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Mitochondria are essential organelles for cell metabolism, growth, and function.
Mitochondria in lung cells have important roles in regulating surfactant production,
mucociliary function, mucus secretion, senescence, immunologic defense, and
regeneration. Disruption in mitochondrial physiology can be the central point in several
pathophysiologic pathways of chronic lung diseases such as chronic obstructive
pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we
summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and
interaction with the endoplasmic reticulum are involved in chronic lung diseases and
highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested
as a potential therapeutic target for lung diseases.

Keywords: mitochondrial dysfunction, mitochondrial dynamics, mitochondrial morphology, mitotherapy, chronic
lung diseases, reactive species of oxygen (ROS)
INTRODUCTION

Mitochondria are organelles present in all eukaryotic organisms with the classic role of generating
most of the cellular energy. Mitochondria are responsible for the synthesis of adenosine
triphosphate (ATP) via oxidative phosphorylation (OX-PHOS) through the breakdown of sugars
and fatty acids in the citric acid cycle (1). In addition to energy production, depending on the cell
type, mitochondria can also be involved in other metabolic processes, such as calcium and apoptosis
signaling (2–5). Considering their accepted endosymbiotic origin, mitochondria have their own
transcriptional machinery, proteome, and DNA (mitochondrial DNA [mtDNA]), which makes
them semi-autonomous organelles regulating their homeostasis by autophagy, fusion, and
fission (6).

During homeostasis, mitochondria have important roles in lung function. Mitochondria number
and intracellular organization can vary in an energy-dependent form for distinct types of airway
epithelial cells (7). Mitochondria can regulate surfactant production, cellular senescence,
mucociliary function, and mucus secretion (7). Mitochondria are also crucial in pulmonary
immunometabolism and immune cell response, such as in alveolar macrophages (8).
Appreciation for mitochondrial noncanonical functions has increased our knowledge of their
org November 2021 | Volume 12 | Article 7820741
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role in pathophysiologic processes, including chronic lung
diseases such as chronic obstructive pulmonary disease
(COPD) (Figure 1), idiopathic pulmonary fibrosis (IPF)
(Figure 2), and asthma (Figure 3) (9–12).

The centrality of mitochondrial dysfunction in the context of
chronic respiratory diseases has been studied extensively in
diseases that affect the trachea, bronchi, bronchioles (13, 14),
alveoli (15, 16), and interstitium (17, 18). Mitochondrial
dysfunction alters cell bioenergetics and hinders lung recovery
after an insult (19). Thus, highlighting the importance and
challenges of looking at mitochondria as a new target for
therapeutic strategies in chronic lung diseases is essential (20–
22). This review summarizes some mitochondrial physiologic
and pathologic processes, as well as therapeutic strategies for
chronic lung diseases considering mitochondria as the
central point.
MITOCHONDRIAL MORPHOLOGY

Structurally, mitochondria differ from other organelles in that
their internal compartment (matrix) is kept apart from the cell
cytoplasm through inner and outer membranes, separated by an
intermembrane space, and all of these components play a
fundamental role in their biochemical reactions (23). The
conserved inner membrane ultrastructure contains
invaginations or cristae where OX-PHOS enzymes, which are
fundamental to mitochondrial functionality, are located (1, 24).
Moreover, due to their lipid composition, small size, and partial
transcriptional independence from the nucleus, mitochondria
are extremely dynamic organelles (25). In response to
pathophysiologic changes, mitochondria can change
structurally and numerically through modifications in the
behavior of their protein machinery (26).

In primary type II alveolar epithelial cells (AECII) in patients
with COPD, abnormalities in the mitochondrial morphology
have been reported, including loss of cristae and swollen and
fragmented mitochondria (16, 27, 28). In vitro long-term
exposure to cigarette smoke extract (CSE) in cultured human
airway epithelial cells resulted in similar mitochondrial
abnormalities (16, 27). In addition, reduced levels of prohibitin
proteins (PHB1 and PHB2), present in the mitochondrial inner
membrane, have been observed in lung tissue in patients with
COPD and in non-COPD smokers (29). The homologous
proteins PHB1 and PHB2 are essential components of fusion
machinery and have been found to have a critical role in
mitochondrial stability and morphogenesis and more recently
in combating oxidative stress (29, 30). Collectively, these data
indicate that cigarette smoke (CS) alters mitochondrial structure
and functions and downregulates PHB1/PHB2 complexes,
leading to increased cellular levels of reactive oxygen species
(ROS) and cellular damage (29).

However, mitochondrial changes in COPD are not restricted
exclusively to lung parenchyma or airway cells; they also extend
to other cell types, such as skeletal muscle cells. Vastus lateralis
muscle cells of patients with COPD present reduced
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mitochondrial fractional area, number, and enzyme activities,
resulting in loss of oxidative capacity, which can help to explain
the peripheral muscle dysfunction that is a hallmark of COPD
(31). In addition, higher rates of apoptosis of T lymphocytes
observed among patients with COPD can be partially explained
by mitochondrial cytochrome c release, generally associated with
abnormalities in mitochondrial morphology (32, 33).
Cytochrome c can be released from swollen mitochondria via
both permeability transition pore-dependent and independent
mechanisms, and this liberation is associated with apoptotic cell
death (34). T cell apoptosis may be also associated with the high
frequency of infections and exacerbations observed among these
patients, due to the resulting defective immune response (34).

