
Frontiers in Immunology | www.frontiersin.

Edited by:
E. Allison Green,

University of York, United Kingdom

Reviewed by:
Kristin Tarbell,

Amgen, United States
Bergithe Eikeland Oftedal,

University of Bergen, Norway

*Correspondence:
Maki Nakayama

maki.nakayama@cuanschutz.edu

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 15 September 2021
Accepted: 26 October 2021

Published: 17 November 2021

Citation:
Nakayama M and Michels AW (2021)

Using the T Cell Receptor as a
Biomarker in Type 1 Diabetes.
Front. Immunol. 12:777788.

doi: 10.3389/fimmu.2021.777788

REVIEW
published: 17 November 2021

doi: 10.3389/fimmu.2021.777788
Using the T Cell Receptor as a
Biomarker in Type 1 Diabetes
Maki Nakayama1,2,3* and Aaron W. Michels1,2,3,4

1 Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States,
2 Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States, 3 Department of
Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States, 4 Department of
Medicine, University of Colorado School of Medicine, Aurora, CO, United States

T cell receptors (TCRs) are unique markers that define antigen specificity for a given T cell.
With the evolution of sequencing and computational analysis technologies, TCRs are now
prime candidates for the development of next-generation non-cell based T cell
biomarkers, which provide a surrogate measure to assess the presence of antigen-
specific T cells. Type 1 diabetes (T1D), the immune-mediated form of diabetes, is a
prototypical organ specific autoimmune disease in which T cells play a pivotal role in
targeting pancreatic insulin-producing beta cells. While the disease is now predictable by
measuring autoantibodies in the peripheral blood directed to beta cell proteins, there is an
urgent need to develop T cell markers that recapitulate T cell activity in the pancreas and
can be a measure of disease activity. This review focuses on the potential and challenges
of developing TCR biomarkers for T1D. We summarize current knowledge about TCR
repertoires and clonotypes specific for T1D and discuss challenges that are unique for
autoimmune diabetes. Ultimately, the integration of large TCR datasets produced from
individuals with and without T1D along with computational ‘big data’ analysis will facilitate
the development of TCRs as potentially powerful biomarkers in the development of T1D.
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INTRODUCTION

A T cell receptor (TCR) determines antigen specificity of T cells by interacting with a peptide-major
histocompatibility complex (peptide-MHC), and signals received through the TCR along with the
CD3 complex are the primary components that regulate function and fate of T cells. Individual T
cells express unique TCRs, and therefore TCR sequences can be used as an identifier of T cells that
are specific to particular antigens and involved in immune responses. In this review, we will focus on
the potential use of TCR sequences as non-cell based T cell biomarkers for type 1 diabetes (T1D), a
tissue-specific autoimmune disease targeting insulin-secreting pancreatic beta cells (1–3).

Several features of self-reactive T cells make it challenging to develop T cell biomarkers in
diabetes (4). First, the frequency of autoreactive T cells is extremely low in the peripheral blood,
estimated to be 1/105 – 1/106. Second, response to peptide-MHC by autoreactive T cells tends to be
minimal compared to anti-cancer or anti-pathogen T cell responses (5, 6). Third, healthy
individuals with T1D-risk MHC molecules can have autoreactive T cells that are quantitatively
and functionally similar to those in T1D patients (7). TCR sequencing allows for the analysis of TCR
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Nakayama and Michels TCR Biomarker in T1D
clonotypes from tens of millions of T cells using nucleotide
samples rather than living cell biospecimens and may overcome
many of these challenges when appropriately utilized.
Advantages provided by TCR biomarkers include (1) living T
cells are not required for assays; (2) intra- and inter-assay
variations due to cell conditions and operator performance are
minimized; and (3) extremely infrequent and low-responding T
cells are detectable by recently emerging high-throughput
sequencing technologies. Here, we will review current
knowledge about TCR repertoires and clonotypes specific for
T1D and address the knowledge gaps to develop TCR
biomarkers that can stratify individuals throughout the stages
of T1D development.
TRI-MOLECULAR COMPLEX CONSISTING
OF TCR, PEPTIDE, AND MHC
MOLECULES

TCRs expressed by classical T cells are composed of alpha and
beta chains, both of which are formed by somatic recombination
of the variable (V) and joining (J) segment genes (and diversity
[D] for beta chains). In humans, 45 TRAV and 52 TRAJ genes
have been identified as functional V and J segment genes for
alpha chains (8, 9). Likewise, there are 49 TRBV, 2 TRBD, and 13
TRBJ functional V, D, and J segment genes in the beta chain
locus (10, 11). During maturation in the thymus, individual T
cells undergo rearrangement of segment genes, resulting in one
V, one D (for beta), and one J segment genes assembled adjacent
to each other. Since additional nucleotides are often inserted or
deleted between the segments, billions of junction sequences with
hundreds of different V, D, J combinations are possibly
assembled (12–14). Experimentally, each adult person is expected
to have over 100 million TCR clonotypes uniquely expressed by
hundreds of billions of individual T cells in the body (15–19). There
are three regions, called complementarity determining regions
(CDR), that directly interact with peptide-MHC complexes,
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thereby crucial to determine antigen specificity (20–22).
Two CDR regions, CDR1 and CDR2, are included in the V
segment, and the CDR3 region is formed at the junction between
V, D (for beta), and J segments. Amino acid residues in the CDR3
regions closely interact with peptide, and thus are considered to be
important to determine antigen specificity and are often used as a
property of each TCR clonotype for TCR repertoire analysis.
MHC MOLECULES IN T1D

The major genetic determinant in susceptibility to most
autoimmune diseases reside in the human MHC that contains
the human leukocyte antigen (HLA) region. MHC molecules are
heterodimers formed between alpha and beta chains that
function to present peptides to TCRs on T cells. Class I
molecules are on all nucleated cells and present antigens to
CD8 T cells, while class II molecules are expressed by antigen
presenting cells (e.g. B cells, dendritic cells, and macrophages)
and present peptides to CD4 T cells. In T1D, specific HLA class I
and II alleles are associated with increased risk (23, 24). Several
HLA class I and II alleles confer risk for T1D and are associated
with other autoimmune disorders (Table 1) (25, 26). DR is in
close linkage disequilibrium with DQ such that the DR4-DQ8
and DR3-DQ2 haplotypes confer the greatest risk for T1D
development. Both the alpha and beta chains of DQ molecules
are polymorphic, and have the ability to formmixed molecules in
cis and trans. As an example, the alpha chain of DQ2 can pair
with the beta chain of DQ8 to form DQ8-trans (DQA1*05:01-
DQB1*03:02) when both DQ2 and DQ8 are in the genotype.
DQ8-trans has an odds ratio of disease development for T1D at
35 (35 times more likely to develop diabetes compared to those
without these alleles), compared to odds ratios of ~11 and ~4 for
DQ8 and DQ2, respectively (27, 28). Interestingly, HLA-DQ6
(DQA1*01:02-DQB1*06:02) provides dominant protection for
T1D development with an odds ratio of only 0.03 (29, 30). The
stark dichotomy of risk between DQ molecules highlights the
important role of antigen presentation to TCRs in T1D.
TABLE 1 | Common HLA alleles associated with type 1 diabetes risk.

