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Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all
tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For
many reasons, these cells are a promising therapeutic alternative to treat patients with
severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential
for tissue regeneration; they can also alter the pulmonary environment through the
paracrine secretion of several mediators. They can control or promote inflammation,
induce other stem cells differentiation, restrain the virus load, and much more. In this work,
we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage
samples from control individuals and COVID-19 patients with mild and severe clinical
conditions. When we compared samples from mild cases with control individuals, most
genes transcriptionally upregulated in COVID-19 were involved in cell proliferation.
However, a new set of genes with distinct biological functions was upregulated when
we compared severely affected with mild COVID-19 patients. In this analysis, the cells
upregulated genes related to cell dispersion/migration and induced the g-activated
sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was
upregulated, one of the GAS target genes, leading to the interferon-stimulated response
(ISR) and the overexpression of many signature target genes. The MSCs also upregulated
genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and
used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative
analysis, we observed that MSCs from severe cases do not express many NF-kB
upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor
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(TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-kB inhibitors were
upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do
not play a role in the “cytokine storm” observed. Therefore, lung MSCs in COVID-19 sense
immune danger and act protectively in concert with the pulmonary environment,
confirming their therapeutic potential in cell-based therapy for COVID-19. The
transcription of MSCs senescence markers is discussed.
Keywords: mesenchymal stem cell, COVID-19, cell therapy, single cell RNA sequencing, cytokine storm
INTRODUCTION

Mesenchymal stem cells (MSCs) were described by Friedenstein
in 1970 (1) and were first isolated from the bone marrow as non-
hematopoietic stem cells. They are undifferentiated adherent
spindle-shaped cells found in virtually all adult tissues and
facilitate tissue remodeling and repair throughout adult life (2).
Considering that MSCs would differentiate only into
mesodermal cells, such as bone, cartilage, tendon, and fat, in
1991 Caplan introduced the term “mesenchymal stem cells” (3–
5). However, today we know that MSCs are pluripotent stem
cells, as they can also differentiate into ectodermal (6) and
endodermal (7) cell lineages. The identification of human
MSCs is based on their capacity to adhere to plastic and on
markers expressed by in vitro expanded cells (8), with the
canonical phenotype of CD73+CD90+CD105+ cells and no
expression of CD34, CD45, CD14, CD11B, and CD3ϵ.
Moreover, they must differentiate into three cell lineages,
adipocytes, chondrocytes, and osteocytes, under inductive
culture conditions (8). MSCs also seem to be a much more
heterogeneous population than initially perceived and may
differentiate into tissue-specific or tissue-unrelated cell types (2,
4). MSCs are perivascular cells (9, 10), and there is no definitive
evidence showing that MSCs have the capacity for asymmetric
cell division (11), a characteristic of conventional stem cells (12).

However, there is great confusion in the literature regarding
MSCs, which may be defined as mesenchymal stem cells or
mesenchymal stromal cells. Then, the International Society for
Cellular Therapy (ISCT) established some criteria for correctly
identifying these cells and recommended that they be referred to
as multipotent mesenchymal stromal cells. However, the
acronym MSC is accepted if the authors report the correct
definition of the cells used (4, 13).

Some particularities of MSCs’ biology over other stem cell
populations make them more suitable for cell-based therapy to
treat multiple pathological conditions. For example, they do not
involve ethical issues like embryonic stem cells or require genetic
manipulation as induced pluripotent stem (iPS) cells (14). MSCs
generate progeny by long-term self-renewal, exponentially
increasing the number of cells for engraftment after in vitro
expansion. Moreover, stem cell populations are usually rare
tissue components that yield progenitors to linearly and
hierarchically differentiate into other cell types. MSCs retain
this property (15); however, they can alter the environment
through the paracrine secretion of multiple factors, leading to a
org 2
cascade and proactive network of stem and immune cells
differentiation and activation. To date, MSCs lead other stem
cell populations to differentiate into a broader range of cells types
(cooperative activity). They can also reduce the differentiation of
naïve CD4+ T cells into Th1 effector cells and promote a shift
towards a Th2 immune response (16). When co-cultured with
CD8+ T cells, MSCs suppressed lymphoid activation by the
secretion of prostaglandin E2 (PGE2), indoleamine 2,3-
dioxygenase 1 (IDO1), and transforming growth factor (TGF)-
b1. Besides, they downregulated the expression of the natural
killer group 2, member D (NKG2D) receptor on the T cells (16).
MSCs can suppress the proliferation of NK cells (17) and inhibit
the expansion of blood invariant natural killer T (iNKT) cells and
gd T lymphocytes, mainly by the secretion of PGE2 (18). LPS- or
TNF-activated MSCs mediated M2 macrophage polarization
(19) and, when co-cultured with monocytes, induced the
secretion of IL-6 and prevented the differentiation into
immunogenic antigen-presenting cells (20). MSCs also skew
the differentiation of monocytes towards anti-inflammatory IL-
10-producing cells (20) and promote monocyte survival and
differentiation into CD206+ and CD163+ type 2 macrophages.
These cells also secreted high levels of IL-10 and CCL18.
Moreover, it was observed that MSCs directly induced Treg
cells by the secretion of TGF-b and indirectly by triggering the
secretion of CCL18 by macrophages, which generated more Treg
cells (20, 21). MSCs also inhibited the maturation and activation
of dendritic cells (DCs) by the JAK1/STAT3 signaling pathway
(22). Collectively, these results indicate that MSCs can
downmodulate the immune response at multiple levels and
through several pathways (23–30).

Although MSCs are usually associated with immuno-
depression (31), it seems that MSCs are not constitutively
immunosuppressive. They may require a ‘licensing’ step
provided by inflammatory molecules like IFN-g, TNF, or TLR
ligands (32) under specific conditions, which can explain some
apparently contradictory roles of MSCs in inflammation. Indeed,
a pro-inflammatory activity of MSCs may be beneficial in the
early phase of inflammation and help build a proper immune
response (33, 34). It was published that LPS-stimulated MSCs
expressed chemokines receptors and acquired higher mobility.
These stimulated cells secreted large amounts of pro-
inflammatory cytokines and recruited neutrophils in an IL-8-
and migration inhibitory factor (MIF)-dependent manner (35).
Although the functional importance of these results remains to
be demonstrated in vivo, endogenous MSCs may participate in
January 2022 | Volume 12 | Article 780900
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the early phase of pathogen defense (35). Indeed MSCs’ plasticity
and adjustable balance between apparent opposite biological
functions further support their use in therapeutic trials (33).

Besides the regulation of inflammatory responses, MSCs are
important in the control of invading pathogens (33, 36, 37),
tissue repair, cell proliferation, apoptosis control, and much
more (38, 39). In addition, they are safe to treat lung diseases
[reviewed in (40)]. These characteristics prompted several pre-
clinical and clinical trials to evaluate their applicability in treating
patients with severe COVID-19 and pulmonary post-COVID
sequelae, as they may also have anti-fibrotic activity (41). A
feature of MSCs is particularly interesting to recover pulmonary
structures, as they can reversibly make the mesenchymal-
epithelial transition (MET) (42). The MET is triggered by the
fibroblast growth factor (FGF) receptor and other growth factors
receptors that lead to the upregulation of the transcription
repressors Sox2 and Oct4. Then, these molecules suppress the
Snail function, a mediator of the epithelial-mesenchymal
transition (EMT) (43). Moreover, the transcription factor c-
Myc downregulates TGF-b1 and TGF-b receptor 2, and the
transcription factor Klf4 activates the epithelial program. These
interactions down-flow in the activation of epithelial genes such
as E-cadherin, EPCAM, MPZL2, STK17A, CLDN3 (claudin),
FAM3C, and many others. Considering that severe COVID-19
leads to a strong inflammatory response in the lungs, broad
tissue damage with epithelial compromise, fibrosis, and reduced
gas exchange in alveoli, the patients’ recovery can benefit from a
multifunction cell population like MSCs.

