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CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection
remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated
CD4+ T cell subsets isolated from human peripheral blood, as well as their potential
interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing.
Tregs comprised the largest population of these reactivated cells, and analysis of Treg
gene expression showed transcripts associated with both inflammatory and inhibitory
functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1),
CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed
in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells
confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which
share a large number of TCR repertoires. This study provides clues for resolving the
functions of CD4+ T cell subsets and their interactions during CMV infection. The specific
cell groups defined in this study can provide resources for understanding T cell responses
to CMV infection.

Keywords: CMV pp65, single-cell mRNA-seq, paired TCR-seq, CD4+ T cells, CD4+ CTL, Treg
INTRODUCTION

Infections with cytomegaloviruses (CMV) and human herpesvirus 5 (HHV-5) are endemic in
humans. Most immunocompetent CMV hosts show few or no clinical symptoms in response to
primary infection or during persistent infection. Although CMV infection is asymptomatic, the
virus hijacks the resources of the host immune system throughout the latter’s lifespan by remaining
latent and occasionally reactivating. Over time, CMV-responsive T-cells constitute an average of
10% of the entire T-cell repertoire of the host (1), having deleterious effects on immune senescence
and health outcomes in the elderly (2). In addition, CMV infection can have devastating
org December 2021 | Volume 12 | Article 7799611
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consequences in immunocompromised populations, including
fetuses and patients undergoing transplantation.

Reconstruction of CMV-specific T cells has emerged as an
effective method of reducing CMV infection and reactivation in
immunocompromised individuals. Data from patients who have
undergone hematopoietic stem cell transplantation (HSCT) have
shown that recovery from CMV-induced diseases correlates with
the reconstruction of CMV-specific CD4+ and CD8+ T-cell
pools (3–5), with the recovery of CD4+ T cells regarded as a
prerequisite (6). CMV-specific CD4+ T cells are thought to
stimulate the expansion of CMV-specific CD8+ T cells,
resulting in a more effective clearance of virus from serum
than treatment with CD8+ T cells alone (7). Furthermore,
infusion of CD4+ T cells into immunocompromised mice was
found to effectively repress CMV reactivation, further suggesting
a pivotal role of CD4+ T cells in anti-CMV immunity. However,
CD4+ T cells are heterogeneous, and their composition,
function, and interaction in anti-CMV immunity remain
unclear, precluding adoptive immune therapy in CMV-
infected individuals.

Studies evaluating the roles of CMV-specific CD4+ T cell
subsets in anti-CMV immunity have revealed that CD4+
cytolytic T cells (CD4+ CTL), regulatory T cells (Tregs), and
CD4+ memory T cells are involved in immune responses to
CMV infection in humans, nonhuman primates, and rodents.
CD4+ CTLs were first identified in chronic viral infections, such
as with lymphocytic choriomeningitis virus (LCMV), hepatitis B
virus (HBV), and CMV. These cells show strong antiviral effects
in anti-CMV immunity through their helper functions and
induction of cytotoxicity. CD4+ CTLs manifest helper
functions through their expression of cytokines and
chemokines, such as IFN-g and TNF-a (8), which promote the
activation of CD8+ T cells; recruit innate immune cells,
including natural killer (NK) cells and monocytes, to
inflammatory sites, and directly inhibit virus replication (9).
CD4+ CTLs manifest cytotoxicity through the Fas/FasL
pathway, mediating the death of infected B cells presenting
viral epitopes with major histocompatibility complex class II
(MHC-II) molecules (10, 11). CD4+ CTL also manifest
cytotoxicity through the perforin–granzyme pathway (12),
based on the CTL recognition of target cells in an MHC-II-
dependent manner (13), when MHC-II is upregulated in
epithelial cells following CMV infection. Despite advances in
understanding the functions of CD4+ CTLs in CMV infection,
the derivation of these cells remains unclear. Based on findings in
other infectious diseases, CD4+ CTLs are thought to originate
from effector cells (14, 15). Recent evidence from studies on
transcriptome factors has suggested that these cells can also
directly differentiate from activated naïve cells (16–18).

The functions of Treg cells during CMV infection are also
unclear. Ex vivo stimulation of human Treg cells from CMV-
seropositive individuals with CMV was shown to attenuate the
proliferation of autologous CD8+ T cells and, to a lesser extent,
other subsets of CD4+ T cells through the PD-1 pathway (19).
However, CMV reactivation following HSCT did not correlate
with the numerical reconstruction of CD4+CD25highCD127-
Frontiers in Immunology | www.frontiersin.org 2
Tregs, and conventional T cells in these patients expressed high
levels of the proliferation marker Ki67 indicating that their
activation and proliferation were not obstructed by Tregs (20).
Selectively deleting Tregs in animal models is a classical method
to verify Treg function in infectious situations (21) and has been
used to evaluate the negative regulatory function of Tregs in
some antiviral immunities. However, deleting Tregs could not
determine their function in CMV infection. In mice, the deletion
of Treg cells decreased murine cytomegalovirus (MCMV)
reactivation in the spleen but enhanced its activation in the
salivary glands (22).

CD4+ T cells perform many essential functions, including
stimulating B cells to mature and secrete antibodies and
supporting cytotoxic CD8+ T cells and phagocytes to mount
rapid and effective protection against infections (1). Despite their
importance, technical limitations have often prevented the
comprehensive analysis of CD4+ T cells. T-cell receptor (TCR)
sequences are highly diverse, with an estimated tens of millions
of unique TCR-expressing T-cell clones largely unique to
individuals (23, 24), limiting the ability to directly compare the
abundances of T-cell clones across multiple samples. Antigen-
specific T cells can be isolated using peptide-MHC (pMHC)
multimers (2), and this method has been used in the parallel
detection of T cells on a large scale (3–7). This method, however,
depends on advance knowledge of the relevant human leukocyte
antigen (HLA) molecules and antigenic epitopes, which in most
cases cannot be efficiently predicted (8). In addition, the process
involved in generating pMHCmultimers is complicated, and few
usable pMHC II multimers are available for CD4+ T cells. Due to
the variety of HLA alleles (11) and the complexity of many
antigen genomes, it is difficult to thoroughly analyze antigen-
specific T cells with limited numbers of pMHC multimers.
Although the enzyme-linked immune absorbent spot (ELISpot)
can also be used to analyze antigen-specific T cells, this method is
limited to detecting a single/or a limited panel of cytokine(s) and
is therefore not sufficiently comprehensive to analyze different T
cell subtypes that are involved in the protection against
pathogen infection.