Name Allele Associated Autoimmune Diseases

HLA Class II
DQ8 DQA1*03:01-DQB1*03:02 Celiac disease, Addison’s disease
DQ2 DQA1*05:01-DQB1*02:01 Celiac disease, Addison’s disease

DQA1*02:01-DQB1*02:02 Celiac disease, Addison’s disease
DQ8-trans DQA1*05:01-DQB1*03:02 Celiac disease
DR4 DRB1*04:01 Rheumatoid Arthritis, Thyroid disease, Addison’s disease, Alopecia Areata

DRB1*04:02 Rheumatoid Arthritis (protective), Thyroid disease, Addison’s disease
DRB1*04:04 Rheumatoid Arthritis, Thyroid disease, Addison’s disease
DRB1*04:05 Rheumatoid Arthritis, Thyroid disease, Addison’s disease

DR3 DRB1*03:01 Systemic Lupus Erythematous (SLE), Neuromyelitis Optica (NMO), Myasthenia Gravis, Thyroid disease, Addison’s disease
HLA Class I
A2 A*02:01 Vitiligo
A24 A*24:02 unknown
B39 B*39:06 unknown
B18 B*18:01 unknown
B7 B*07:05 unknown
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DIVERSITY OF TCR REPERTOIRES

Adults have approximately 108-1010 unique TCR clonotypes (15,
17, 18, 31). With an assumption that the TCR repertoire size may
represent a capacity for responding to diverse antigens, the TCR
repertoire diversity in the blood has been examined to determine
whether it is associated with immune conditions. For example,
having diverse TCR repertoires is associated with desirable
responses to immune therapies in cancer (32–34). In T1D, it
has been reported that TCR repertoires in peripheral blood of
T1D patients are less diverse compared with those without T1D
(35). Thus, there may be trends of TCR repertoire sizes that are
preferred by a certain immune condition. However, it should be
noted that the diversity of TCR repertoires cannot specify a
certain disease.
USE OF TCR CLONOTYPES AS
SURROGATES TO QUANTIFY
ANTIGEN-SPECIFIC T CELLS

TCR clonotypes determine antigen specificity, and therefore they
can be utilized as a surrogate marker to evaluate the presence and
prevalence of antigen-specific T cells in the blood. Frequencies of
these antigen-specific TCR clonotypes can be quantified by high-
throughput sequencing, which is expected to be more specific to
individual diseases compared to surveying the broad TCR
repertoire. Furthermore, once a panel of antigen-specific TCR
clonotypes are determined, a single TCR sequencing assay allows
for evaluating specificity to many antigens rather than needing to
test specificity to each individual antigen. TCR sequencing has
been done from different tissues in many disease states (36),
including autoimmune disorders (37) and cancer (38–40).
Remarkably, TCR sequencing has been shown to differentiate
early-stage cancer patients from healthy individuals (41, 42).
This strategy requires a list of TCR clonotypes beforehand that
can be searched in blood samples, and such TCR clonotypes used
as surrogate biomarkers need to satisfy three factors: (1) publicity
(i.e. commonality and shared between individuals), (2)
abundancy, and (3) disease specificity. Namely, T cells
expressing the same or similar TCR clonotypes need to be
commonly present in a number of people; frequency of such T
cells in the blood of each person needs to be high enough for
quantification; and presence or absence of such T cells needs to
be associated with a disease state. In addition, with larger
numbers of TCR clonotypes in a given panel, the more specific
and sensitive an assay will become. Thus, identifying disease-
specific TCR candidates is essential to establish a robust TCR
sequencing assay that can discriminate a subset of individuals
having a specific stage or feature of T1D such as those who have
potential to respond to an interventional therapy.

There are several strategies to identify disease-specific TCR
clonotypes. Since a significant portion of disease-specific TCRs
are likely to recognize islet antigens, TCR clonotypes expressed
by islet antigen-specific T cells are reasonable candidates for TCR
biomarkers. Such T cell sources include peripheral blood T cells
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responding to islet antigen stimulation or enriched by staining
with fluorescence-conjugated multimers consisting of an islet-
derived peptide and a particular HLA molecule (43–45).
Alternatively, TCR clonotypes identified in the target organ
(i.e. pancreas or pancreatic islets) or draining lymph nodes
may be also disease-specific. In any of these T cell sources,
specificity (i.e. potential contamination of non-disease associated
T cells) as well as sensitivity (i.e. missing a portion of antigen-
specific T cells) needs to be carefully considered. For example, T
cell samples enriched by antigen stimulation may contain only a
few clonotypes that readily proliferate in response to the
stimulation or could be non-specific T cells that proliferate due
to “bystander effect.” Likewise, T cells in the pancreas and
pancreatic lymph nodes may not necessarily be islet-reactive or
disease-specific (46). On the other hand, T cell populations
enriched by multimer staining may contain only those having
high affinity to bind peptide-MHC complexes, and TCRs weakly
binding to peptide-MHC may be missed. This possibility is likely
important for autoreactive TCRs since T cell responsiveness to
self-antigens tends to be low compared to pathogen T cell
responses. Nevertheless, identifying TCR clonotypes from
samples enriched with antigen-specific T cells is indispensable
to identify disease-specific TCR candidates. These TCR
clonotypes should then be assessed for frequency in peripheral
blood of individuals with different stages of T1D to determine the
ultimate association with disease status. The next subsections will
summarize features of TCR clonotypes specific to islet-specific
autoantigens as well as those potentially associated with
T1D pathogenesis.

Lessons From Islet-Specific TCRs in T1D
Animal Models
Non-diabetic (NOD) mice spontaneously develop autoimmune
diabetes and represent many features of human T1D including a
T1D-susceptible MHC allele (I-Ag7), homologous to HLA-DQ8,
the development of insulin autoantibodies prior to diabetes
onset, and insulitis. A number of T cell clones reacting with
islet tissues have been isolated from pancreatic islets and spleens
of NOD mice in the past few decades and further characterized
for antigen specificity as well as TCR clonotypes (47). In the
1990’s, Santamaria and colleagues discovered that a large portion
of CD8 T cells infiltrating NOD islets share an identical Valpha
segment (i.e. TRAV16) along with a specific junction motif (i.e.
MRD or MRE) (48), and subsequently identified a peptide
derived from islet-specific glucose-6-phosphatase catalytic
subunit-related protein (IGRP) as an epitope targeted by these
CD8 T cells (49). Likewise, CD4 T cell clones as well as T-
hybridoma cells that are reactive to insulin B-chain peptides have
been established from NOD islets by a number of investigators
using different methods (50–56). The majority of these T cells
expresses TCRs containing specific Valpha and Jalpha segment
motifs, TRAV5D-4 or TRAV10 along with TRAJ53 or TRAJ42.
When mice are forced to have only T cells expressing TCRs
containing TRAV5D-4, approximately one percent of CD4 T cells
becomes specific to an insulin B chain 9-23 peptide (57), and the
mice are susceptible to develop anti-insulin autoimmunity (58, 59).
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Alanine scanning and crystal structure analyses identified several
amino acid residues in the TRAV5D-4 and TRAV10 CDR1 and
CDR2 regions that are crucial to interact with the insulin peptide-
MHC complex (59, 60). Also, among insulin B chain-specific CD4
T cells, those particularly recognize an insulin B chain 12-20 peptide
prefer to express TCR beta chains containing a negatively charged
amino acid (i.e. aspartic acid [D] or glutamic acid [E]) in the
junction region (56). This observation is consistent with a notion
that the I-Ag7 T1D-susceptible MHC class II molecule, which has a
positively charged patch in the surface area near the p9 pocket due
to the lack of a negatively charged amino acid residue at the beta 57
position, engage TCRs having a negatively charged residue when p9
of peptides is not negatively charged (the position 20 of insulin B
chain is glycine). Thus, these studies provide amolecular elucidation
of how TCR motif selection occurs by interaction with a particular
peptide-MHC complex.

T1D-specific TCR repertoires in rat models have been
extensively studied by the group of Mordes and Blankenhorn
(61). Of note, diabetes-susceptible rat strains have a T1D risk
MHC haplotype (RT1B/Du), which lacks a negatively charged
amino acid residue at the beta chain 57 position and is
homologous to HLA-DQ8 (61). In addition to the HLA gene
locus, Iddm14, which contains the TCR beta chain genes, is a
T1D-susceptible locus (62). The group identified a TCR Vbeta
allele, Tcrb-V13S1A1, that is shared among T1D-susceptible rat
strains but not with T1D-resistant ones (63), and demonstrated
that genetic elimination of this allele or depletion of T cells
expressing TCRs containing Vbeta13a (product of the Tcrb-
V13S1A1 gene) abrogates diabetes development in T1D-
susceptible rats (64–66). A series of these studies elegantly
linked the genetic risk with a functional mechanism in which a
particular TCR motif facilitates T1D development with a specific
MHC molecule.