The COVID-19 was announced as a pandemic in early 2020.
Then, several studies indicated that a “cytokine storm” in the
lungs is one of the main immunopathogenic mechanisms
underlying morbimortality. Moreover, similar to severe acute
respiratory syndrome (SARS) induced by avian influenza,
COVID-19 patients eventually develop acute respiratory
distress syndrome (ARDS). The transplant of MSCs into
patients with H7N9 virus-induced ARDS has already been
conducted, and it significantly reduced the patients’ mortality
compared with control individuals (17.6% against 54.5%,
respectively) (44). Among different cell-based therapies, MSCs
have a high number of registered clinical trials and possibly more
chances to be approved for COVID-19 treatment (45).

In this work, we used single-cell RNA-seq data analysis of
MSCs identified in bronchoalveolar lavage (BAL) fluid frommild
and severally affected COVID-19 patients, besides control
individuals, and observed the high capacity of MSCs to adapt
to the environment. When we compared samples from mild
cases with samples from control individuals, most genes
transcriptionally upregulated after infection were involved in
cell proliferation. However, this scenario changed when we
compared severely affected with mild COVID-19 cases. In this
comparative analysis, MSCs from severe cases upregulated genes
involved in cell migration and dispersion in the lungs and
induced the g-activated sequence (GAS) genes, probably
triggered by IFNGR1 and IFNGR2. Then, IRF-1 was
upregulated, one of the GAS target genes, leading to the
interferon-stimulated response (ISR). Besides, they increased
Frontiers in Immunology | www.frontiersin.org 3
multiple genes involved in the MET for tissue repair, virus
control, and cell chemotaxis. Regarding cytoplasmic RNA
danger sensors, MSCs from severe COVID-19 patients
transcribed RIG-1 and MDA5 and upregulated PKR compared
with cells from mild cases. In mild and severe cases, the MSCs
upregulated genes that code for anti-inflammatory molecules
such as IL1RN, AGTRAP, and SOCS1.

In a non-comparative analysis, we observed that MSCs from
severe cases did not transcribe many NF-kB upstream molecules,
such as Toll-like receptors (TLRs) -3, -7, and 8, tumor necrosis
factor receptors (TNFR1 or TNFR2), RANK, CD40, and IL-1R1.
Indeed, many NF-kB inhibitors were upregulated, including
PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs
do not play a role in the “cytokine storm” observed. Besides, the
MSCs from severe cases do not transcribe NLRP3, NLRP6,
NOD2, IFN-g, IFNAR1, IFNAR2, CD80, or CD86. We also
evaluated senescence-related gene products, such as NADH
dehydrogenase (ubiquinone) ironsulfur protein 6 (Ndufs6),
and Erb-B2 receptor tyrosine kinase 4 (ERBB4) and MSCs
from severe cases showed signs of senescence. Our results
indicate that MSCs adjust their biological response to the
pulmonary environment, acting protectively and confirming
their applicability in cell-based therapy for COVID-19.
MATERIALS AND METHODS

We deployed a processing workflow for Single-cell RNA-seq data
analysis in the Santos Dumont (SD) Supercomputer (https://
sdumont.lncc.br), which has an installed processing capacity of
5.1 Petaflop/s. It presents a hybrid configuration of
computational nodes regarding the available parallel processing
architecture. It was necessary due to the large amount of raw data
to be processed, over 40 TB.

The COVID-19 datasets of BAL samples of single-cell RNA-
seq (scRNA-seq) are available on the Gene Expression Omnibus
(GEO) repository (46). Datasets are GSE145926 (47),
GSE157344 (48), and GSE167118 (49). Then, three healthy
control individuals and three COVID-19 patients with mild
symptoms were included in our analysis (47). Regarding
severely/critically ill patients, we gathered cells collected from
six (47) plus twenty-one (48) individuals in singlicate. Besides
samples from nine patients in duplicate (49). These datasets were
combined, and we then had forty-five samples from thirty-six
severely ill individuals. Only samples that went through the
curation and quality control stages were included in this work,
justifying the difference in the number of patients per group. The
criteria consisted of the availability of descriptive information
about the samples, such as a link to supplementary files detailing
how the genes’ transcriptional level was measured; access to raw
data through the selector SRA link; and all samples in the series
had to belong to a single species. Moreover, it was necessary to
have the description of the experimental protocol used; have the
comorbidities listed and the clinical condition at the time of BAL
collection; pass the check if metadata matched the samples’
names; and verification if the scRNA-seq experiments used one
January 2022 | Volume 12 | Article 780900
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of the following protocols: Smart-seq2, Smart-like, Drop-seq,
Seq-well, 10xV2 (3 prime and 5 prime), or 10xV3 (3 prime).

According to the authors that uploaded the datasets, the
patients were categorized as severe if requiring admission to
intensive care unit (ICU) and/or invasive or non-invasive
mechanical ventilation. Patients with mild symptoms had fever
at the moment of cells collection, respiratory symptoms, and
moderate infection with bilateral pneumonia evidenced by
computed tomography (CT) imaging. However, they required
no admission to ICU or mechanical ventilation. The median age
of each group of individuals was 24 years old for the control
group, 36 for COVID-19 patients with mild symptoms, and 65
for severely ill individuals.

We used the 10x Genomics pipeline CellRanger v.4.0.0 (50)
with default parameters for samples demultiplexing. We aligned
the reads and quantified the genes expression using the GRCh38
human genome and a SARS-CoV-2 genome (NC_045512) as
reference. We employed Seurat v4.0.3 R package (51) for quality
control (QC), Clustering analysis, and differentially expressed
genes (DEGs) analysis. We used the following criteria to identify
and remove low-quality cells: Unique Molecular Identifier (UMI)
count < 301; Genes expressed < 151 and > 3000; and > 20%
mitochondrial RNA, as defined in (52). The number of MSCs
analyzed, obeying all quality control criteria and phenotypic
identification, consisted of approximately 2x103 in control and
mild cases and 4x103 in patients with a severe clinical condition.

The Cellranger count software automatically identified the
infected cells. Then, in this work, all reads associated with the
SARS-CoV-2 received the “sarscov2” prefix, and we executed an
R script that created two files: one containing only non-infected
cells and the other with infected cells. We selected only SARS-
CoV-2 non-infected cells for all analysis to avoid the subversion
in gene expression that the intracellular infection could generate.
Therefore, we considered that the analysis of uninfected cells
present in the pulmonary inflammatory site would provide a
more accurate understanding of the MSCs’ function.