These challenges may be overcome by enriching for T cells
specific for CMVpp65 through the expression of the T cell
activation marker CD154 induced by stimulation in vitro,
combined with single-cell mRNA and paired VDJ sequencing
to dissect the CD4+ T cell responses (25). This method of
isolating CMV-specific CD4+ T cells has several advantages, in
that it is HLA-independent, can capture activated CD4+ T cells
of different phenotypes, and is useful for high-throughput
analysis. Comprehensive analysis of CMV-reactivated CD4+ T
cells showed that a large proportion of these cells were CMV-
reactivated Treg cells, with a Th1 phenotype, as shown by
expression of IFNG and TNF, enhanced migration ability, and
multiple inhibitory functions. In addition, this study found that
both CD4+ CTL1 and CD4+ CTL2 have polyfunctional
phenotypes, experienced clonal expansion, and had a large
overlap in TCR repertoire. Furthermore, a group of recently
activated CD4+ T cells (CD4+ Tra) cells were found to express
cytolytic factor. These findings showed that CMV-reactivated
December 2021 | Volume 12 | Article 779961
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CD4+ T cells were heterogeneous, consisted of a balance between
CMV-specific Treg and effector T cells, and suggested that the
composition of CD4+ T cells may be critical for adoptive T cell
therapy in patients infected with CMV.
RESULTS

CMV pp65-Specific CD4+ T Cells Have
Typical Antiviral Profiles
Circulating antigen-specific T cells are rare in peripheral blood
during the latent stage of CMV infection, representing 0.5% to
4% of the CD8+ T-cell pool and 0.05% to 1.6% of the CD4+T cell
pool (26). To isolate CMV-specific CD4+ T cells, peripheral
blood mononuclear cells (PBMCs) were cultured in the presence
or absence of CMV-pp65 peptides for 24 h (25, 27–29). CMV-
reactivated CD4+ T cells from three donors were sorted and
pooled together for single-cell mRNA-seq and paired VDJ-seq
using the 10 × Chromium platform. Single control cells were
acquired from each donor by lymphocyte and monocyte sorting
with forward scatter and side scatter (FSC/SSC) parameters; the
sorted cells were also mixed and subjected to single-cell
sequencing (Figure 1A ) . F low cytometry analys i s
(Supplemental Figure 1A) showed that the expression of
CD154 was much higher in CMV-stimulated than in control
CD4+ T cells (Supplemental Table 1).

After stringent quality control and filtering using multiple
criteria, RNA-seq data were obtained from 2,847 and 6,493 single
cells from the CMV and control libraries, respectively. These
analyses detected a mean of 3,041 genes per CMV infected cell
and 1,947 genes per control cell. Productive VDJ sequences were
obtained for 1,271 CMV cells and 3,557 control cells. The cells of
the three donors from the CMV-infected and control cells were
subsequently integrated for further analysis. The unsupervised
clustering of all cells in the integrated data resulted in 15 distinct
clusters: CD8+ T, gdT, B, NK, mucosal-associated invariant T
(MAIT), monocytes, and nine clusters of CD4+ T cells
(Figures 1B–D). We first showed CD4+ T cells as one cluster
to analyze their shared characters and to be able to make
comparison with previous studies.

To reveal the potential function of CMV-stimulated CD4+ T
cells, CMV and control CD4+ T cells with mRNA and/or
productive VDJ data (CMV: 1,200 cells, control: 1,911 cells)
were selected for further analysis. Both mRNA and VDJ
information was available for 974 cells in the CMV and 1,648
in the control group (Supplemental Table 2). Genes
differentially expressed by these CMV and control CD4+ T
cells were analyzed. CMV CD4+ T cells showed a typical T cell
activation profile, including increased expression of IL2RA,
TNFRSF4(OX40), MIR155HG, TNFRSF18, CD40LG, and
LGALS1 and decreased expression of IL7R and SELL. These
cells also express genes encoding the inflammatory cytokines
IFNG and TNF (30, 31), the T-bet-independent IFN-g
production inducer BHLHE40 (32), the pro-inflammatory
chemokine CCL4, and the cytotoxic molecules LTA and GZMB
(Figure 1E). These results suggest that CMV CD4+ T cells
Frontiers in Immunology | www.frontiersin.org 3
consist of several groups of activated multiple-cytokine-
producing antiviral cells. These results were further confirmed
by Gene Ontology (GO) analysis, which showed that
differentially expressed genes (DEGs) were significantly
enriched in pathways such as T cell activation and cellular
response to tumor necrosis factors (Figure 1F). Consistent
with previous reports using CD154 as a marker for antigen-
specific CD4+ T cells (25), the cells obtained here with the same
strategy exhibited a typical activated anti-viral response.