In sum, these animal studies demonstrate the presence of
preferred TCR motifs in both germline-encoded and rearranged
regions to recognize particular epitope sequences, which can be
reasonably explained by molecular interaction between the
TCR – peptide – MHC molecule. From a view of TCR
biomarker development, TCR motifs shared by antigen-specific
or disease-susceptible T cells can be utilized to enrich and classify
TCR clonotypes that are distinctive of T1D.

TCR Repertoires in the Pancreas
of Humans
Emerging sequencing technologies and increasing availability of
human samples, in particular pancreas and peripheral immune
tissues isolated from organ donors having T1D, facilitate
identification of islet antigen-specific or T1D-associated T cells
and TCR clonotypes (7, 67–74). In the 1990’s, two groups in
Spain and Japan separately analyzed TCR repertoires in the
pancreas and demonstrated clonal expansion of T cells with
particular Vgene segment usage in individual patients (75, 76).
Importantly, the same group in Spain demonstrated that a
clonally expanding TCR in islet and pancreas samples was
detected in the blood of the same individual, indicating that
islet-residing TCR clonotypes are detectable in peripheral blood
Frontiers in Immunology | www.frontiersin.org 4
samples (77). More recently, Brusko and colleagues further
corroborated this concept by studying a larger number of
individuals using a next generation sequencing technology that
allows to analyze much higher numbers of T cells (72, 78). This
high resolution analysis discovered that CD8 TCR clonotypes in
the pancreas and draining lymph nodes are detected in
peripheral blood more frequently than those expressed by CD4
T cells and provided important insights about the depth of TCR
sequencing to achieve quantitative measurement.

Another important concept is to consider commonality of
TCR repertoires in the pancreas across patients. We recently
determined thousands of TCR clonotypes expressed by T cells in
the islets of organ donors with and without T1D (73, 74). Our
analysis indicated clonal expansion in the pancreas of individual
donors regardless of the disease, but also found that the
frequency of TCR clonotypes shared between donors is limited.
This low frequency of shared TCR clonotypes may be due to
diverse HLA restrictions present in different individuals.
Another reason could be the fact that T cells in the islets may
not be necessarily islet-specific. Indeed, multiple studies
analyzing islet T cell specificity found that over half of T cell
clones and lines derived from the islets did not respond to
preproinsulin and other known islet epitopes (46, 70, 71, 73,
74). However, it should be noted that collecting TCR clonotypes
from a larger number of donors significantly increases the
number of shared clonotypes and such large TCR repertoire
information allows for identifying common motifs even when
not sharing entire TCR sequences, which will be essential to
precisely cluster TCRs recognizing the same epitope (see below
regarding TCR clustering). Thus, continuing efforts to
accumulate TCR sequence information from the target organ
along with epitope identification is crucial to establish a sufficient
list of TCR clonotypes that can be used for disease-associated
TCR biomarkers.

Islet Antigen-Specific TCR Clonotypes
in Humans
TCRs expressed by islet-reactive T cells may be another optimal
source that can be used as clonotypes for T1D biomarkers,
especially if they circulate in the peripheral blood. Such
clonotypes could come from T cell clones, T cell lines,
hybridomas, and transductant cells that have been confirmed
to respond to islet antigens, cell subsets enriched by multimer
staining, and those activated or proliferated by antigen
stimulation. TCR clonotypes for which reactivity to epitopes
has been confirmed at a single cell level would be the most
reliable source. Here we summarize islet antigen-specific TCR
clonotypes that were isolated from individuals having T1D
(Table 2). To date, over a hundred TCR alpha and beta paired
sequences specific to common islet epitopes have been reported
by a number of investigators, and it is notable that the majority of
these TCRs were identified in the past several years (7, 45, 70, 73,
74, 79–99). However, hundreds of disease-associated TCR
clonotypes are far too small to cover T1D patients having
heterogeneous antigen specificity. With rapidly evolving
sequencing technologies, future efforts to identify islet epitope-
November 2021 | Volume 12 | Article 777788
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TABLE 2 | T cell receptors specific to islet epitopes.

DR3b Source
of T
cells

Method to
confirm
reactivity

Reference

SSEAFF PBMC
CD4

Clone/
Transgenic
cells

(79–81)

NSPLHF PBMC
CD4

Clone/
Transgenic
cells

(80, 82)

GGTDTQYF PBMC
CD4

Clone/TCR
transductant

(81)

GNQQFF PBMC
CD4

Clone/TCR
transductant

(81)

GELFF Islet
CD4

TCR
transductant

(83)

NQPQHF PBMC
CD4

Clone (82, 84)

NSPLHF Islet
CD4

TCR
transductant

(83)

TQYF PLN
CD4

Clone (85)

GGSDTQYF PLN
CD4

Clone (85)

GGSDTQYF PLN
CD4

Clone (85)

GPRTQYF Islet
CD4

TCR
transductant

(83)

DTQYF PBMC
CD4

Clone (82, 84)

RATEAFF PBMC
CD4

Clone (86)

HYEQYF PBMC
CD4

Clone (86)

IRADTQYF Islet
CD4

TCR
transductant

(83)

GARTEAFF Islet
CD4

TCR
transductant

(83)

YEQYF Islet
CD4

TCR
transductant

(83)

SDTGELFF PBMC
CD4

Clone/TCR
transductant

(82, 87,
88)

ASTYNEQFF Islet
CD4

TCR
transductant

(73, 83)

F Islet
CD4

TCR
transductant

(73, 83)

YF PBMC
CD4

Clone (82, 89)
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Clone/
Sequence
ID

Epitope Epitope sequence HLA# TRAV TRAJ CDR3a TRBV TRBJ C

BRI4.13 GAD65:555-567 NFFRMVISNPAAT DR4 TRAV19 TRAJ44 CALSENRGGTASKLTF TRBV5-1 TRBJ1-
1

CASSLVGG

BRI164 GAD65:555-567 NFFRMVISNPAAT DR4 TRAV19 TRAJ56 CALSEEGGGANSKLTF TRBV5-1 TRBJ1-
6

CASSLAGG

T1D2-1&2 IGRP:305-324 QLYHFLQIPTHEEHLFYVLS DR4 TRAV29 TRAJ40 CAATRTSGTYKYIF TRBV6-6 TRBJ2-
3

CASSPWGA

T1D4-3&4 IGRP:305-324 KWCANPDWIHIDTTPFAGLV DR4 TRAV2 TRAJ15 CAVEDLNQAGTALIF TRBV5-1 TRBJ2-
1

CASSLALGQ

23.G8 PPI:36-50 VEALYLVCGERGFFY DR4 TRAV39 TRAJ56 CAWRTGANSKLTF TRBV24-
1

TRBJ2-
2

CATGLAAN

SD52.c1 PPI:72-90 PGAGSLQPLALEGSLQKRG DR4 TRAV4 TRAJ27 CLVGDSLNTNAGKSTF TRBV27 TRBJ1-
5

CASSWSSIG

95.A9-1 PPI:87-101 QKRGIVEQCCTSICS DR4.4 TRAV9-2 TRAJ18 CALRTDRGSTLGRLYF TRBV11-
2

TRBJ1-
6

CASSLQSS

Mi.1 Insulin A:1-15 (PPI: 90-
104)

GIVEQCCTSICSLYQ DR4 TRAV8-3 TRAJ44 CAVGALAGTASKLTF TRBV29-
1

TRBJ2-
3

CSVEATRAD

Ba.14 Insulin A:1-15 (PPI: 90-
104)

GIVEQCCTSICSLYQ DR4 TRAV39 TRAJ33 CAVVNMDSNYQLIW TRBV5-1 TRBJ2-
3

CASSLATSG

Ba.11 Insulin A:1-15 (PPI: 90-
104)

GIVEQCCTSICSLYQ DR4 TRAV22
TRAV26-
2 ##

TRAJ52
TRAJ47

CADAGGTSYKLF
CIPGSEEYGNKLVF

TRBV5-1 TRBJ2-
3

CASSLATSG

6.H11 PPI:94-108 QCCTSICSLYQLENY DR4.2 TRAV26-
1

TRAJ13 CIVRVYSGGYQKVTF TRBV30 TRBJ2-
3

CAWSARLA

SD32.5 PPI:94-110 QCCTSICSLYQLENYCN DR4 TRAV26-
1

TRAJ23 CIVRVSSAYYNQGGKLIF TRBV27 TRBJ2-
3

CASSPRAN

B3.3 Proinsulin:52-62
(PPI:76-86)