We found no MSCs with SARS-CoV-2 intracellular infection
in mild cases, and only 32% of the cells from severely infected
patients were intracellularly infected. Accordingly, we found no
MSCs from mild cases transcribing ACE2 or TMPRSS2 genes,
two primary virus receptors for host cell invasion (data not
shown). Considering the severe cases, uninfected cells (analyzed
in this work) transcribed no detectable levels of both molecules.
In contrast, more than 90% of the infected MSCs transcribed
high levels of both ACE2 and TMPRSS2 (Supplemental
Materials 1A, B).

For the clustering analysis, each dataset was normalized and
scaled with default parameters. After normalization, we executed
the following steps:

The FindVariableGenes function detected the variable genes with
the vst selection method and the number of features equal to
2000;

We integrated the datasets with Seurat’s FindIntegrationAnchors
and IntegrataData functions by running a canonical
correlation analysis (CCA) on each subset;
Frontiers in Immunology | www.frontiersin.org 4
We performed dimensionality reduction using PCA and UMAP
algorithms. For the PCA analysis, we initially included the 30
most significant principal components;

As the final step in the clustering process, we calculated a shared
nearest neighbor (SSN) graph between all cells through the
FindClusters function with the resolution parameter equal to
0.5. We repeated this analysis for three subsets of data: severe
+control, mild+control, and severe+mild.

We selected the cluster corresponding to MSCs in each data
subset based on the simultaneous transcription of CD105,
CD90, CD73, and no transcription of CD14, CD34, CD45,
CD11B, and CD3E genes using Seurat’s FindMarkers and
FindConservedMarkers functions (Supplemental Material 2).
Usually, HLA-DR is part of the panel of molecules not
expressed by MSCs. However, as we are analyzing cells from
an inflammatory site, we excluded the HLA-DR from the
designed phenotype as it may be expressed by IFN-g-activated
MSCs (53).

DEG analysis was performed to identify the cluster of MSCs
using the MAST (54) algorithm, with parameters logFC (log fold
change) equal to 0.25 and FDR (False Discovery Rate) equal to
0.05, to compare the differentially expressed genes between
different subsets. In addition, enrichment analyses were
performed with Enrich web-server (55) using gene sets library
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(56) and the Molecular Signatures Database (MSigDB) (57).

To identify the primary biological processes carried out by
lung MSCs, we analyzed the genes marked with a positive sign in
the column “av_logFC” in the datasheets of COVID-19 patients
with mild symptoms versus control individuals (Supplemental
Material 3) and of severely affected versus mild COVID-19
patients (Supplemental Material 4). The positive entries show
the genes transcriptionally upregulated in group 1 over group 2.
Then, the biological function was assigned to each positive gene,
which provided a comparative and general view of the main
functions assumed by the MSCs. To build the biochemical
pathways, we grouped the upregulated genes by biological
function and aligned them in the context of expected cellular
responses according to the literature, the KEGG’s databases, and
STRING network. For the analysis of mild COVID-19 cases over
control individuals, we evaluated 110 genes (Supplemental
Material 3), and for severe over mild cases, we analyzed 457
genes. Only statistically significant genes, considering the
column “p_val_adj” (Supplemental Materials 3, 4) were
included in the analysis (p ≤ 0.05).

For the non-comparative analysis of MSCs from severe cases,
we generated ridgeplots (histograms) and violin plots using
Seurat’s VlnPlot function. Therefore, in this work, we analyzed
transcriptional modulations following two different strategies.
First, we performed comparative analyses to gain insight into the
gene clusters that were progressively upregulated as COVID-19
worsened, indicating MSCs’ main functionalities at different
stages. In this case, the analysis was blind and not directed to
genes involved in any particular biological function. We analyzed
all transcripts of MSCs from control individuals versus patients
January 2022 | Volume 12 | Article 780900
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with mild symptoms and all positive entries showed the genes
transcriptionally upregulated in group 1 over group 2. The same
procedure was used to analyze all upregulated genes when
comparing severely affected patients over individuals with mild
symptoms. This analysis generated two lists containing multiple
genes, and we categorized every gene positively indicated
according to its biological function. The second analysis
strategy was directed to some previously defined genes that
mediate specific biological functions under study. This non-
comparative strategy was used to analyze molecules involved in
antigen presentation and immune regulation, cellular
senescence, virus danger recognition and response, and host
cell invasion receptors.
RESULTS

Profile of MSCs’ Upregulated Genes
Comparing Patients With Mild COVID-19
and Control Individuals
The analysis of MSCs from patients with mild COVID-19
compared with control individuals (Supplemental Material 3),
suggested that these cells were primarily dedicated to
proliferation in sick individuals (Figure 1). Considering all 110
Frontiers in Immunology | www.frontiersin.org 5
genes analyzed, almost 1/3 (27%) were related to cell
proliferation, and about 19% were related to general
metabolism, including mitochondrial function, glucose
transport, thymidine and glutamate metabolism, and others
(Supplemental Material 3).

Two upregulated genes are conventional markers of mitotic
cells, MKI67 and CCNB2; both gene products regulate the cell
cycle transition at the G2/M stage. The KI-67 protein also
maintains the mitotic chromosomes dispersed in the cytoplasm
after nuclear envelope disassembly (58). Moreover, some key
genes involved in cytokinesis were upregulated, which is the
separation of chromosomes and cytoplasm, yielding two
daughter cells (59). These genes were ANLN (anillin) (60) and
some kinesins (KIF21A, KIF2C, and KIF4A) (61) (Figure 1).
Other upregulated genes control the cell cycle progression, which
were FAM111B, PCNA, SMC4, and ESCO2 (62–65), or multiple
cell division checkpoints, as ATAD2 (66) and PBK (67) gene
products (Figure 1). Although increased DNA repair processes
are typically associated with intense cell proliferation, MSCs
upregulated only the UHRF1 (68) and MYBL2 genes
(69) (Figure 1).

The second most represented group of genes transcriptionally
upregulated was involved in antiviral response and sensing
pathogen-associated molecular pattern (PAMPs) molecules
(Figure 1). The HERC5 gene product inhibits replication of
FIGURE 1 | Upregulated genes grouped by biological function in mild cases. The comparative analysis of MSCs’ transcripts from COVID-19 patients with mild
symptoms over uninfected control individuals yielded the identification of upregulated genes in sick individuals. The MSCs were analyzed in BAL fluid and the genes
were grouped according to their biological function.
January 2022 | Volume 12 | Article 780900
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evolutionarily diverse viruses and boosts the antiviral response
(70), the RSAD2 protein (viperin) inhibits the release of viruses
from infected cells (71), and IFI44L inhibits virus replication
(72). The product of the genesMX1 (antiviral) and FCN1 (ficolin
1), an extracellular pattern-recognition receptor (PRR), have
already been observed to be upregulated after SARS-CoV-2
infection (73, 74), agreeing with our results.