Polyfunctionality Profiles of CMV pp65-
Specific CD4+ T Cell Subsets
To date, nine CD4+T cell subtypes have been described
(Figure 2B), based on markers from our previous study (33)
and the Human Cell Atlas (34, 35). Control CD4+ T cells
consisted of four clusters: naïve CD4+ T cells/CD4+ central
memory like T (Tcm-like) cells expressing CCR7, SELL, and
TCF7; CD4+ cytotoxic T2 cells (CD4+ CTL2) expressing GZMB,
NKG7, and PRF1; and a Treg cluster expressing Foxp3 and
IL2RA. CMV-stimulated CD4+ T cells consisted of five
clusters: recently activated CD4+ T (Tra) cells/CD4+ Tcm-like
cells expressing CD154 and naïve markers (CCR7, SELL, and
TCF7); two cytotoxic T cell clusters (CD4+ CTL1 and CD4+
CTL2) expressing GZMB, NKG7, and PRF1 and distinguished by
different expressions of chemokines (CD4+ CTL1 highly
expressed CCL5, CD4+ CTL1 highly expressed CCL3 and
CCL4); a Treg cluster expressing Foxp3 and IL2RA (Table 1
and Figures 2A–C); and CD4+ central memory-like T cells and
CD4+ naïve T cells which were further discriminated by GSEA
analysis, as DEGs between CD4+ naïve T and CD4+ Tcm-like
cells significantly enriched in the gene sets such as “GSE11057
NAÏVE VS MEMORY CD4 TCELL DN” and “GSE11057
NA ÏVE VS CENT MEMORY CD4 TCELL DN ”
(Supplemental Table 3). The proportions of each subtype are
shown in Figure 2D. The ratio of naïve to memory control CD4+
T cells was consistent with previous fluorescence-activated cell
sorting (FACS) data (36). To attribute cells to their
corresponding donor, PBMCs from the three donors were
subject to bulk RNA-seq for subsequent single-nucleotide
polymorphism (SNP) identification, and the identity of each
cell was determined based on these natural genetic variations
(37). Cells from donor 1 and donor 2 were generally similar
(Supplemental Figures 2A–C). Few cells were obtained from
donor 3, with this donor accounting for 1.58% of the total
CD4+T cells from the three donors. These results showed that
CMV-stimulated CD4+ T cells were highly enriched in Treg cells
and CD4+ CTLs.

To investigate the transcriptome features of the five CMV-
stimulated CD4+ T cell subsets, CD4+ T cells from the CMV
dataset (1,200 cells) were selected for further analysis. The five
CD4+ T cell subsets were compared with each other using the
FindAllMarkers function, with the resulting DEGs shown in
Supplemental Table 4. The top 10 DEGs (sorted by the
logFoldChange parameter) were found to differ from each
other, indicating that these subsets may have distinct
phenotypes (Figure 2E). The phenotype of each subset was
December 2021 | Volume 12 | Article 779961
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therefore analyzed based on the top 10 DEGs and feature genes
previously identified in these subsets.

To understand the phenotype and role of Treg cells during
CMV infection, their gene expression profiles were analyzed.
Frontiers in Immunology | www.frontiersin.org 4
These cells are FOXP3+IL2RA+TNFRSF4+, as well as
expressing proinflammatory factors such as IFNG and TNF.
When compared with the four other CMV-stimulated CD4+ T
subsets (i.e., CD4+ Tra cells, CD4+ Tcm-like cells, CD4+
A

B

D

F

C

E

FIGURE 1 | Characterization of the antiviral profiles of CMV pp65-specific CD4+ T cells. (A) Experimental workflow for single-cell analysis of CD4+ T cells from PBMC of
three donors. Cells stimulated in vitro with CMV pp65 were cultured and sorted, with reactivated CMV-stimulated T cells gated for CD3+CD154+, and control monocytes
and lymphocytes gated for FSC-SSC, followed by 5′ single-cell RNA and paired T-cell receptor sequencing. UMAP embeddings of merged scRNA-seq profiles from
control and CMV-stimulated immune cells were plotted and colored by (B) sample and (C) cell cluster. (D) Heat map of scaled mean gene expression of the major
canonical markers (columns) detected in different cell types in merged CMV and control cells (rows). (E) Dot plot of differentially expressed genes (DEGs), showing both
the levels of expression and the percentages of CD4+ T cells in CMV and control samples. (F) Gene Ontology (GO) analysis of DEGs in CMV and control CD4+ T cell
samples. The Top 20 enriched GO terms are ordered on the y-axis. The x-axis represents the gene percentage in enriched GO terms. The sizes of the dots represent the
number of genes included in each GO term. The color gradient of dots represents the adjusted p-values of each enriched GO term.
December 2021 | Volume 12 | Article 779961
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CTL1, and CD4+ CTL2 cells), the Treg cells showed a
significantly higher expression of the stable marker SOCS1,
the cytotoxicity-related molecule LTA, and a series of proteins
encoded by genes related to inhibition, such as LGALS1 (38),
LGALS3 (39), and IL4I1 (40) and the costimulatory molecule
CD70 (adjusted p < 0.01 each) (Figure 2F). The expression by
Frontiers in Immunology | www.frontiersin.org 5
Tregs of the chemokine receptors CCR4, CCR6, and CCR7
indicate their chemotaxis toward CCL3 and CCL5, the latter of
which is highly expressed by CD4+ CTL1 and CD4+ CTL2
cells, and the homing to secondary lymphoid organs.
Moreover, the high level of expression of CCL20, which
encodes a chemokine that binds to CCR6 in Tregs, suggests
A B

D

E

F

C

FIGURE 2 | Polyfunctionality profiles of CMV pp65-stimulated CD4+ T cell subsets. (A) UMAP projections for the merged CD4+ T cells colored by expression of the
naïve CD4+ T/Tcm-like cell markers CD3E, CD4, SELL, TCF7, CCR7, CD27, and CD28; Treg markers FOXP3, IL2RA, and TIGIT; the cytotoxicity markers GZMB,
NKG7, and PRF1. Relative expression was normalized across CMV and control datasets. (B, C) UMAP embeddings of merged scRNA-seq profiles from control and
stimulated (CMV) CD4+ T cells plotted and colored by cell cluster (B) and sample (C). Subpopulations of CD4+ T cells colored in (B) were identified by the canonical
markers described in Table 2. (D) Distribution of the abundance of the subsets of CMV and control CD4+ T cells. (E) Heat map of the five subsets of CMV CD4+ T
cell cells with the Top10 DEGs between each pair. (F) Dot plot of highly featured genes expressed in the five CD4+ T cell subsets in CMV.
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that these cells cluster in a self-sustaining positive
feedback loop.