SLQPLALEGSL DR4 TRAV17 TRAJ54 CATGPIQGAQKLVF TRBV6-5 TRBJ1-
1

CASSYAWG

K4.4/K6.4 Proinsulin:54-63
(PPI:78-87)

QPLALEGSLQ DR4 TRAV10 TRAJ17 CVVSAKAAGNKLTF TRBV7-8 TRBJ2-
7

CASSLAGT

23.F7 PPI:24-38 AFVNQHLCGSHLVEA DR1 TRAV8-2 TRAJ29 CAVIASGNTPLVF TRBV19 TRBJ2-
3

CASKGPGT

55.B3 PPI:37-51 EALYLVCGERGFFYT DR9 TRAV21 TRAJ29 CAVLPPTPLVF TRBV18 TRBJ1-
1

CASSYPGT

55.C10 PPI:58-72 AEDLQVGQVELGGGP DR53 TRAV26-
1

TRAJ26 CIVRSHGQNFVF TRBV20-
1

TRBJ2-
7

CSARPGTR

Clone 5 Insulin B:9-23 (PPI: 33-
47)

SHLVEALYLVCGERG DQ8 TRAV21 TRAJ6 CAVKRTGGSYIPTF TRBV11-
2

TRBJ2-
2

CASSSFWG

GSE.6H9 Insulin B:9-23 (PPI: 33-
47)

SHLVEALYLVCGERG DQ8,
DQ8-
trans

TRAV26-
1

TRAJ40 CIVRVDSGTYKYIF TRBV7-2 TRBJ2-
1

CASSLTAG

GSE.20D11 Insulin B:9-23 (PPI: 33-
47)

SHLVEALYLVCGERG DQ8 TRAV12-
3

TRAJ4 CAILSGGYNKLIF TRBV2 TRBJ2-
5

CASSAETQ

T1D#3 C8 Insulin B:11-23 (PPI:
35-47)R22E

LVEALYLVCGEEG DQ8 TRAV17 TRAJ23 CATDAGYNQGGKLIF TRBV5-1 TBBJ1-
3

CASSAGNT
P

A

T

Y

G

T

D

V

G

N

L

Y

I
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TABLE 2 | Continued

DR3b Source
of T
cells

Method to
confirm
reactivity

Reference

NTGELFF PBMC
CD4

Clone (82, 89)

SYEQYF Islet
CD4

TCR
transductant

(83)

VREQYF Islet
CD4

TCR
transductant

(73, 83)

TEAFF Islet
CD4

TCR
transductant

(83)

HEKLFF Islet
CD4

TCR
transductant

(83)

ANVLTF Islet
CD4

TCR
transductant

(83)

QETQYF Islet
CD4

TCR
transductant

(83, 90)

DEAFF Islet
CD4

Clone (70)

QYF Islet
CD4

Clone (70)

DTQYF Islet
CD4

Clone (70)

ENIQYF Islet
CD4

Clone (70)

SQETQYF PBMC
CD4

Clone (86)

GELFF PBMC
CD4

Clone (86)

TQYF PBMC
CD4

Clone (86)

YNEQFF PBMC
CD4

Clone (86)

GGTDTQYF PBMC
CD4

Clone (86)

YNEQFF PBMC
CD4

Clone (86)

DTQYF PBMC
CD4

Clone (86)

DTQYF PBMC
CD4

Clone (86)

GGNEQYF PBMC
CD4

Clone (86)

GPDTQYF PBMC
CD4

Clone (86)
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Clone/
Sequence
ID

Epitope Epitope sequence HLA# TRAV TRAJ CDR3a TRBV TRBJ C

T1D#3 C10 Insulin B:11-23 (PPI:
35-47)R22E

LVEALYLVCGEEG DQ8 TRAV12-
3

TRAJ26 CATAYGQNFVF TRBV4-1 TRBJ2-
2

CASSRGGG

19.A4 PPI:55-69 RREAEDLQVGQVELG DQ8 TRAV8-6 TRAJ32 CAVRETGATNKLIF TRBV20-
1

TRBJ2-
7

CSARPQGF

GSE.8E3 PPI:72-87
hEL:C-peptide (HIP11)

PGAGSLQPLALEGSLQ
SLQPLALEAEDLQV

DQ8,
DQ8-
trans

TRAV2 TRAJ37 CAVDGSGNTGKLIF TRBV4-1 TRBJ2-
7

CASSQDLAG

6.G4 PPI:86-100 LQKRGIVEQCCTSIC DQ8,
DQ8-
trans

TRAV26-
1

TRAJ8 CIVRVRNTGFQKLVF TRBV27 TRBJ1-
1

CASSPGPG

56.B1 PPI:40-54 YLVCGERGFFYTPKT DQ2 TRAV13-
1

TRAJ40 CAVLSPSGTYKYIF TRBV7-9 TRBJ1-
4

CASSLMGN

53.A4-1 PPI:72-87 PGAGSLQPLALEGSLQ DQ2 TRAV39 TRAJ33 CAVDPMDSNYQLIW TRBV29-
1

TRBJ2-
6

CSVGTDPSG

23.G6 PPI:29-43 HLCGSHLVEALYLVC DP4 TRAV9-2 TRAJ6 CALSISGGSYIPTF TRBV5-1 TRBJ2-
5

CASSFRQG

A4.13 Proinsulin:41-51
(PPI:65-75)

QVELGGGPGAG DQ8 TRAV6 TRAJ36 CALKYGANNLFF TRBV18 TRBJ1-
1

CASSPTTGG

A1.1 Proinsulin:50-59
(PPI:74-83)

AGSLQPLALE DQ8 TRAV25 TRAJ16 CAGGFSDGQKLLF TRBV20-
1

TRBJ2-
7

CSARTEAYE

A1.2 Proinsulin:50-58
(PPI:74-82)

AGSLQPLAL DQ8 TRAV20 TRAJ58 CAVIETSGSRLTF TRBV20-
1

TRBJ2-
3

CSARDQQR

A2.4 Proinsulin:52-62
(PPI:76-86)

SLQPLALEGSL DQ8-
trans

TRAV19 TRAJ49 CALSRAGTGNQFYF TRBV5-1 TRBJ2-
4

CASSLGLRG

B3.1 Proinsulin:48-59
(PPI:72-83)

PGAGSLQPLALE DQ8 TRAV12-
1

TRAJ9 CVVKSTGGFKTIF TRBV20-
1

TRBJ2-
5

CSAGGLAG

K3.2/K9.5 Proinsulin:54-62
(PPI:78-86)

QPLALEGSL DQ2 TRAV3 TRAJ31 CAVRGDNNARLMF TRBV7-2 TRBJ2-
2

CASSPIIWG

K6.2 Proinsulin:49-58
(PPI:73-82)

GAGSLQPLAL DQ8-
trans

TRAV8-
2/8-4

TRAJ11 CAVTPKSGYSTLTF TRBV20-
1

TRBJ2-
3

CSARDLAIP

K9.6 Proinsulin:41-51
(PPI:65-75)

QVELGGGPGAG DQ8 TRAV26-
1

TRAJ54 CIVRVEIQGAQKLVF TRBV3-2 TRBJ2-
1

CASSSPGTE

D1.1/D1.4 Proinsulin:34-43
(PPI:58-67)

AEDLQVGQVE DQ8 TRAV13-
1

TRAJ38 CAARNAGNNRKLIW TRBV4-2 TRBJ2-
3

CASSFRGLG

T6.1 Proinsulin:52-63
(PPI:76-87)

SLQPLALEGSLQ DQ2,
DQ2-
trans

Functional alpha
not detected

TRBV9 TRBJ2-
1

CASSVDPG

T6.6 Proinsulin:56-62
(PPI:80-86)