We observed that the pulmonary environment of mild
COVID-19 patients induced the upregulation of only five pro-
inflammatory genes in MSCs, which code for the chemokines
CCL5 and XCL2, plus TRAF1, which has already been identified
as an important inflammatory mediator in the lungs (75). The
other upregulated genes were LTC4S that codes for the
leukotriene C4 synthase, a central enzyme in the metabolism
of arachidonic acid (76), and the lymphotoxin-beta (LTB), a
soluble inflammatory mediator usually induced by TNF and
lymphotoxin (LT)-alpha (77) (Figure 1). Regarding anti-
inflammatory genes, HAVCR2 was upregulated; it reduces
cytokines, chemokines, prostaglandins, and cell adhesion
molecules in the presence of viral infections (78) (Figure 1).
The SOCS1 gene/protein downregulates pro-inflammatory
pathways triggered by TLRs and other membrane receptors at
multiple levels (79). Moreover, the cytotoxic T-lymphocyte
antigen 4 (CTLA4) molecule was upregulated and it suppresses
T lymphocytes activation and function when bound to (CD80)
B7.1 or (CD86) B7.2 (80). Although the CTLA4 expression is
usually associated with the silencing of T lymphocytes and a
subset of B lymphocytes (81), this molecule has already been
observed in MSCs inhibiting allogeneic MSCs rejection (82).

Only two gene products that regulate cell differentiation into
endothelial (E2F8) or neuroepithelial (NET1) cells were
upregulated (Figure 1) besides the KLF4 gene. This result is
interesting because the KLF4 gene product sustains the self-
renewal cycle of stem cells and retains them at an
undifferentiated state (83), further supporting the primary
assumed function of lung MSCs in mild COVID-19 cases.
Other upregulated genes were either pro- or anti-apoptotic and
genes that favor cell dispersion (mobility/cytoskeleton) (Figure 1).

Some genes associated with other biological functions were
individually upregulated in MSCs when comparing mild cases
with control individuals. To date, the DEFB1 gene, which codes
the beta-defensin 1, an antimicrobial peptide continuously
produced by epithelial cells and other cell types (84)
(Supplemental Material 3). Moreover, some antioxidants were
upregulated, like the product of the AAED1 gene (Supplemental
Material 3).

After the comparative analysis of upregulated genes based on
their biological functions, we aligned some of the genes/gene
products related to cell proliferation and mitotic spindle
formation in a sequence of events (Supplemental Material 5).
As genes associated with the mitotic spindle formation, we
included the Aurora kinases A (AURKA) and B (AURKB).
These upregulated enzymes are serine/threonine kinases that
associate with the centrosome and the spindle microtubules
during mitosis and play an essential role in various cell
division checkpoints (85) (Figure 1 and Supplemental
Frontiers in Immunology | www.frontiersin.org 6
Material 5). Other transcripts were upregulated, such as the
gene TPX2, a spindle assembly factor that intimately interacts
with Aurora A and functions in chromosomes segregation (86).
Moreover, the NCAPG and NCAPH genes that code for proteins
involved in chromatin condensation (87), and the SAC3D1 gene
that codes for a protein important in centrosome duplication and
mitotic progression (88). In addition, the transcription of PRC1
and ASPM genes was upregulated, and they are involved in
cytokinesis and the microtubule dynamics at the spindle poles
(89). Besides, the ASPM gene codes for a protein that seems
involved in symmetric stem cells division (90) (Figure 1 and
Supplemental Material 5).

Regarding the microtubules’ connection to chromosomes in
the mitotic spindle, some components of the Ndc80 complex
were upregulated, such as NUF2 and APC25 genes. Besides the
genes that code for Cdt1, tubulin beta-6 (TUBB6), and the
kinesins KIF21A, KIF2C, and KIF4A genes (Figure 1 and
Supplemental Material 5).

Profile of MSCs’ Upregulated Genes
Comparing Patients With Severe Over
Mild COVID-19
When we analyzed the genes transcriptionally upregulated in
MSCs from severe over mild COVID-19 cases, we observed that
multiple biological processes were favored (Figure 2), a profile
entirely different from that observed in Figure 1. Regarding the
self-renewal cycle in this comparative condition, the MSCs
appeared less committed to clonal expansion in severe cases
(Figure 2). Instead, many upregulated genes were involved in cell
migration in the lungs (Figure 2), a fundamental property for
any stem cell population. The cell dispersion in stromal tissues is
a highly complex process that involves extracellular matrix
(ECM) components, ECM receptors, receptor-coupled
accessory molecules, and cytoskeleton components that act in a
concerted fashion. In this comparative analysis, we observed the
upregulation of many cytoskeleton components, including
CNN3 (calponin), MYH9 (myosin-9), ACTG1 (actin 1), PFN
(profilin),MYO6 (myosin 6), CAPZA2 (F-actin capping protein),
FLNA (filamin A), FLNB (filamin B), MSN (moesin), CPTBN1
(spectrin beta chain), and MACF1 (a microtube-actin cross-
linker) (Figure 2). We also observed the upregulation of two
isotypes of laminins, which were LAMB3 and LAMC2, and the
integrins ITGB1 (CD29), ITGA2 (CD49b), ITGA3 (CD49c),
ITGB6, and ITGB8 (Figure 3). These ECM receptors are
usually embedded in specialized microregions of the plasma
membrane rich in cholesterol and sphingolipids, named lipid
rafts. These structures facilitate the lateral mobility of signaling
clusters’ components for assembly (91). The endocytosis of rafts
may include caveolin-dependent pathways, and we observed the
upregulation of caveolin 1 and 2 (CAV1 and CAV2) in MSCs
from severe over mild cases (Figure 3).

Multiple genes whose products act as cytoskeleton regulatory
molecules were also upregulated, such as RHOF, WASL, CAP1,
MYL12B, LMTK3,WDR, RHOD, SEPT2, andWASF2 (Figure 2).
Moreover, the gene EPS8, which codes for a receptor adaptor
protein (92), and the EZR gene (Figure 2) were upregulated. The
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AZR gene codes for the ezrin, a protein that belongs to the ERM
(Ezrin–Radixin–Moesin) family and functions as a cross-linker
between the actin cytoskeleton and the plasma membrane.
Regarding antiviral components, we found the upregulation of
the genes IFIT3 (93), ZC3HAV1 (94), IFIT2 (95), ISG20 (96),
APOBEC3A (97), MX2 (98), ZC3HAV1 (94), C19orf66 (99), and
RSAD2 (viperin) (71) (Figure 2).

We did not find upregulated IFN-g transcription in MSCs
when comparing patients with mild symptoms over control
individuals (Supplemental Material 3) or patients with severe
over mild cases (Supplemental Material 4). This result is
significant, as it indicates that MSCs do not secrete one of the
main cytokines of the COVID-19 cytokine storm (100). Only the
cytokines IL-18 and IL-32 were increased in severe over mild cases
and the following chemokines: CCL4L2, CCL3, CCL3L1, and
CCL2 (Figure 2). Interestingly, some of these chemokines
attract immune cells to the inflammatory site and have antiviral
activity (101). Besides, the STAT6 gene was transcriptionally
upregulated, a homodimeric transcription factor with many
inflammatory and antiviral functions (102), and PARP14, whose
product acts as a transcriptional co-activator for STAT6 and
promotes the activation of a Th2 immune response (103).
Finally, the PTGES3 gene that codes for the prostaglandin E
Frontiers in Immunology | www.frontiersin.org 7
synthase 3 (cytosolic) was upregulated, one of the main
inflammatory regulators in inflammatory diseases (Figure 2).

MSCs from severe patients also upregulated the transcription
of some anti-inflammatory genes, which were SPP1 (osteopontin)
(104), AGTRAP (105), C6orf106 (106), and particularly IL1RN
(Figure 2). This gene codes for an interleukin 1 receptor
antagonist, a natural inhibitor of IL-1. In addition to its anti-
inflammatory activity, it was described as a potent anti-fibrotic
mediator produced by MSCs in the lungs (107).