CD4+ CTLs play an important role in chronic antiviral
responses and contribute directly to the containment of viral
infection. Assessments of the phenotypes and functional
mechanisms of the five CD4+ T subsets showed that both CD4+
CTL1 and CD4+ CTL2 expressed high levels of genes encoding
cytotoxic molecules, including GZMB, GZMH, CTSC, CTSB,
CST7, PRF1, NKG7, and FGFBP2 (Figure 2F). The similar levels
of expression of these cytotoxic markers in CD4+ CTL1 and CD4+
CTL2 indicate that they may employ the same mechanism of
action, the granule exocytosis pathway, to initiate target cell
apoptosis. This mechanism involves the regulated release of the
contents of cytotoxic granules (e.g., PRF1, GZMB, GZMH,
GZMA, CTSC, and GNLY) into the immunological synapses
formed between effector and target cells, killing the latter (41).
CD4+ CTL1 and CD4+ CTL2 also expressed high amounts of the
chemokine CCL5 and the MHCII molecules HLA-DPA1 and
HLA-DPB1, indicating that they may attract common targets to
inflammatory sites and kill them in an MHC class II-dependent
manner (13, 42). Besides, compared with CD4+ CTL2, CD4+
CTL1 expressed higher levels of many other cytotoxic molecules,
such as GNLY, GZMA, KLRB1, and KLRD1 (Figure 2F),
indicating that the functional spectrum of CD4+ CTL1 is wider
than that of CD4+ CTL2. When compared with CD4+ CTL1,
CD4+ CTL2 expressed higher levels of many genes encoding
chemokines (such as CCL3, CCL4, CCL3L3, and CCL4L2, and co-
stimulators, such as CTLA4, LAG3, TNFRSF4, and PDCD1),
indicative of a terminal differentiation phenotype. These results
suggest that CD4+ CTL2 may originate from CD4+ CTL1 cells,
which is further supported by our TCR repertoire analysis.

CD4+ T cells recently activated by exposure to CMV pp65
peptides were found to cluster together with control naïve CD4+ T
cells. Sorting of recently activated CD4+ T (Tra) cells by CD154
expression showed that these cells express high levels of genes
encoding naïve T cell markers, such as CCR7, TCF7, and SELL
(Figures 2A–C). To dissect the phenotype of the CD4+ T cells
recently activated by CMV, we compared their gene expression
with that of control naïve CD4+ T cells. In total, 981 genes were
differentially expressed (adjusted p< 0.05) upon stimulation with
the CMV pp65 peptides (Figure 3A and Supplemental Table 5).
Of these, 121 genes were upregulated in CMV-activated cells and 36
were downregulated, with log2-fold changes > 1. These 121
Frontiers in Immunology | www.frontiersin.org 6
upregulated genes included a group of genes encoding the
cytokines and chemokines (IFNG, TNF, LTA, MIF, IL32,
CXCL10, and CCL4L2), a group of genes regulating protein
synthesis (e.g., WARS, SEC61G, and EIF5A), and a group
involved in metabolism (43, 44) (e.g., GAPDH, PKM, ENO1,
TPI1, and PGK1) (Figure 3B), findings indicative of cell
activation (45). CD4+ Tra cells also expressed higher levels of
S100 family genes encoding calcium-binding proteins (e.g., S100A4,
S100A10, and S100A11) and cytoskeleton-related proteins (e.g.,
ACTG1, ACTB, TUBB, PFN1, and MYO1G), which had been
reported increased in response to TCR engagement by antigen
(46, 47). In addition, genes encoding many regulatory markers (e.g.,
GITR [TNFRSF18], CISH, SOCS1, and TIGIT) and cell apoptosis
regulation markers (e.g., LGALS1, FAM162A, CFLAR, FAS, and
CDKN1A) were strongly upregulated to maintain immune balance
(48), although their expression levels differed in cells at different
stages of differentiation (49, 50). The 36 downregulated genes
included CD127 (IL7R), CD27, and SELL, consistent with
previous studies of T cell activation (51). GO analysis of the
DEGs in recently activated CMV pp65-stimulated CD4+ T cells
and control naïve CD4+ T cells demonstrated the significant
enhancement of expression of genes associated with T cell
activation, protein targeting, cellular response to tumor necrosis
factor, viral gene expression, protein targeting to membrane, and
the tumor necrosis factor-mediated signaling pathway (Figure 3C).
These findings suggested that these phenotypically naïve
CMVpp65-stimulated cells are in a state of recent activation.

CMV pp65-Specific CD4+ T Cell Receptor
Repertoire Shows a Reduction in
Clonal Diversity
The T-cell receptor (TCR) repertoire reflects the antigen specificity
of T cells and their antigen experience in effector and memory
subsets. Compared with the clonal diversity of the control CD4+
TCR repertoire, the clonal diversity of the CMV pp65-specific CD4
+ TCR repertoire was reduced. Clones with the same VDJ (gene)
and CDR3 nucleotide (nt) sequence were defined as being of the
same clonotype (gene+nt), followed by a comparison of the features
of the CD4+ TCR repertoire in CMV-stimulated and control cells.
Analysis of the relative abundance of total CMV-stimulated and
control CD4+T cells showed that the percentages of unique (i.e.,
unexpanded) clones in the CMV and control CD4+ T cells were
90.20% and 99.27%, respectively (Figure 4A). About 9.8% of the
TABLE 1 | Cell type markers.