LALEGSL DQ2 TRAV35 TRAJ28 CAAALSGAGSYQLTF TRBV19 TRBJ2-
3

CASRLDPST

T17.1 Proinsulin:56-62
(PPI:80-86)

LALEGSL DQ2,
DQ2-
trans

TRAV35 TRAJ28 CAAALSGAGSYQLTF TRBV19 TRBJ2-
3

CASRLDPST

H3.3/H6.4 Proinsulin:52-61
(PPI:76-85)

SLQPLALEGS DQ8-
trans

TRAV19 TRAJ57 CALSGRGSEKLVF TRBV5-1 TRBJ2-
7

CASSTRTGQ

H3.7/H7.4/
H8.5

Proinsulin:50-58
(PPI:74-82)

AGSLQPLAL DQ8 TRAV12-
1

TRAJ20 CVVNPTDDYKLSF TRBV20-
1

TRBJ2-
3

CSARSLASG
S

N

P

E

V

A

T

D

V
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TABLE 2 | Continued

DR3b Source
of T
cells

Method to
confirm
reactivity

Reference

QYF PBMC
CD4

Clone (86)

EKLFF PBMC
CD4

Clone (86)

GTGELFF PBMC
CD4

Clone (86)

GATDTQYF Islet
CD4

Clone (70, 91,
92)

YTF Islet
CD4

Clone (70, 92)

YNSPLHF Islet
CD4

Clone (70, 92)

QYF Islet
CD4

Clone (70, 92)

RETQYF Islet
CD4

Clone (70, 92)

GPPDTQYF Islet
CD4

Clone (70, 91)

ETQYF PBMC
CD4

Clone (93)

GNEQFF PBMC
CD4

Clone (94)

PQHF PBMC
CD4

Clone (92)

TIYF PBMC
CD4

Clone (92)

DFSNYGYTF PBMC
CD4

Clone (92)

MDTEAFF PBMC
CD4

Clone (92)

AKNIQYF PBMC
CD8

Clone (82, 95)

YF PBMC
CD8

Clone (96)
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Clone/
Sequence
ID

Epitope Epitope sequence HLA# TRAV TRAJ CDR3a TRBV TRBJ C

H11.5 Proinsulin:42-51
(PPI:66-75)

VELGGGPGAG DQ8 TRAV26-
1

TRAJ36 CIVRVVTGANNLFF TRBV5-1 TRBJ2-
5

CASSLERET

E2.3 Proinsulin:54-62
(PPI:78-86)

QPLALEGSL DQ2 TRAV30 TRAJ37 CGTEKPGSGNTGKLIF TRBV20-
1

TRBJ1-
4

CSARDGAR

E2.5 Proinsulin:35-46
(PPI:59-70)

EDLQVGQVELGG DQ8 TRAV12-
3

TRAJ5 CVISPPGRRALTF TRBV5-4 TRBJ2-
2

CASSSGTSA

A3.10 hEGGG : IAPP2 (HIP6) GQVELGGGNAVEVLK DQ8 TRAV38-
1

TRAJ54 CAFFGQGAGKLVF TRBV5-1 TRBJ2-
3

CASSLSASG

A1.9 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)

VELGGGPGA
GQVELGGGNAVEVLK

DQ8 TRAV20 TRAJ7 CAVQAGGNNRLAF TRBV5-1 TRBJ1-
2

CASSLERDG

A6.15/A5.8 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)

VELGGGPGA
GQVELGGGNAVEVLK

DQ8 TRAV26-
1

TRAJ21 CIAIYNFNKFYF TRBV5-1 TRBJ1-
6

CASSLEASS

A2.13 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)

VELGGGPGA
GQVELGGGNAVEVLK

DQ8 TRAV26-
1

TRAJ39 CIVSHNAGNMLTF TRBV5-1 TRBJ2-
5

CASSLERET

A5.5 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)

VELGGGPGA
GQVELGGGNAVEVLK

DQ8 TRAV26-
1

TRAJ54 CIVRVEIQGAQKLVF TRBV5-1 TRBJ2-
5

CASSLGPG

A2.11 hEGGG : IAPP2 (HIP6) GQVELGGGNAVEVLK Not
reported

TRAV38-
1

TRAJ54 CAFMGAGAQKLVF TRBV4-3 TRBJ2-
3

CASSQILRG

HIP14-
G10/D3

hEL : IAPP2 (HIP14) SLQPLALNAVEVLK DR TRAV16
TRAV5
##

TRAJ37
TRAJ40

CARSHGSGNTGKLIF
CAESIASGTYKYIF

TRBV27 TRBJ2-
5

CASSSGYG

E2b hEL:C-peptide (HIP11) SLQPLALEAEDLQV DQ2 TRAV8-4 TRAJ43 CAVGATNNNDMRF TRBV5-4 TRBJ2-
1

CASSPIGAS

ET650-2 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)
HIPL11C

VELGGGPGA
GQVELGGGNAVEVLK
GQVELGGGNAVEVCK

DQ8 TRAV26-
1

TRAJ39 CIVRVGYNAGNMLTF TRBV20-
1

TRBJ1-
5

CSAIAGPNQ

ET650-4 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)
HIPL11C

VELGGGPGA
GQVELGGGNAVEVLK
GQVELGGGNAVEVCK

DQ8 TRAV26-
1

TRAJ42 CIVRVAIEGSQGNLIF TRBV5-1 TRBJ1-
3

CASSLRRG

ET650-5 hEGGG : IAPP2 (HIP6)
HIPL11C

GQVELGGGNAVEVLK
GQVELGGGNAVEVCK

DQ8 TRAV26-
1

TRAJ9 CIVRLQSGGFKTIF TRBV20-
1

TRBJ1-
2

CSAYSPGD

ET672-1 Proinsulin:42-50
(PPI:66-74)
hEGGG : IAPP2 (HIP6)
HIPL11C

VELGGGPGA
GQVELGGGNAVEVLK
GQVELGGGNAVEVCK

DQ8 TRAV12-
2

TRAJ48 CAVNHGNEKLTF TRBV18 TRBJ1-
1

CASSPWEG

1E6 PPI:15-24 ALWGPDPAAA A*02:01 TRAV12-
3

TRAJ12 CAMRGDSSYKLIF TRBV12-
4

TRBJ2-
4

CASSLWEK

1D5/1D10/
2B3/4C6/
3E7

PPI:3-11 LWMRLLPLL A*24:02 TRAV5 TRAJ37 CAEPSGNTGKLIF TRBV7–
9

TRBJ2-
7

CASSLHHEQ
G

Q

G

G

D

R

R

L
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TABLE 2 | Continued

CDR3b Source
of T
cells

Method to
confirm
reactivity

Reference

VGEGLFRYGYEQYF PBMC
CD8

Clone/
Transgenic
cells

(97, 98)

WVNEQFF PBMC
CD8

Clone/
Transgenic
cells

(97, 98)

WDVMSKNIQYF PBMC
CD8

Clone (45)

MREGMTYGYTF PBMC
CD8

Clone (45)

NGYTF PBMC
CD8

Clone (99)

GGNTGELFF PBMC
CD8

Clone (99)

PGTSTETQYF Islet
CD8

TCR
transductant

(74)

GGSYMNTEAFF Islet
CD8

TCR
transductant

(74)

PTGELF PBMC
CD8

Clone (7)

SYEQYF PBMC
CD8

Clone (7)

VDTQYF PBMC
CD8

Clone (7)

PGNTIYF PBMC
CD8

Clone (7)

TGSNTEAFF PBMC
CD8

Clone (7)

FAEAFF PBMC
CD8

Clone (7)

GNEQFF Islet
CD8

TCR
transductant

(74)

ANQPQHF Islet
CD8

TCR
transductant

(74)

YNEKLFF Islet
CD8

TCR
transductant

(74)

YNQPQHF Islet
CD8

TCR
transductant

(74)

YNEQFF Islet
CD8

TCR
transductant

(74)

AGDEQFF Islet
CD8

TCR
transductant

(74)