We also observed the upregulation of many genes involved in
the MET or expressed by epithelial lineage-committed cells, such
as keratins (KRT15, KRT17, KRT23, and KRT6A) (Figure 2). The
MET is a remarkable function of MSCs (42, 43, 108) and an
essential feature in the lungs of patients with severe COVID-19
pneumonia, as long as many epithelial cells die due to the SARS-
CoV-2 infection or to secondary inflammatory damage. Besides,
MSCs from severe patients upregulated genes involved in
angiogenesis (TNFRSF12A, also known as TWEAK) (109) plus
the endothelial differentiation markers, LAP3, KLF5, and KLF6
(110) (Figure 2). Moreover, some genes involved in apoptosis
induction or resistance were transcriptionally increased (Figure 2).

When we analyzed additional genes involved in cellular signal
transduction and assembled the puzzle of biochemical signaling
FIGURE 2 | Upregulated genes grouped by biological function in severe cases. The comparative analysis of MSCs’ transcripts from COVID-19 patients with severe
over patients with mild symptoms yielded the identification of upregulated genes in critically ill individuals. The MSCs were analyzed in BAL fluid, and the genes were
grouped according to their biological function.
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pathways of severe cases, we observed a promising scenario for
using MSCs as therapeutical elements to treat COVID-19
(Figure 3). For example, the transcript of the MET gene,
which stands for mesenchymal-epithelial transition factor, also
known as hepatocyte growth factor (HGF) receptor (HGFR)
(111), was upregulated. It codes for the membrane receptor c-
MET. We did not observe MSCs transcribing HGF, the soluble
ligand of c-MET. However, subpopulations of pulmonary
epithelial cells such as secretory, ciliated, and squamous
transcribed this mediator, indicating that it is available for
MSCs stimulation in patients’ lungs (data not shown).

The c-MET is a tyrosine kinase receptor stimulated by the
binding of proteolytically activated HGF, leading to receptor
homodimerization and phosphorylation of cytoplasmic tyrosine
residues (Figure 3). These initial events activate the receptor that
recruits multiple signaling effector molecules that include the
adaptor proteins growth factor receptor-bound protein 2
(GFRB2), phosphatidylinositol 3-kinase (PI3K), v-src sarcoma
(Schmidt-Ruppin A-2) viral oncogene homolog (SRC), and
GRB2- associated binding protein 1 (GAB1) [reviewed in
(112)] (Figure 3, molecules represented within the dashed
line). Then, multiple signaling pathways diverge and lead to
different and complementary cellular responses.

One of the central observations of this biochemical scenario is
the negative regulation of the NF-kB pathway (Figure 3), a major
Frontiers in Immunology | www.frontiersin.org 8
pro-inflammatory pathway that leads to the production of TNF,
IL-2, IL-1, and many other inflammatory mediators (113). This
pathway starts with the c-MET (product of the MET gene)
directly activating the PI3K (114), or the c-MET leading to
GAB1 activation (115) that in turn activates PI3K (Figure 3).
Regardless of the initial events, PI3K activation leads to AKT
activity, an intermediate component of the NF-kB pathway
(Figure 3). Although the c-MET was upregulated in MSCs
from severe over mild cases (Figure 3), the NF-kB pathway
does not seem to function in critically ill patients. We based this
conclusion on the observation that multiple membrane or
cytoplasmic receptors that could converge to the activation of
the NF-kB pathway, were not upregulated in the comparative
analysis of severe over mild cases. This does not necessarily mean
that these NF-kB-related genes were not being transcribed, only
that they could have similar transcriptional levels when
comparing the two groups (below the threshold value of 0.25
in log fold change). To evaluate if these genes were being
transcribed in MSCs from severe cases, we used the VlnPlot
function, which is a non-comparative analysis and gives the
absolute values of specific genes transcriptional level
(Supplemental Material 6). To date, MSCs from severe cases
did not transcribe JAK2, IFNAR1, IFNAR2, and CD40,
(Supplemental Material 6), plus TLR3, TLR7, TLR8, NAIP
(NLRB), IL-1R1, CIITA (NLRA), or RANK (data not shown).
FIGURE 3 | Assumed biochemical molecular pathways triggered in MSCs. The genes were analyzed in MSCs from BAL fluid of COVID-19 patients. This
comparative analysis evaluated upregulated genes when comparing COVID-19 patients with severe over individuals with mild symptoms. The upregulated genes are
assigned in red, and the genes expressed at a similar level comparing both groups are indicated in black. C-MET means mesenchymal-epithelial transition factor.
The dashed line represents membrane-associated and close downstream molecules. Dashed arrows represent molecular physical translocation to the nucleus or
activation of nuclear transcription factors.
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Moreover, we observed that multiple molecules that silence the
NF-kB pathway were upregulated in the comparative analysis,
which were PPP2CB, OPTN, FHL2, ACADVL, MAP3K1,
NFKBIA, PTPRK, and TNFAIP3 (116–118) (Figure 3).
Therefore, although the c-MET can lead to KF-kB activation,
this does not seem to be the case in MSCs from severe COVID-
19 patients (Figure 3).

Moreover, we evaluated the transcription of RAP1 (TERF2IP
gene) in a non-comparative analysis. RAP1 is an NF-kB
activator, important for pro-inflammatory functions of MSCs
(119, 120). We observed that a minor proportion of MSCs from
the control group transcribed moderate levels of the TERF2IP
gene (Supplemental Material 1C). Moreover, less than 5% of
MSCs from patients with mild symptoms and less than 1% of
cells from severely affected individuals transcribed this gene
(Supplemental Material 1C). The upstream signaling
components EPAC1 RAPGEF3, RAPGEF6, EPAC2 RAPGEF4,
and RAPGEF5 were not transcribed in MSCs from mild or severe
COVID-19 patients (data not shown).The AKT is a central
molecule that triggers other branches of intracellular signaling
pathways, including the b-catenin via, which is probably active
in vivo in MSCs comparing our data of severe over mild cases.
This scenario is plausible because this pathway can lead to the
upregulation of the transcription factor SOX4, as we observed
(Figure 3) (121). Moreover, SOX4 is critical for MET, an
assumed primary biological function of MSCs in severe cases
according to the great number of MET genes that were
upregulated (Figure 2). In parallel, the c-MET-associated
kinase JAK1 (Supplemental Material 6) can lead to STAT3
activation and upregulation of another MET critical
transcription factor that was upregulated, the KLF4 (122)
(Figure 3). Both SOX4 and KLF4 can induce the transcription
of multiple MET genes, and indeed many of these target genes
were upregulated in our analysis (Figure 2, MET). Alternatively,
the KLF4 transcription factor can be activated by STAT-
independent pathways, and the upregulated KLF4 (Figure 3),
KLF5, and KLF6 (Figure 2) can play a role in other biological
processes besides the differentiation into epithelial cells (123).
Alternative pathways that induce KLF4 activation may be
functional in MSCs from severe cases. This is possible because
we observed the upregulation of SOCS3, whose gene product
downregulates STAT3 activity (Figure 3).