Cell type Markers

Naïve CD4+ T/Tcm-like CD3E+, CD4+, SELL+, CD27+, TCF7+, CCR7+
CD8+ T CD3E+, CD8A+, CD8B+, CD4-
gdT CD3E+CD4-CD8B-CD8aa+/-, TRDC+, TRGC1+, TRGC2+
Treg CD3E+, CD4+, FOXP3+, IL2RA+
Recently activated CD4+ T CD3E+, CD4+, SELL+, TCF7+, CCR7+, CD154+
B CD19+, CD79A+, CD79B+, MS4A1+, IGKC+, IGHM+
NK CD3E-, NKG7, GNLY, NKG7, KLRD1, KLRC1
CD4+ CTL1 CD3E+, CD4+, CD27-, CD28-, GZMB+, NKG7+, PRF1+, CCL3+, CCL4+
CD4+ CTL2 CD3E+, CD4+, CD27-, CD28-, GZMB+, NKG7+, CCL5
Monocyte LYZ+, S100A9+, CD14+, FGL2+, MS4A7+
MAIT TRAV1-2/TRAJ33, TRAV1-2/TRAJ20, TRAV1-2/TRAJ12
December 2021 | Volume 12 | Article 779961
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CMV-pp65-stimulated CD4+ T cells showed “medium” or “large”
expansion (Figure 4B), indicating that they had undergone clonal
amplification. Measured diversity using Shannon, Inverse Simpson,
Chao, and abundance-based coverage estimator (ACE) across
samples also showed an overall reduction in clonal diversity in
the CMV sample (Figure 4C). To identify clones targeting the same
antigens among cell subsets, the GLIPH2 algorithm (52) was
utilized to cluster clones of CMV and control CD4+ T cells. The
TCR convergence was found to be higher for CMV than for control
CD4+ T cells (Supplemental Tables 6 and 7), with the TCR
repertoire convergences being mainly between CD4+ CTL1 and
CD4+ CTL2 in CMV. Consistent with the GLIPH2 result,
combining VDJ sequences with transcriptome data
(Supplemental Table 8) showed that the “larger” and “medium”
expanded clones were mainly in the CD4+ CTL1 and CD4+ CTL2
subsets (Figure 4D).

TCR Repertoire in CMV-Stimulated CD4+
T Cell Subgroups
To determine the dynamic changes in the CMVpp65-specific
TCR repertoires of CD4+ T cell subsets, we analyzed the TCR
Frontiers in Immunology | www.frontiersin.org 7
repertoire of the five subgroups of CMV-stimulated CD4+ T
cells. Measured TCR diversity using Shannon, Inverse Simpson,
Chao, and ACE across these five cell clusters consistently showed
reductions in clonal diversity in the order Treg, CD4+ Tra cells,
CD4+ Tcm-like cells, CD4+ CTL1, and CD4+ CTL2
(Figure 5A). Calculation of the overlap in TCR repertoire
among these clusters using overlap coefficient methods showed
a large clonal overlap between CD4+ CTL1 and CD4+ CTL2
(Figure 5B); the VDJ sequences shared by these are shown in
Supplemental Table 8. Evaluation of cloning frequency showed
that the CD4+ CTL1 and CD4+ CTL2 clones experienced larger
or medium expansion, the CD4+ Tcm-like and Treg cell clones
experienced small or no expansion, and the CD4+ Tra cell clones
experience no expansion (Figure 5C). Analysis of the
transcriptome similarity of these clusters showed that CD4+ T-
cell clones with the same receptor sequence had more similar
gene-expression profiles than non-clonally expanded T cells
(CD4+ CTL2 vs. CD4+ Tra cells, p < 2.2e-16; CD4+ CTL2 vs.
Treg cells, p < 2.2e-16; CD4+ Tra vs. Treg cells, p < 2.2e-16; by
paired Wilcoxon test), as shown by comparing the Jaccard
similarity coefficients for the 200 most abundant genes chosen
A C

B

FIGURE 3 | Activation characteristics of CMV pp65 stimulated recently activated CD4+ T (CD4+ Tra) cells. (A) Volcano plot showing the relationships between
-log10(adjusted p value) (y-axis) and log2(fold change) (x-axis) for genes differentially expressed by CMV CD4+ Tra and control naive CD4+ T cells. Genes with log2
fold changes > 1 and adjusted p values < 0.05 were upregulated in CMV CD4+ Tra cells and highlighted in red, whereas genes with log2 fold changes < -1 and
adjusted p values < 0.05 were downregulated in CMV CD4+ Tra cells and highlighted in blue. (B) GO analysis of DEGs by CMV CD4+ Tra cells and control naïve
CD4+ T cells. The Top 20 enriched GO terms are ordered on the y-axis. The x-axis indicates gene percentages in enriched GO terms. The sizes of the dots
represent the number of genes included in each GO term. The color gradient of dots represents the adjusted p-values for each enriched GO term. (C) Dot plot of
highly featured genes expressed by CMV CD4+ Tra cells and control naïve CD4+ T cells.
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from each cell type cluster (53) (Figure 5D). It is highly possible
that CMV-reactivated CD4+ CTL1 and CD4+ CTL2 may be
different states of the same group.
DISCUSSION

Although CD4+ T cells have been shown to play a significant role
in anti-CMV immunity, previous methods of measuring CD4+ T
cell responses have provided only a partial picture of the
involvement of CD4+ T cells in immunological responses to
CMV. This study presents a comprehensive profile of CMV
pp65-specific CD4+ T cell responses. First, it showed that, of
these T cell populations, a surprisingly high percentage (56.68%)
consisted of Tregs, with the remaining effector cells being
predominantly polyfunctional cells with cytotoxic profiles.
Second, this study found that CD4+ CTL2 cells are a more
differentiated subset of CD4+ CTL1 cells, evidenced in part by
their overlapping TCR repertoires. A key advantage of this study
was the use of overlapping pp65 peptide stimulation and CD154
as indicators of CD4+ T cell activation, both of which are
Frontiers in Immunology | www.frontiersin.org 8
independent of MHC haplotype. These results enable further
characterization of the CMV-specific CD4+ T cell response and
can be compared with responses to other viruses.

