the production of NETs must
be strictly regulated to protect the host from pathogens while not
causing harmful inflammation and tissue damage. Importantly,
the receptors on neutrophils are the key for mediating NETosis.

In summary, although we have a certain understanding of the
common receptors and signal transduction pathways involved in
NET release from neutrophils (Figure 1), it is still unclear
whether other receptors on neutrophils are involved in
NETosis. The work that needs to be continued is better
defining how various fields of biology relate to NETosis,
including the molecular mechanisms that control NET
production and the downstream pathways that lead to
NETosis. Weighting the advantages and disadvantages of NETs
will ultimately maximize benefits to humans. This work is
expected to open a new avenue for current and future research
to develop tools to regulate inflammation.
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