Moreover, the c-MET>JAK1>STAT3 pathway (124) may lead
to the activation of another critical transcription factor that was
upregulated in our analysis of severe over mild cases, the c-MYC
(Figure 3). The MYC gene can also be upregulated by multiple
STAT-independent biochemical pathways (125), and c-MYC
activity leads to several biological cell responses (126),
including cell adhesion and migration, DNA repair,
proliferation, and others.

As we observed the upregulation of multiple genes related to
cell dispersion (mobility), we analyzed some molecules that
participate in focal adhesion (FA), which are large
macromolecular clusters present in specialized plasma
membrane regions. The FAs contain integrins and are
responsible for intermediating the mechanical force between
Frontiers in Immunology | www.frontiersin.org 9
ECM components to the cytoskeleton. We found several
integrins upregulated in MSCs from severe over mild patients
(Figure 3). After integrin engagement, the focal adhesion kinase
(FAK) becomes autophosphorylated and creates a high-affinity
binding site for Src kinases, allowing their autophosphorylation.
Then, activated Src members further phosphorylate FAK on
additional tyrosine residues (127). In our analysis, we observed
the upregulation of the Src kinase Lyn (Figure 3). This initial
interaction forms a signaling platform that triggers the
engagement of GRB2 to the pathway, and Ras is recruited in
sequence (Figure 3). The following signaling cascade includes
RAF, MEK1/2, ERK1/2, and MAPK (128), and many of these
components were upregulated in our analysis (Figure 3). The c-
MET receptor can also directly stimulate the Ras component of
the via (129), an alternative branch not included in Figure 3. In
addition, the upregulated TRIB1 gene product can further
activate the MEK1/2 response (130) (Figure 3).

The RAS component may alternatively lead to the activation
of RAC1, which is followed by the activation of PAK (131). At
this point, PAK can further stimulate the b-catenin pathway,
reinforcing the MET, and/or stimulate MAPK, whose family
member MAPK3K13 was upregulated in MSCs from severe over
mild cases (Figure 3). One of the outcomes of this pathway is the
activation of the transcription factors c-JUN, which had the
family members JUNB and JUND upregulated, and c-FOS with
FOSB and FOSL1 genes upregulated (Figure 3) (132). In
addition, the c-JUN and c-FOS activate the transcription of
numerous other genes, including genes that regulate cell
migration, survival, proliferation, adhesion to a substrate, and
much more. Both c-FOS and c-JUN are members of the
Activator Protein 1 (AP-1) that is a generic name for different
sets of homo- or heterodimers made up of members of the Fos,
Jun, Maf, including MAFF (133) (Figure 3), and ATF multigene
families (134).

Finally, MSCs from severe cases upregulated numerous genes
involved in protein ubiquitination (Figure 3), a process generally
associated with cellular components degradation. However,
multiple biological functions have been attributed to the
ubiquitin pathway, such as signal transduction, cell cycle
regulation, mitophagy, and antiviral activity [reviewed in (135)].

Danger Recognition in MSCs From
Patients With Severe COVID-19
Although we selected only SARS-CoV-2 uninfected MSCs for
our analysis, to avoid the profound transcriptional and general
biological subversion induced by the intracellular infection, the
cells were obtained from a pulmonary inflammatory ambient.
Therefore, it was expected that the MSCs analyzed would express
a repertoire of PRRs that could recognize viral (danger)
PAMPs (136).

The results shown in Box 1 indicate that few virus danger
sensors were active in MSCs from severe cases, basically RIG-1,
MDA5, and PKR, with the associated molecules RIG-G, LGP2,
MAVs, TBK1, TRAF3, and IRF7 (Box 1). Then, we aligned the
transcribed and upregulated molecules involved in danger
recognition and antiviral response in MSCs from severally
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affected COVID-19 patients, and the general scenario is
illustrated in Figure 4.

When MSCs in severely affected patients are exposed to
cytoplasmic double-strand (ds) RNA, the PKR-dependent
pathway is likely triggered, as many components were
upregulated in our analysis (Figure 4). This pathway starts
with the activation of PKR by autophosphorylation after
binding to dsRNA, leading to the phosphorylation of eIF2a,
the EIF2A gene product. This pathway is usually triggered under
cellular stress conditions, leading to protein translation arrest,
and it must be transient because its chronic activation is
deleterious to the cells. Dephosphorylation of eIF2a is then
required to restore protein synthesis after the stress-induced
attenuation of translation, and two eIF2a holophosphatases are
necessary: phosphoprotein phosphatase regulatory subunit 15A
(PPP1R15A) (Figure 4), only expressed in stressed cells, or
phosphoprotein phosphatase regulatory subunit 15B
(PPP1R15B), which is constitutive (137). The antiviral activity
of this pathway is based on at least two important fronts: the
translation arrest and inhibition of virus replication and the
activation of the pro-inflammatory NF-kB pathway. In this case,
the activation of NF-kB is unlikely, as many cytoplasmic
inhibitors of this pathway were upregulated in MSCs from
severe COVID-19 patients (Figure 3). Besides its antiviral
activity, this pathway leads to the transcription of target
molecules involved in REDOX response, cell survival, and
migration by activating the transcription factor ATF4
(Figure 4) (138).
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Another pathway that seems to be functional in MSCs
comparing severe with mild cases is dependent on MDA5 and
RIG-1, two known sensors that activate antiviral cellular
responses (139) (Figure 4). Both molecules converge to the
activate mitochondrial antiviral-signaling protein (MAVS)
found on the outer membrane of mitochondria (140). Then,
TRAF3 is recruited (141), leading to TBK1 activation, which can
also be activated by IFIT3 (93), another upregulated gene in this
condition (Figure 4). Then, TBK1 leads to the activation of the
transcription factor IRF7, which induces the production of type I
(alpha and beta) interferons (142). Although it has been
published that the RIG-I/MDA-5–MAVS signaling pathway is
possibly inhibited by the SARS-CoV-2 membrane (M) protein
(143), this pathway seems to be active at least in uninfected
MSCs (Figure 4), as the transcription of IRF7 was upregulated
(Figure 4). The activation of IRF7 can alternatively be achieved
by a complex composed of the helicases DDX1, DDX21, and
DHX36 that interacts with the adaptor protein TRIF and
cytosolic dsRNA (144). In our analysis, the component DDX21
was upregulated in MSCs from severe over mild COVID-19
cases (Figure 4).

The IFN-g (a type II IFN) receptors IFNGR1 and IFNGR2
(Figure 4 and Supplemental Material 6) were expressed in
MSCs from severe cases, and these receptors signal through
JAK1 and JAK2 kinases. However, our non-comparative results
of severe COVID-19 patients showed that MSCs are not
transcribing JAK2 (Supplemental Material 6). Therefore,
JAK1 activity would lead to the phosphorylation and
BOX 1 | Main biological pathways involved in virus sensing and antivirus response.