CD154 is an effective marker when combined with single-
cell mRNA sequencing for high-throughput analysis of virus
antigen-specific T cells (25, 27–29). Although traditional
research methods based on measurement of secreted
cytokines, such as IFNG or TNF, and testing of CMV-
specific T cells have proven effective (54–56), they are of
limited use when combined with sc-mRNA sequencing due
to cell damage caused by intracellular staining. The use of
peptide-MHC (pMHC) multimers to isolate antigen-specific T
cells based on the specific binding of TCR with pMHC has
allowed detailed TCR and phenotypic analysis of single cells
(57–59). However, the decreased TCR expression in activated
T cells can result in the selection of relatively low antigen-
specific T cells bound to tetramer (60), This selection of
multimer-binding CD4+ T cells may bias understanding of
the phenotype of antigen-specific CD4+ T cells (60). The
finding that 83.8% of CMV stimulated but only 17.4% of
control CD4+ T cells were positive for CD154 (CD40LG)
A B

DC

FIGURE 4 | TCR repertoire analysis of CMV and control CD4+ T cells. (A) Percentages of unique (i.e., unexpanded) clonotypes of CMV and control CD4+ T cells.
(B) Relative TCR repertoire abundance of CMV and control CD4+ T cells. (C) Diversity measures based on clonotypes by sample type using Shannon, Inverse
Simpson, Chao, and abundance-based coverage estimator (ACE) indices. (D) Clonotype distributions of CD4+ T cells. Cloning frequencies ≤20 and > 10, ≤10 and
>5, ≤5 and >1 were defined as large expanded, medium expanded, and small expanded, respectively.
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expression indicates that CD154 is comparable to IFNG and
TNF in distinguishing antigen-specific CD4+ T cells.

This study found that the CMV-reactivated Tregs had
different inhibitory functions. LAG3 and CTLA4 are classical
Treg inhibitory markers, which bind to MHC-II and CD80/
CD86, respectively, on other T cells to repress their activation.
Perforin/granzyme-induced apoptosis is the main pathway used
by cytolytic cells to kill target cells (61, 62), with perforin and
granzyme commonly expressed simultaneously. In our study,
Tregs were positive for SRGN, which encodes a protein involved
in maintaining granzyme storage, and highly expressed GZMB,
but their expression of PRF1 was limited. These findings suggest
that only a few perforin molecules are sufficient to facilitate the
entrance of granzyme into target cells, or that granzyme B can
induce cell death in a perforin-independent manner (63), by
mediating the cleavage of the extracellular matrix to reduce the
adhesion of immune cells, inducing their death. These cells also
expressed LGALS1 and LGALS3, encoding Gal-1 and Gal-3,
respec t ive ly , which may a l so par t i c ipa te in Treg
immunosuppressive activity (64). Disruption of Gal-1 was
found to attenuate the immunoexpressing effect of Treg cells
(65), and Gal-1 from Tregs was observed to induce the
Frontiers in Immunology | www.frontiersin.org 9
dysfunction of effector T cells and modulate their transient
calcium influx (66). This regulatory mechanism is not limited
to Gal-1 but is also employed by Gal-3 in Tregs (67).
Interestingly, this study showed that Tregs expressed CD70, a
marker, to our knowledge, commonly expressed on antigen-
presenting cells and activated T cells as part of the CD27-CD70
pathway that provides a costimulatory signal. In T cells, CD70
was shown to induce caspase-dependent apoptosis. Although the
mechanism by which Tregs exert inhibitory activity may be
similar (68), additional studies are needed to determine the
function of CD70 in Tregs. Taken together, these findings
show that, during CMV infection, the inhibitory activity of
Treg cells is not only maintained but reinforced by enhancing
cell migration.

The populations of Treg/induced Tregs (iTregs) have been
reported to increase during CMV/MCMV latent infection both
in humans and in mice (22, 69–72). However, it is not clear
whether these increases are due to the expansion of a small
population of circulating Forxp3+ nTregs or due to peripheral
conversion of antigen-specific CD4+T cells into iTregs. Most of
the Tregs in the present study were probably induced from
conventional T cells by TGFb, which is secreted by all CD4 T
A B

DC

FIGURE 5 | TCR repertoire analysis of the five CMV CD4+ T cell subsets. (A) Diversity measures based on clonotypes by cluster using Shannon, Inverse Simpson,
Chao, and abundance-based coverage estimator (ACE) indices. (B) Clonal overlaps among the five CMV CD4+ T cell subsets. (C) Cloning frequency distribution in
each subset. (D) Transcriptome similarity among CMV CD4+ CTLs, CD4+ Tra cells, and Treg cells.
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subsets and maybe by other cell types in PBMC cultures.
Moreover, Tregs were found to inhibit immune responses in
the spleen but promote virus control in the salivary glands,
suggesting that the effects of Tregs are dependent on their
location. It is more likely that, in the presence of functional
CD4 CTL, the immune system would favor iTregs over newly
activated T cells, especially in the peripheral blood, where
inflammation can be more harmful than in a relatively
restricted tissue.