YNEQFF Islet
CD8

TCR
transductant

(74)
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Clone/
Sequence
ID

Epitope Epitope sequence HLA# TRAV TRAJ CDR3a TRBV TRBJ

Clone 7 IGRP:265-273 VLFGLGFAI A*02:01 TRAV41 TRAJ48 CAVTSNFGNEKLTF TRBV6-
2/6-3

TRBJ2-
7

CASSSR

Clone 32 IGRP:265-273 VLFGLGFAI A*02:01 TRAV12-
1

TRAJ48 CVVNILSNFGNEKLTF TRBV20-
1

TRBJ2-
1

CSASRQ

Clone 16/
17

IGRP:265-273 VLFGLGFAI A*02:01 TRAV25 TRAJ53 CAGLGDSGGSNYKLTF TRBV3-1 TRBJ2-
4

CASSQD

Clone 22/
27

IGRP:265-273 VLFGLGFAI A*02:01 TRAV29/
DV5

TRAJ53 CAASGGSNYKLTF TRBV10-
3

TRBJ1-
2

CAISDRF

Clone#1 INS-DRiP:1-9 MLYQHLLPL A*02:01 TRAV12-
2

TRAJ34 CAVNKTDKLIF TRBV6-1 TRBJ1-
2

CASSVTG

Clone#2 INS-DRiP:1-9 MLYQHLLPL A*02:01 TRAV10 TRAJ8 CVVNMNTGFQKLVF TRBV12-
3/12-4

TRBJ2-
2

CASSPP

1.C1 INS-DRiP:1-9 MLYQHLLPL A*02:01 TRAV12-
1

TRAJ39 CGENNAGNMLTF TRBV27 TRBJ2-
5

CASSLQ

96.A9 INS-DRiP:1-9 MLYQHLLPL B*08:01 TRAV12-
2

TRAJ39 CAVNVYNAGNMLTF TRBV30 TRBJ1-
1

CAWSVR

D222D
Clones 2

ZNT8:186-194 VAANIVLTV A*02:01 TRAV17 TRAJ36 CAVTGANNLFF TRBV19 TRBJ2-
2

CASSIEG

D010R
clone 1E2

ZNT8:186-194 VAANIVLTV A*02:01 TRAV35 TRAJ36 CAGTRNNLFF TRBV19 TRBJ2-
7

CASGGS

D010R
clone 1D3

ZNT8:186-194 VAANIVLTV A*02:01 TRAV25 TRAJ20 CAGGSNDYKLSF TRBV6-1 TRBJ2-
3

CASSSV

D267T
33B8

ZNT8:186-194 VAANIVLTV A*02:01 TRAV19 TRAJ23 CALSEATYNQGGKLIF TRBV19 TRBJ1-
3

CASSIFP

D349D
178B9

ZNT8:186-194 VAANIVLTV A*02:01 TRAV14/
DV4

TRAJ9 CAMREGLTGGFKTIF TRBV11-
2

TRBJ1-
1

CASSPFL

D351D
188D3

ZNT8:186-194 VAANIVLTV A*02:01 TRAV19 TRAJ20 CALSPAETSDYKLSF TRBV19 TRBJ1-
1

CASTLTG

23.F9 PPI:1-11 MALWMRLLPLL C*03:04 TRAV12-
3

TRAJ48 CAMSALGNFGNEKLTF TRBV19 TRBJ2-
1

CASSIAG

19.A1 PPI:1-11 MALWMRLLPLL C*03:04 TRAV8-4 TRAJ11 CAVSDQGSGYSTLTF TRBV28 TRBJ1-
5

CASSWT

20.E5 PPI:1-11 MALWMRLLPLL C*03:04 TRAV14/
DV4

TRAJ52 CAMSNAGGTSYGKLTF TRBV28 TRBJ1-
4

CASSLAR

20.F1 PPI:1-11 MALWMRLLPLL C*03:04 TRAV14/
DV4

TRAJ43 CAMRLHNNNDMRF TRBV28 TRBJ1-
5

CASIASR

22.A10 PPI:1-11 MALWMRLLPLL C*03:04 TRAV8-1 TRAJ13 CAVNAAGGYQKVTF TRBV28 TRBJ2-
1

CASIPDR

1.C8 PPI:1-11/2-12/2-10 MALWMRLLPLL
ALWMRLLPLLA
ALWMRLLPL

A*02:01 TRAV24 TRAJ58 CAFKRETSGSRLTF TRBV13 TRBJ2-
1

CASSTR

1.F3 PPI:2-12 ALWMRLLPLLA A*02:01 TRAV39 TRAJ39 CAVENAGNMLTF TRBV10-
2

TRBJ2-
1

CASWTV
F

G

R

Q

P

G

N

L

S
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TABLE 2 | Continued

TRBJ CDR3b Source
of T
cells

Method to
confirm
reactivity

Reference

TRBJ2-
3

CASSVVGLGTDTQYF Islet
CD8

TCR
transductant

(74)

1 TRBJ2-
7

CASSEGWGVPSYEQYF Islet
CD8

TCR
transductant

(74)

TRBJ2-
2

CASSQTKGTGELFF Islet
CD8

TCR
transductant

(74)

- TRBJ2-
5

CSVFHRGETQYF Islet
CD8

TCR
transductant

(74)

TRBJ1-
2

CASSPPTGWGGYTF Islet
CD8

TCR
transductant

(74)

- TRBJ2-
1

CSARDHFGGSGYEQFF Islet
CD8

TCR
transductant

(74)

TRBJ2-
5

CASSLFGYRQETQYF Islet
CD8

TCR
transductant

(74)

TRBJ1-
1

CASSLIGLNTEAFF Islet
CD8

TCR
transductant

(74)

TRBJ2-
5

CASSPSGTSSQETQYF Islet
CD8

TCR
transductant

(74)

TRBJ2-
1

CASSVGMDPGLGYNEQFF Islet
CD8

TCR
transductant

(74)

5 TRBJ2-
1

CASRPTSGGYNEQFF Islet
CD8

TCR
transductant

(74)

TRBJ2-
1

CASSIQFSYNEQFF Islet
CD8

TCR
transductant

(74)

9 TRBJ2-
1

CASSLAQREQFF Islet
CD8

TCR
transductant

(74)

- TRBJ2-
1

CSVQVYNEQFF Islet
CD8

TCR
transductant

(74)

TRBJ1-
5

CASSSIQGSGSGQPQHF Islet
CD8

TCR
transductant

(74)

1 TRBJ2-
7

CASSGREAPYEQYF Islet
CD8

TCR
transductant

(74)

2 TRBJ2-
2

CASSLVVELFF Islet
CD8

TCR
transductant

(74)

:01); DQ8 (DQA1*03:01-DQB1*03:02); DQ8-trans (DQA1*05:01-DQB1*03:02); DQ2
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Clone/
Sequence
ID