Cytoplasmic RNA sensors
protein/gene Severe over control Severe over mild

TLR3/TLR3 NU NT*
TLR7/TLR7 NU NT*
TLR8/TLR8 NU NT*
NOD2/NOD2 NU NT*
NLRP3/NLRP3 NU NT*
NLRP6/NLRP6 NU NT*
RIG-1/DDX58 +1,338 TR*
MDA5/IFIH1 +1,525 TR*
RIG-G/IFIT3 +2,609 +1,023
CIITA/CIITA NU NT*
NAIP/NAIP NU NT*
LGP2/DHX58 +0.788 TR*
DHX9/DHX9 NU NT*
DHX15/DHX15 NU NT*
2′-5′-oligoadenylate synthetase/OAS1 +1,828 NT*
latent Rnase (RNaseL)/RNASEL NU NT*
Protein kinase RNA-activated(PKR)/EIF2AK2 +0,887 +0,966
Signal transduction
mitochondrial antiviral-signaling protein/MAVS NU TR*
TANK-binding kinase/TBK1 NU TR*
TRAF3/TRAF3 NU TR*
IRF7/IRF7 +2,583 +1,081

The analysis of patients with severe COVID-19 over control individuals was comparative and of severe over patients with mild symptoms was comparative and non-comparative. The
genes were analyzed in MSCs from BAL fluid and are identified as: NU (not upregulated or not transcribed); NT (not transcribed); TR (transcribed but not upregulated). The plus sign,
indicates the level of upregulation in the comparative condition. * Indicates that a non-comparative analysis was performed.
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homodimerization of STAT1 (Figure 4), which is also known as
g-activated factor (GAF) (145). This pathway induces the GAS
(g-activated sequence) response (146) that leads to the
transcription of numerous genes that were upregulated in our
analysis (147), including the IRF-1 (Figure 4).

Both IRF-1 and type III interferons can induce the interferon-
stimulated response (ISR), a robust cellular response important
for virus infection control. Type III interferons signal through
the IFNLR receptor complex (composed of INFLR1 and IL-
10Rb), and this interaction leads to JAK1 and TYK2 kinases
cross-phosphorylation (148). However, we observed that
INFLR1, IL-10Rb, and TYK2 were not transcribed in MSCs
from severe cases (data not shown), and therefore this pathway
would not lead to ISR. On the other hand, the IRF-1 gene was
upregulated when comparing severe over mild cases, its product
is likely activating the ISR. This cellular event is known for
leading to the expression of genes such as ISG20, APOBEC, IRF7,
RSAD2 (viperin), EIF2AK2 (PKR), and many more that were
upregulated in our analysis (149). Therefore, our results indicate
that type I interferons, that signal through the not transcribed
TNFAR1 and TNFAR2 receptors (Supplemental Material 6),
and type III interferons are not playing a role in MSCs antiviral
response in severe cases. This is surprising, as they are some of
the most relevant cytokines that compose the first-line defense
against viruses. Conversely, and similar to many other viruses,
Frontiers in Immunology | www.frontiersin.org 11
the SARS-CoV-2 has evolved mechanisms for evading the
antiviral effects of type I and III IFNs at multiple levels (150).
Moreover, the genes NLRP3, NLRP6, and NOD2 were not
transcribed according to the non-comparative analysis (data
not shown). These genes are important PRR sensors for RNA
viruses but they do not seem to be employed by MSCs from
patients with severe clinical condition.

Since more severe clinical symptoms are common in older
individuals and the median age of this group was 65 years old in
our study, we decided to analyze some functional and senescence
markers of MSCs. We then analyzed the protein NADH
dehydrogenase (ubiquinone) iron-sulfur protein 6 (Ndufs6), a
major component of the mitochondrial complex I that mediates
MSCs senescence (151). In a non-comparative analysis, we
observed that more than 80% of MSCs from the control group
transcribed high levels of the NDUFS6 gene. However, less than
5% of MSCs from the SARS-CoV-2 infected individuals, either
with moderate or severe clinical symptoms, transcribed this gene
(Supplemental Material 1D). Another molecule involved in
MSCs senescence is the Erb-B2 receptor tyrosine kinase 4
(ERBB4 gene). This protein regulates MSCs survival under
hypoxia, and ERBB4 overexpression in aged MSC ameliorates
oxidative stress-induced senescence (152). However, we observed
no ERBB4 transcription in either group (data not shown). Serum
levels of serotonin have also been implicated in MSCs function/
FIGURE 4 | Assumed biochemical pathways involved in virus sensing and antivirus response. The analysis of SARS-CoV-2 DAMPs recognition and antivirus
response of MSCs was aligned in a cellular biological condition. The upregulated genes are assigned in red, and the genes expressed at a similar level comparing
the group of patients with severe over patients with mild symptoms are indicated in black.
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senescence in COVID-19, and serum levels of serotonin and
carboxypeptidase A3 (CPA3) (153) have been implicated in
COVID-19 severity. However, we observed no transcription of
the following serotonin-related genes in MSCs from the three
groups of individuals: HTR1B and HTR2B (serotonin receptors),
PDGFRB, and CPA3 (data not shown).Finally, MSCs are
considered good candidates for allogeneic transplantation as
they express low levels of human leukocyte antigen (HLA)
class I (MHC-I) on cell surface and lack the expression of
MHC-II and the co-stimulatory molecules CD80, CD86, and
CD40 (154). Moreover, MSCs have been demonstrated to be
poor stimulators of allogeneic T cell response in vitro, which
seems to be not due to a deficiency in co-stimulatory signals
(155). In humans, there are three MHC-II isotypes, which are
HLA-DR, HLA-DP, and HLA-DQ, all encoded by a and b chain
genes and we evaluated the transcription of some HLA-DR
alleles (Figure 5). Different from results previously published
by other groups regarding MSCs, and to the best of our
knowledge, not obtained from the lungs, our results showed
that pulmonary MSCs from control uninfected individuals
transcribed the MHC-II a chain (HLD-DRA) and the b chains
HLA-DRB1, and HLA-DRB5 (figure 5). However, as we
evaluated the transcriptional level, it is possible that those
transcripts were not translated or even that the protein is not
directed to the cell membrane.

We observed that less than 5% of MSCs from the three groups
of patients transcribed CD80 (data not shown) or CD40
(Supplemental Material 6 and data not shown). Interestingly,
MSCs from patients with mild COVID-19 transcribed high levels
of CD86, HLD-DRA, HLA-DRB1, and HLA-DRB5, suggesting
Frontiers in Immunology | www.frontiersin.org 12
that these cells may play a role in the priming of T lymphocytes
and act directly and indirectly in the orchestration of the
immune response facing the disease. On the other hand, MSCs
from severely affected patients downmodulated the transcription
of those molecules substantially. Despite the previous
observation that MSCs upregulate co-stimulatory and HLA
molecules after exposure to IFN-g (53), in the pulmonary
ambient of severely affected COVID-19 patients, with assumed
high levels of this cytokine, this upregulation was not observed.
DISCUSSION

The WHO declared the COVID-19 pandemic in early 2020, and
the world started looking for alternatives for patients’ treatment
and management. There is still much to be learned about the
disease, but the world is advancing in vaccination campaigns,
and health professionals know better how to treat the different
COVID-19 manifestations. The main cause of morbimortality is
the quick progression of a severe pulmonary inflammatory
response, with secondary tissue damage and fibrosis. Another
important cause of mortality is the systemic aspect of the disease
that yields thromboembolism. Many pharmacological
therapeutic alternatives are being developed or repositioned to
combat the SARS-CoV-2 infection, besides cell-based alternative
therapies. Among these possibilities, pre-clinical and clinical
trials using MSCs are among the most promising options, as
previous tests in lung diseases indicated that they are effective
and safe.
A B

C D

FIGURE 5 | Modulation of co-stimulatory and HLA molecules in MSCs from COVID-19 patients. We made a non-comparative analysis of MSCs from control
uninfected individuals and patients with mild or severe COVID-19, as indicated. The molecules analyzed were CD86 (A), HLA-DRA (B), HLA-DRB1) (C), and HLA-
DRB5 (D).
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MSCs can linearly differentiate into several cell types that are
very important in controlling COVID-19-induced pneumonia
and tissue regeneration. Besides, they can modify the pulmonary
environment through the paracrine action of secreted soluble
factors, many of which were observed to be upregulated in our
work. The paracrine activity of MSCs includes the differentiation
of other progenitor cells, leading to a proactive cascade of
complementary cell types that help in a patient’s recovery.