During acute viral infection, CD4 + T cells assist in the
activation of CD8 + T and B cells to clear the virus. During
chronic infection, including infections with HCMV, MCMV,
herpes simplex virus, varicella zoster virus, murine
gammaherpesvirus 68, and Epstein–Barr virus, CD4 + T cells
play a direct antiviral role, inhibiting virus lysis and replication.
This can result in the establishment of virus latency and prevent
disease or death in the host (73–75). It is unclear what
mechanisms contribute to the establishment of cytotoxic CD4T
in chronic infection. In our study, we found populations of
activated CD4 CTLs among large numbers of Tregs. CD4 CTLs
induced by latent viruses are independent of co-stimulation,
resistant to apoptosis, and less susceptible to suppression by
regulatory T cells (Tregs) during repeated antigenic stimulation
(76). Interestingly, the number and proportion of CD4 CTL cells
expressing immune regulating genes, such as CTLA-4, LAG3, IL-
2RA, and PDCD1, were at least comparable to, if not greater, than
the number and proportion Treg cells. Fewer less resources are
therefore available for the activation of other conventional CD4+
T cells. In addition, both CD4 CTLs and Treg cells express IFN-g
and TNF-a, which can promote innate immune responses.
Although this study did not determine whether IFN-g and
IFN-expressing Treg cells have enhanced or dampened
function, it is likely that the combination of CD4 CTLs and
Tregs will result in CD4 CTL dominant immune responses
accompanied by increased innate immune responses.

Less is known about bystander activation of CD4+ T cells
than of CD8+ T cells, but unrelated memory CD4+ T cells were
shown to be activated after repeat tetanus vaccination via
bystander activation (77), and multiple cytokines sharing a
common receptor gamma chain were found to induce CD154/
CD40 ligand expression by human CD4+ T lymphocytes via a
cyclosporin A-resistant pathway (78). We found that CD4+
Tcm-like cells, which exist in an environment containing IFN-
g and IL2, are susceptible to activation by these cytokines. We
also found, however, that CMV CD4+ Tcm-like cells showed
small clonal expansion, making it difficult to determine
whether these CD4+ Tcm-like cells are CMV pp65
antigen-specific.

The present study provides useful information for the
characterization of CMV-specific CD4 T cell responses and for
comparisons with other virus-specific responses. The method we
used to analyze CMV-reactivated CD4+ T cells may be extended
to other conditions, such as autoimmune diseases and cancers.
Our findings may offer insights into the persistence of CMV and
levels of immunopathology. In addition, the detailed information
provided in this study, such as cell function and cell interactions,
Frontiers in Immunology | www.frontiersin.org 10
may provide a more nuanced view of CMV-related diseases and
allow better design of anti-viral therapies.
METHODS AND MATERIALS

PBMC Preparation
We obtained peripheral blood from three CMV IgG-positive,
healthy donors through a research protocol proved by the Beijing
Genomics Institution-Shenzhen (BGI-Shenzhen) Institutional
Review Board (IRB). PBMCs were immediately isolated from
blood collected with an EDTA blood collection tube by density
centrifuge method with Histopaque-1077 (Sigma, Cat. 10771)
within 2 h, resuspended in 4°C cryopreservation medium
consisting of 90% fetal bovine serum (FBS, HyClone, Cat.
sh30084.03) and 10% dimethyl sulfoxide (DMSO, Sigma, Cat.
D4540), and then placed in Mr. Frosty (Thermo Scientific) in
-80°C container. Samples were then moved to liquid nitrogen for
long-time storage.

Additionally, 2 ml peripheral blood from each donor was
collected using a blood collection tube without any additive,
placed at room temperature for 30 min, and centrifuged for
10 min at 2,000g. Then, plasma was collected and heat-shocked
for 30 min at 55°C.

PBMC Stimulation
Frozen PBMC from liquid nitrogen were immediately thawed in
37°C water and resuspended in complete medium (RPMI 1640
medium, 10% NEAA, and 2% autologous plasma; RPMI 1640
and NEAA were purchased from Thermo Fisher with Cat.
72400120 and Cat. 11140050) to a final density of 1*107 per
milliliter (ml). We moved 150 ml of cell suspension with three
repetitions to each well in the 96-well U-plate (Falcon) and
incubated them at 37°C for 2 h. Then, 75 ml culture supernatant
in each well was replaced by 75 ml stimulation medium and
gently mixed. Cells were cultured in an incubator with 5% CO2 at
37°C for 24 h.

The stimulation medium included RPMI 1640 medium
(without serum), anti-CD28 (2 mg/ml, Clone G28.5, GeneTex,
Cat. GTX14148), and anti-CD40 (2 mg/ml, Clone HB14,
Miltenyi, Cat. 130-094-133) with/without CMV peptide (1.2
nmol/ml per peptide). To preserve the surface expression of
CD154 on activated T cells, we used anti-CD40 to inhibit the
interaction of surface CD154 with its counterpart CD40 as
described in the previous study (25). We stimulated PBMCs
from three CMV-seropositive donors in vitro with CMVpp65
peptides in the presence of anti-CD40 monoclonal antibody,
negative control cultured without CMVpp65, and positive
control with anti-CD3 and anti-CD28. The CMV pp65 peptide
was purchased from Miltenyi (Cat. 130-093-438) and diluted in
sterile water.

Enrichment of CMV pp65-Specific T Cells
Cells were collected and washed with FACS washing buffer
(DPBS, 2% FBS, and 1 mM EDTA) for once and resuspended
in staining buffer (FACS washing buffer with 10% human
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plasma and 1% BSA) containing antibodies against CD3, CD4,
CD154, and CD69 (Table 2). After being incubated on ice for
40 min, cells were washed with FACS washing buffer twice and
resuspended in 100 ml washing buffer. The stained cells were
analyzed and sorted by a BD FACS Aria II cell sorter (BD
Biosciences). For cells stimulated with the CMV peptide,
CD3+CD154+ cells were sorted as CMV-specific T cells. For
unstimulating cells, monocytes and lymphocytes gated
according to the plot of FSC-SSC were sorted respectively
and re-mixed as a control. The gating schedule for cell
sorting was recorded by BD Aria II, and FACS data were
analyzed with FlowJo v10.0.7.