Epitope Epitope sequence HLA# TRAV TRAJ CDR3a TRBV

96.F5 PPI:3-11 LWMRLLPLL A*02:01 TRAV8-6 TRAJ48 CAVSDISNFGNEKLTF TRBV9

23.H5 PPI:3-13 LWMRLLPLLAL A*02:01 TRAV38-
2/DV8

TRAJ22 CAYRSPARQLTF TRBV6

1.B10-1 PPI:15-23 ALWGPDPAA A*02:01 TRAV8-3 TRAJ33 CAVVADSNYQLIW TRBV4
2/4-3

1.F1 PPI:15-24 ALWGPDPAAA A*02:01 TRAV39 TRAJ41 CAVSNSGYALNF TRBV2
1

23.C12 PPI:15-24/15-25 ALWGPDPAAA
ALWGPDPAAAF

A*02:01 TRAV41 TRAJ42 CAVSGGSQGNLIF TRBV2

93.D1 PPI:15-25 ALWGPDPAAAF A*02:01 TRAV5 TRAJ8 CAVTKDTGFQKLVF TRBV2
1

10.C6-1 PPI:23-32 AAFVNQHLCG C*12:03 TRAV19 TRAJ39 CALSGALNNAGNMLTF TRBV2

28.D3 PPI:31-41/34-41 CGSHLVEALYL
HLVEALYL

A*02:01 TRAV26-
2

TRAJ26 CILTDNYGQNFVF TRBV2

28.E6 PPI:46-54/47-54 RGFFYTPKT
GFFYTPKT

A*29:02 TRAV19 TRAJ28 CALSEAGAGSYQLTF TRBV2

20.G1 PPI:69-77/69-79 GGGPGAGSL
GGGPGAGSLQP

C*03:04 TRAV1-2 TRAJ8 CAVRMNTGFQKLVF TRBV9

96.B4 PPI:91-99 IVEQCCTSI C*05:01 TRAV12-
2

TRAJ31 CAVNNARLMF TRBV6

86.C1 PPI:91-100/92-100/
92-102

IVEQCCTSIC
VEQCCTSIC
VEQCCTSICSL

B*41:02 TRAV19 TRAJ16 CALSEAGFSDGQKLLF TRBV1

84.D9 PPI:91-100/92-100/
92-102

IVEQCCTSIC
VEQCCTSIC
VEQCCTSICSL

B*41:02 TRAV29/
DV5

TRAJ43 CAASNSNDMRF TRBV7

28.E11 PPI:91-100 IVEQCCTSIC B*18:01 TRAV12-
2

TRAJ49 CAVSMNTGNQFYF TRBV2
1

1.E9-1 PPI:92-99 VEQCCTSI B*50:01 TRAV12-
2

TRAJ34 CAVNIRYNTDKLIF TRBV6
2/6-3

86.G3-2 PPI:94-102 QCCTSICSL B*35:01 TRAV8-6 TRAJ33 CAVSDGYQLIW TRBV6

54.F1 PPI:96-103 CTSICSLY A*01:01 TRAV3 TRAJ26 CAVPDNYGQNFVF TRBV7

#HLA class II alleles: DR4 (DRB1*04:01); DR4.4 (DRB1*04:04); DR4.2 (DRB1*04:02); DR1 (DRB1*01:01); DR9 (DRB1*09:01); DR53 (DRB4*0
(DQA1*05:01-DQB1*02:01/02:02), DQ2-trans (DQA1*03:01-DQB1*02:01); DP4 (DPA1*01:03-DPB1*04:01).
##Two in-frame alpha chains detected. Functional alpha not determined.
-

-

9

8

0

7

7

-

9

-

9

-

-

-

1
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Nakayama and Michels TCR Biomarker in T1D
specific TCR clonotypes is essential to develop TCR biomarkers
for T1D. In addition to TCR clonotypes listed in Table 2,
Bonifacio and colleagues reported hundreds of TCR sequences
expressed by T cells that were stained with multimer composed
of islet epitopes or those proliferated in response to islet antigens
(44, 45). While it is necessary to carefully validate true reactivity
to antigens, this type of analysis is an excellent resource to gain
T1D-associated TCR clonotypes. Computational tools to
decrease the “noise” (i.e. eliminating non-specific binding TCR
clonotypes) may help to enrich truly antigen-specific clonotypes
(100, 101). Further, these candidate TCR clonotypes could be
validated for disease specificity using larger cohorts analyzed
with whole blood TCR sequencing, and then clonotypes that
were detected only in individuals having various stages of T1D
could be assessed for functional reactivity (Figures 1A–C).
Retro/lentiviral transduction systems, especially in a moderate
to high throughput multiplex assay, will facilitate verifying
reactivity to antigens (82, 98, 102, 103).

Identification of Disease-Specific TCR
Clonotypes Using Big Data
Big data analysis, which seeks to classify TCR repertoires in a
specific condition using a large number of TCR samples, is an
emerging strategy to identify disease-associated TCR clonotypes.
A major advantage of this approach is the capability to identify
disease-associated TCR clonotypes without knowing antigen
specificity, thereby allowing one to include TCRs that are
potentially disease-associated but not islet-specific and also
those having low affinity to antigens. Indeed, specificities of
large proportions of T cells in the islets are unknown (46, 70–
74). Virus infections such as enterovirus and coxsackie B virus
(CVB) are suggested to be involved in T1D development (104–
106), and TCRs specific to these viruses could be identified by big
data analysis by comparing TCR repertoires of individuals
having or not having different stages of T1D. Although it has
been demonstrated in infectious diseases that big data analyses
can identify pathogen-specific TCR clonotypes, it has not yet
been successful at identifying T1D-associated TCR clonotypes
using PBMC samples from individuals with or without different
stages of T1D. This could be explained by several possibilities: (1)
the frequency of T1D-associated T cells may be lower than that
of pathogen-specific T cells; (2) antigens involved in T1D
pathogenesis, especially those at different stages of T1D, may
be more heterogeneous than those in infectious diseases; (3)
autoreactive TCRs could be more private (i.e. not common
between patients) than those of conventional T cells; and (4)
sample sizes studied to date have not been large enough.
However, having large TCR data sets produced by next
generation sequencing will enable machine learning algorithms
to cluster and classify TCR clonotypes. Using these newly
developed techniques, even infrequent disease-specific TCRs
having less publicity (i.e. commonality) between people may be
identified from relatively small numbers of samples. Indeed,
some computational TCR classifying methods are now capable
of identifying cancer patients responding to immune checkpoint
inhibitors (40), and also early stages of cancer can be
Frontiers in Immunology | www.frontiersin.org 10
differentiated from healthy individuals using this type of
technique (107, 108). In the next section, we will discuss how
to take advantages of the latest TCR clustering/classifying
techniques for T1D TCR biomarkers.

Clustering and Classification of
TCR Clonotypes
TCR clonotypes recognizing the same peptide-MHC complex
often share similar motifs and features. For example, influenza-
specific TCRs prefer to use TRAV38-1/TRAJ52/TRBV19/
TRBJ1-2 (109–111), and melanoma (MART-1)-specific TCRs
often contain an alpha chain with TRAV12-2 (112). Likewise,
several features common for islet antigen-specific TCRs have
been reported. We discovered that insulin B-chain-specific TCRs
tend to use TRAV38-1/38-2 and other Valpha segments having
similar motifs in the CDR1 and CDR2 regions (113). Also, it has
been shown that a specific motif “SGGSNYKLTF” is contained in
the CDR3 region of alpha chains specific to an IGRP peptide
(45). More recently, crystal structure analysis of TCRs specific to
a hybrid insulin peptide composed of proinsulin and islet
amyloid polypeptide (IAPP) demonstrated that motifs in the
TRBV5-1 segment commonly interact with amino acid residues
in IAPP (92). Our work also indicates that T cell responses to
hybrid insulin peptides precede clinical T1D onset (114), making
these TCR clonotypes excellent candidates for biomarkers. Thus,
autoreactive TCRs share commonalities and similarities, which
provide clues to cluster TCRs and stratify those specific to a
certain condition.

A number of algorithms to cluster or classify TCR clonotypes
have been developed. Each algorithm has advantages and
disadvantages as reviewed by others (115, 116), but in respect
to TCR biomarker development for T1D, the algorithms can be
divided to two groups. First, those that clusters TCRs by
assessing similarities of TCR sequences with each other in
datasets. Second, those that seek to classify TCRs by
identifying similar to known antigen-specific or disease-specific
TCR clonotypes. The former algorithms such as TCRdist (111),
GLIPH/GLIPH2 (117, 118), ClusTCR (119), and GIANA (108)
do not need information about T1D-specific epitopes and TCR
sequences beforehand, and thus can be used to predict disease-
specific TCR clonotypes that are specifically detected in T1D
patients but not in non-diabetic subjects. On the other hand,
machine learning-based algorithms that assess similarities to
known antigen-specific TCR datasets to predict epitopes, such
as DeepTCR (101), DeepCAT (107), TCRmatch (120), and
TCRAI (100) need prior information about disease-specific
TCR sequences. These algorithms show excellent performance
when classifying TCRs specific to the same epitopes that were
used to develop the machine learning algorithm but not for those
having different specificities. Therefore, large sets of disease-
specific TCR sequence information for machine training are
necessary to achieve high specificity and sensitivity. Typically
these types of algorithms show better performance to detect
antigen-specific TCR clonotypes than the clustering-based
algorithms, thereby being useful to validate TCR clonotypes
once epitopes or disease-specificity are determined.
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Alternatively, they can be also used to ‘clean up’ (i.e. eliminate
non-specific TCR clonotypes) TCR datasets that are obtained
from multimer-stained T cells or those activated by antigen
stimulation (Figure 1B).