Among the different approaches to studying the COVID-19
inflammatory response and tissue regeneration, we can highlight
the contribution of single-cell RNA-seq data analysis. This
approach is a powerful tool that yields the evaluation of
thousands of genes in specific cell types that are important to
understanding the cellular network that underlies the COVID-19
pathogeny. One of the method’s main advantages is the
evaluation of different cell types that integrate the biological
network in the pulmonary inflammatory environment in vivo.
This is a central aspect, which combines single-cell
transcriptomics of samples freshly obtained from the patients
with no in vitro cell culture or other manipulations in laboratory
that could alter the cellular biological status. On the other hand,
the multiple biochemical pathways and cellular biological
responses indicated by transcriptionally upregulated genes
cannot be easily confirmed in vitro. Therefore, the results
predicted by single-cell RNA-seq data analysis remain elusive
and prone for confirmation in future essays. In our analyses, we
observed that MSCs have high plasticity and adjust their
biological functions according to the environment, responding
through different sets of transcriptionally upregulated molecules.
In the group of patients with moderate clinical conditions over
uninfected control individuals, we observed the expansion of a
few sets of biologically grouped genes, with the greatest increase
in groups of genes related to cell proliferation. Moreover, the
second most represented group of genes was related to antiviral
activity (156–158). On the other hand, in severe over mild cases,
the MSCs response was completely different, as they assumed a
genotype compatible with a multipurpose protective cell
population. This protection can be illustrated by a refined
control of the inflammatory response; moderate transcription
of pro-inflammatory molecules, which is important for infection
restrain; no significant transcription of main participants of the
“cytokine storm” as IFG-g; and assumed blockage of the NF-kB
pathway. Besides, these cells seem to be much more active in
antiviral responses and tissue repair, especially leading to
epithelial cells differentiation and MET. To the best of our
knowledge, this is the first description of MSCs functionally
adjusting to the pathogenic ambient, assuming different
biological functions.

The most severe cases of COVID-19 are in at least sixty-five
years old individuals. In our study, we observed that the patients’
median age of severely affected individuals was considerably
higher when compared with the other groups. This observation
prompted us to analyze some senescence-related genes of MSCs.
To date, several potential mechanisms, including telomere
shortening (159), impaired autophagy (160), and especially
increased reactive oxygen species (ROS) (161, 162) have been
Frontiers in Immunology | www.frontiersin.org 13
reported to mediate MSCs senescence. Regarding Ndufs6, less
than 5% of the MSCs from patients with moderate or severe
clinical symptoms transcribed this gene. This downregulation
suggests that MSCs in the lungs quickly show signs of
senescence, as Ndufs6 is depressed in aged MSCs. However,
these cells might be at different stages of senescence and still
differentiate into other cell types and play a role in controlling the
infection. From our perspective, this possible natural senescence
of MSCs in COVID-19 patients further supports the
transplantation of MSCs to prevent the worsening of
clinical symptoms.

We also evaluated the transcription of RAP1 (TERF2IP gene),
an upstream NF-kB activator. This pathway ultimately leads to
the activation of Raf-1, AF-6, and other transcription factors
(reviewed in (163). In agreement with our observation that
pulmonary MSCs do not activate the NF-kB pathway in severe
cases of COVID-19, we observed that only cells from the control
group transcribe high levels of the TERF2IP gene.

Serum levels of serotonin have also been implicated in MSCs
function in COVID-19, as the treatment of human lung explants
with Fluoxerin, an inhibitor of serotonin reuptake, reduced
SARS-CoV-2 virus load (164). Besides, serotonin was also
implicated in EMT and MET (165). Moreover, serum levels of
serotonin and carboxypeptidase A3 (CPA3) (153) have been
implicated in COVID-19 severity. However, we observed no
transcription of the following serotonin-related genes in MSCs
from the three groups of individuals: HTR1B and HTR2B
(serotonin receptors), PDGFRB , and CPA3 (data not
shown).Our results show the adaptability of MSCs to the
pulmonary environment during the SARS-CoV-2 infection and
justify the efforts to establish MSC-based therapies to treat acute
COVID-19 and post COVID-19 sequelae.
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15. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI.
Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ
Regener Med (2019) 4:22. doi: 10.1038/s41536-019-0083-6

16. Li M, Sun X, Kuang X, Liao Y, Li H, Luo D. Mesenchymal Stem Cells
Suppress CD8+ T Cell-Mediated Activation by Suppressing Natural Killer
Group 2, Member D Protein Receptor Expression and Secretion of
Prostaglandin E2, Indoleamine 2, 3-Dioxygenase and Transforming
Growth Factor-b. Clin Exp Immunol (2014) 178(3):516–24. doi: 10.1111/
cei.12423

17. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M.
Interactions Between Human Mesenchymal Stem Cells and Natural Killer
Cells. Stem Cells (2006) 24(1):74–85. doi: 10.1634/stemcells.2004-0359

18. Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V.
Reciprocal Interactions Between Human Mesenchymal Stem Cells and
Gammadelta T Cells or Invariant Natural Killer T Cells. Stem Cells (2009)
27(3):693–702. doi: 10.1634/stemcells.2008-0687

19. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al.
Bone Marrow Stromal Cells Attenuate Sepsis via Prostaglandin E(2)-
Dependent Reprogramming of Host Macrophages to Increase Their
Interleukin-10 Production. Nat Med (2009) 15(1):42–9. doi: 10.1038/
nm.1905

20. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent Stromal Cells
Skew Monocytes Towards an Anti-Inflammatory Interleukin-10-Producing
Phenotype by Production of Interleukin-6.Haematologica (2013) 98(6):888–
95. doi: 10.3324/haematol.2012.078055

21. Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent Stromal Cells
Induce Human Regulatory T Cells Through a Novel Pathway Involving
Skewing of Monocytes Toward Anti-Inflammatory Macrophages. Stem Cells
(2013) 31(9):1980–91. doi: 10.1002/stem.1432

22. Liu WH, Liu JJ, Wu J, Zhang LL, Liu F, Yin L, et al. Novel Mechanism of
Inhibition of Dendritic Cells Maturation by Mesenchymal Stem Cells via
Interleukin-10 and the JAK1/STAT3 Signaling Pathway. PloS One (2013) 8
(1):e55487. doi: 10.1371/journal.pone.0055487

23. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc
VG, et al. Bone Marrow Stromal Cells Use TGF-Beta to Suppress Allergic
Responses in a Mouse Model of Ragweed-Induced Asthma. Proc Natl Acad
Sci U.S.A. (2010) 107(12):5652–7. doi: 10.1073/pnas.0910720107

24. Bassi Ê, de Almeida DC, Moraes-Vieira PM, Câmara NO. Exploring the Role
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