Droplet Generation, 10× RNA-Seq,
and TCR-Seq Library Preparation
and Sequencing
After being counted with C-Chip (inCYTO), CMV-reactivated
cells and control cells from all three individuals were mixed
separately and diluted with PBS to a final concentration of
~800 cells/ml, and about 20,000 cells per reaction were loaded
onto a Chromium Single Cell Chip (10x Genomics). The
libraries for RNA-seq and TCR-seq were prepared using the
Chromium Single Cell 5′ Library & Gel Bead Kit v2 and
Chromium Single Cell V(D)J Human T Cell Enrichment Kit
(10x Genomics) following the manufactory’s protocol.
Sequences within these libraries were ligated with BGIseq
adapters, and then CMV and control libraries were loaded
onto the sequencing chip. The RNA-seq libraries were
sequenced with an 8-base index read, a 26-base read 1
containing cell-identifying barcodes and unique molecular
identifiers (UMIs), and a 100-base read 2 containing
transcript sequences on BGIseq500; TCR-seq were sequenced
with an 8-base index read, a 150-base read 1 containing cell-
identifying barcodes, UMIs and insert starting from the V-
gene region, and a 150-base read 2 containing an insert from
the C-gene region. The raw data after sequencing were about
10 + 35 Gb per library for RNA-seq and 35 + 35 Gb for
TCR-seq.

Preprocessing Single-Cell RNA-Seq Data
Raw data were split according to sample barcodes into CMV-
stimulated (ST) and unstimulated library (CON) and then were
filtered, blasted, aligned, and qualified by Cellranger v2.2.0 with
reference of refdata-cellranger-GRCh38-1.2.0 for RNA-seq data
and Cellranger v3.0.0 with refdata-cellranger-vdj-GRCh38-alts-
ensembl-2.0.0 for TCR-seq data. Other parameters were set as
default in the software.
Frontiers in Immunology | www.frontiersin.org 11
Data Integrating and Cell Clustering
The R package Seurat (79) 3.1.5 was used to integrate and analyze
datasets from CMV and control. The merged expression matrix
was firstly filtered following the Seurat recommendation (80, 81)
and a total of 8,671 cells with unique UMI was obtained.
Unsupervised clustering was conducted with Seurat with the
parameter res = 0.5.

Differential Expression Gene Analysis
Differential expression gene (DEG) analysis was conducted by
the function FindMarkers provided by Seurat. To characterize
the features of CMV-specific CD4+ T cell response, we used a
stricter standard to filter out DEGs between CMV and control
CD4+ T cells according to the following standard: for
upregulation genes in CMV, adjusted p-value < 0.05, log fold
change >1, percentage of cells expressing the gene in the CMV
sample (pct.1) >0.8, percentage of cells expressing the gene in
control (pct.2) < 0.2; for downregulation genes in CMV, adjusted
p-value < 0.05, logFC >1, pct.1 <0.2, pct.2 >0.8.

Quality Control Metrics and Filtering
CellRanger v2.2.0 software with default settings was used to
process the raw FASTQ files, align the sequencing reads to the
GRCh38 transcriptome, and generate a filtered UMI expression
profile for each droplet.

Identifying the Sample Identity of
Each Droplet
The transcriptome of each donor’s PBMCs was sequenced on the
BGI-SEQ500 platform with sequencing type SE200. Raw data
with 10 G per sample were obtained. The best-practice workflows
recommended by the Genome Analysis Toolkit (GATK) (https://
gatk.broadinstitute.org/hc/en-us/articles/360035531192-
RNAseq-short-variant-discovery-SNPs-Indels-) were followed
to identify single-nucleotide polymorphisms (SNPs) and create
VCF files containing the genotype (GT) to assign each barcode to
a specific sample. The VCF file and BAM files produced by
CellRanger2 were passed to the demuxlet software to
deconvolute sample identity (37). The optimal likelihood for
the identity of each sample was assigned to the corresponding
donor, with each “possible” or “ambiguous” droplet regarded
as unclear.

GO Analysis
To annotate the potential functions of the DEGs of each CD4+ T
cell cluster, GO enrichment analysis was performed using the
clusterProfiler R package, version 3.14.3 (82), with the
TABLE 2 | FACS antibodies.

Antigen Clone Fluorophore Supplier Dilution

CD3 SK7 FITC BioLegend 1:100
CD4 RPAT4 PerCP-Cy5.5 eBioscience 1:200
CD154 TRAP-

1
PE BD 1:50

CD69 FN50 BV421 BioLegend 1:50
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differentially expressed feature genes identified by Seurat. The
top 20 enriched pathways, ranked by normalized enrichment
score, with Franklin Delano Roosevelt (FDR) q-value ≤0. 05 were
chosen and visualized.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA, http://www.broad.mit.edu/
gsea) was performed with default sets to determine the cell type
of cluster 3. The gene set collection used for GSEA was
c7.all.v7.1.symbols.gmt (ftp.broadinstitute.org://pub/gsea/gene_
sets/c7.all.v7.1.symbols.gmt).

TCR Analysis
TCR analyses were performed with the R package scRepertoire
and Gliph2. Overlap coefficients were calculated using the
intersection of clonotypes divided by the length of the
smallest component.
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Supplementary Figure 1 | Flow cytometry analysis of cells from the three CMV
seropositive donors stimulated with anti-CD3 and anti-CD28 antibodies, stimulated
with CMVpp65 peptides, and unstimulated (control). FACS data are missing for
unstimulated cells from donor #1. After 24 h, the percentages of T cells expressing
CD154 were higher following stimulation with anti-CD3 and anti-CD28 antibodies
and with CMV than in the negative control.

Supplementary Figure 2 | Distribution of CMV CD4+T cells from each of the
three donors. (A) UMAP embeddings of CMV CD4+ T cells from each donor. Cells
were assigned to each donor using demuxlet (28); ambiguous droplets were
regarded as “unclear”. Proportions of cells from each donor are shown on the left.
UMAP embeddings were (A) colored or (B) split by donors. (C) Percentage
of the five CMV-stimulated CD4+ cell clusters relative to total CD4+ T cells from
each donor.
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