In any case, it is essential to prepare TCR datasets from a large
number of individuals with and without T1D at multiple time
points to elicit the best performance by machine learning and
clustering algorithms. Typically, diverse datasets rather than large
data but from a limited number of samples improve learning
efficiency (100). In addition, it is also important to prepare
accurate TCR clonotype information to differentiate T1D
patients from healthy subjects. There are now several TCR
databases available, which accumulate and curate information
about TCR sequences along with target peptide-MHC complexes,
such as VDJbase (121, 122), IEDB (123), VDJdb (124), iReceptor
(125), and McPAS-TCR (126). While these are incredibly useful
resources, a proportion of islet-specific clonotypes is still very
small, accounting for only ~100 out of tens of thousands of
clonotypes, the majority of which are specific to viruses and
tumor antigens. Assuming that self-reactive TCR clonotypes are
more heterogeneous and rarer compared to pathogen-specific
ones, there is a need for higher numbers of clonotypes specific to
T1D. Thus, identifying a large set of accurate disease-specific
TCR clonotypes will be a key component to achieve successful big
data analysis, which will ultimately lead us to establish TCR
biomarkers in T1D (Figure 1).
PERSPECTIVE

It is still controversial whether T1D patients have distinct
islet antigen-specific T cell subsets in the blood compared to
healthy individuals. Even in the pancreas, non-diabetic organ
donors have preproinsulin-specific T cells in the exocrine
compartment, but such antigen-specific T cells accumulate into
the islets over the course of T1D progression (127). In the islets,
we recently demonstrated that only T1D donors have CD8 T
cells highly reactive to preproinsulin (74). Mallone and
colleagues also reported that pancreata of T1D donors have a
higher number of zinc transporter-8-specific T cells than non-
diabetic controls (7). Thus, multiple studies demonstrate that
islets of T1D individuals have distinct T cell repertoires from
those without diabetes. However, a number of studies indicate
that healthy individuals have islet-antigen specific T cells
in the blood (7, 113, 128–131), and depending on cell subsets
examined, some studies including those looking into pathogenic
T cells show that T1D patients have higher numbers of islet-
specific T cells, whereas others do not detect differential islet-
specific T cells in T1D patients. This controversy could be
explained by either (1) detectable numbers of pathogenic T
cells in the islets do not leak into the peripheral blood
(Figure 2A); or (2) pathogenic T cells in the islets do indeed
circulate, but because there are already a number of islet-specific
(but not harmful) T cells in the circulation, the total numbers of
islet-specific T cells (i.e. pathogenic T cells leaked from the islets
plus non-pathogenic T cells) are not differentiated enough in the
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blood of T1D patients from healthy individuals (Figure 2B).
Given evidence that a portion of T cell repertoires are shared
between pancreas, pancreatic lymph nodes, and peripheral blood
cells (72), and that TCR repertoires in the islets of T1D organ
donors are clonally distinct from those of non-diabetic donors
(74), if the latter hypothesis (Figure 2B) is correct, islet-derived
TCR sequences will be a powerful marker to discriminate
pathogenic from physiological T cells, thereby capable of
stratifying individuals with active insulitis prior to clinical
T1D onset.

To develop practical TCR biomarkers in T1D, a number of
obstacles need to be overcome, some of which may be unique to
autoimmune diseases. These challenges can be considered from the
view of (1) publicity, (2) abundancy, and (3) disease-specificity.

1. Publicity
It will be important to understand the frequencies of

public vs private TCR clonotypes that are specific to the
T1D disease state, and these likely fluctuate over time during
T1D development. Given the genetic risk associated with
HLA class II genes, heterogeneity provided by HLA diversity
could be smaller than other diseases for TCR clonotypes
expressed by CD4 T cells. However, autoreactive T cells,
which often bind to peptide-MHC complexes with low
affinity, may have a larger TCR repertoire than
conventional anti-pathogen T cells, resulting in less
commonality. Therefore, frequency of public T1D-specific
TCR clonotypes may be low. Strategies that compare TCR
repertoires in each individual such as pre and post treatment
(40) do not need to consider publicity of clonotypes, and
therefore may be more easily applicable to T1D immune
intervention studies.

2. Abundancy
Theoretically, 1015-1016 diverse TCR clonotypes can be

assembled (12–14); however, a practical TCR repertoire size
is estimated to be about 108-1010 per person (15, 17, 18). This
indicates that the frequency of target clonotypes is extremely
low. However, there is evidence that identical clonotypes are
persistently detected from the same individuals over time (44,
81, 93, 132). We believe quantitative resolution of TCRs will
need to be increased. This could be achieved by enriching
samples before sequencing (e.g. beads enrichment by
antigen-specific multimers). Another very attractive
approach is to target sequencing to TCRs containing a
preferred Vgene segment of interest, thus greatly enhancing
the depth of sequencing by analyzing clonotypes that can be
obtained for a specific V allele. Blood sample volume needed
to quantitatively evaluate frequency of disease-associated
TCR clonotypes is another important consideration, which
will need to be addressed given that the T1D disease process
does begin in young children.

3. Disease-Specificity
Identification of disease-specific TCR clonotypes is

an essential component to develop robust T1D TCR
biomarkers. A larger number of TCR clonotypes with
higher specificity to the disease that are in place will allow
for more sensitive and specific assays. Therefore, the key
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is how to select such truly disease-specific TCR clonotypes.
As illustrated in Figure 1, both accumulation of actual TCR
datasets produced from individuals with and without T1D
and computational big data analysis will facilitate the
Frontiers in Immunology | www.frontiersin.org 12
development of biomarkers. While the majority of TCR big
data analysis currently uses only CDR3-beta sequences, it has
been demonstrated that inclusion of entire sequence
information such as V and J segments, in particular CDR1
A B

D E

C

FIGURE 1 | Strategy to determine disease-specific TCR clonotypes. Red and gray circles represent true and false disease-specific TCR clonotypes, respectively.
Green circles are true disease-specific clonotypes determined by clustering with known disease-specific TCR clonotypes. (A) TCRs detected in the islets, pancreata,
and pancreatic lymph nodes, in particular those for which antigen specificity has been determined as well as those that are clustered with known disease-specific
TCRs, can be the initial source for disease-specific TCR candidates. (B) TCRs detected from peripheral blood T cells enriched by antigen stimulation or peptide-
MHC-conjugated multimers are also an initial source. Antigen-specific algorithms can enrich TCR clonotypes that are truly specific to antigens. (C) Candidate TCR
clonotypes may be assessed for specificity to islet tissues, proteins, and peptides. (D) Using classifying algorithms, candidate TCR clonotypes are assessed for
frequency in the blood of individuals with and without T1D to determine disease specificity. Simultaneously, clustering algorithms can select additional clonotypes that
are clustered with known disease-specific TCR clonotypes. (E) TCR clonotypes selected by classifying and clustering algorithms are used for machine learning of
antigen-specific algorithms to further determine true disease-specificity.
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and CDR2 sequences, increases accuracy of classifying TCR
clonotypes (100, 120). While the number of T1D-specific
clonotypes that have been determined so far is low, evolutions
in both TCR sequencing technologies and computational
analysis strategies will dramatically impact this effort.

In conclusion, theantigen receptorondisease specificTcellsholds
promise for a non-cell based biomarker of not only the presence of
T1D but disease activity as well. Efforts to define the TCR repertoire
within the human pancreas of T1D and non-T1D organ donors is
underway with a need to define the antigen specificity and HLA
restriction of these identified clonotypes. Those clonotypes that are
shared between individuals with T1D, frequent, and circulate from
the pancreas and pancreatic lymph nodes to the peripheral blood are
prime candidates for deep sequencing and clustering of TCRs using
developed computational analyses.
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