Mitochondrial structure changes, such as a less dense matrix,
loss of cristae, and mitochondrial cavity appearance have also
been observed in experimental models of asthma induced by
ovalbumin (35, 36). Allergic asthma appears to induce
mitochondrial structure changes in an IL-4-dependent form,
indicating the potential involvement of inflammatory cells like
T lymphocytes, activated mast cells, and basophils in
mitochondrial morphology changes in asthma pathogenesis
(36). However, the molecular mechanism involved remains
undetermined. Intense mitochondrial biogenesis was also
demonstrated by a higher expression of activated mitochondria
in bronchial smooth muscle (BSM) cells of asthmatic when
compared to COPD and control patients (37). This indicates
that although both asthma and COPD are characterized by BSM
remodeling, a specific mitochondria-dependent pathway is
required for BSM proliferation only in asthma (37).

Similarly, experimental models and human samples of
pulmonary fibrosis demonstrated an increased number of
mitochondria with either a swollen appearance or disorganized
cristae in pulmonary epithelial cells (38, 39). Changes in
mitochondrial morphology also occur in IPF lung fibroblasts,
with disrupted membranes and altered cristae compared with
normal subjects (40). Mitochondria modulate cellular
senescence, a multifaceted cell phenotype that contributes
directly to IPF, partially by increasing mitochondrial
biogenesis, many of which become dysfunctional (41).
Collectively, these results demonstrated that altered
mitochondria morphology is a key pathologic feature of lung
fibrosis. Comparatively, less information is currently available
regarding modifications in mitochondrial morphology in the
physiopathology of asthma and fibrosis compared to COPD.
MITOCHONDRIAL DYNAMICS

The mechanisms involved in mitochondrial membrane
remodeling, termed mito-dynamics, include fusion and fission,
which are tightly associated with homeostasis adjustment (42).
The fusion of mitochondrial membranes, normally stimulated by
energy demand and stress, restores the damaged mitochondria
by diffusion and sharing of molecular components between
organelles (43). The main GTPases involved in mitochondria
fusion are mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), which are
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integrated into the outer membrane and have domains exposed
to the cell cytoplasm, together with optic atrophy 1 (Opa1), a
mitochondrial dynamin associated with the inner membrane
(44). On the other hand, fission divides and creates new
mitochondria, so it is essential to cell cycle progression
through growth and division. The presence of fission
machinery is a hallmark and is mandatory for mitosis phases
when mitochondria appear to be more fragmented (45, 46).
Mitochondrial fission is mediated by a dynamin 1-like (Drp1)
and mitochondrial fission 1 (Fis1) protein, but the mechanism
has not been fully elucidated yet (47). Alterations in mito-
Frontiers in Immunology | www.frontiersin.org 3
dynamics are observed in many chronic lung diseases and
contribute differently to each of them (48).

Mitochondrial dynamics dysfunction has been proposed to
participate in the development of COPD (27, 49). CSE directly
affects fibroblast, alveolar and small airway epithelial cells,
causing substantial mitochondrial morphological defects
observed after exposure to non-toxic doses through
mechanisms that involve mitochondrial elongation (50, 51).
Low doses of CSE also cause increased MFN expression in
mouse alveolar epithelial cells (50). In contrast, mitochondrial
fragmentation induced via Drp-1 recruitment is observed in
FIGURE 1 | Main mitochondrial alterations in COPD. (A) The pathogenesis of COPD, triggered by cigarette smoke, is characterized by alveolar destruction and
enlargement, as well as airway inflammation and remodeling (1). As the major source of oxidative stress, mitochondrial dysfunction leads to abnormal morphology,
formation of NLRP3-MAVS complex, increased PINK1 mitophagy factor, and disruption of ER-mitochondria crosstalk (2). (B) Schematic representation of mito-
therapy strategies for COPD. Mitochondrial antioxidants and fission inhibitors have a positive impact on pulmonary cells and murine models of COPD, acting in
mtROS (1) and mitochondrial morphology dysfunction (2), respectively, and can act indirectly in NLRP3-MAVS complex formation, innate immune signaling for which
mtROS is one activation signal. Otherwise, cell rescue from induced cigarette smoke or oxidative stress occurs via iPSC-MSC-mediated mitochondrial transfer in
COPD models (3). Created with BioRender.com.
November 2021 | Volume 12 | Article 782074
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human bronchial epithelial cells (HBEC) after exposure to more
toxic doses of CSE (27, 52). Even more, long-term exposure to
CSE causes more complex changes in mitochondrial
morphology, reflecting the coexistence of different
mitochondrial phenotypes, both elongated and fragmented, to
different levels of chronic cigarette smoke in COPD (16, 27).

CS is also known to enhance respiratory disorders such as
bronchitis and asthma, characterized by inflammatory changes,
hyperresponsiveness, and increased cell proliferation of airway
smooth muscle (ASM) (53). ASM cells isolated from moderate
asthmatic patients appear to be more sensitive to CSE than non-
Frontiers in Immunology | www.frontiersin.org 4
asthmatic patient samples, with associated decreased expression
and function of Mfn2, whereas increased Drp1-mediated
mitochondrial fragmentation (49). This mitochondrial fission/
fusion imbalance alters ROS dynamics and can lead to a cycle
with more fragmented mitochondrial networks, elevated ROS
production, and cell proliferation (49). There is still few current
information on mitochondrial fission/fusion dynamics in ASM,
and its importance in asthma.

Accelerated senescence is observed in lung epithelial cells in
IPF, and aging. Alveolar epithelial cells derived from aged mice
demonstrated accelerated lung fibrosis with enlarged
FIGURE 2 | Main mitochondrial alterations in IPF. (A) Idiopathic pulmonary fibrosis (IPF), a parenchymal lung disease, is characterized by clusters of fibroblasts/
myofibroblasts and excessive deposition of disorganized collagen and extracellular matrix, causing heterogeneous fibrosis (1). Increased mtROS in the pathogenesis
of IPF induces transforming growth factor b (TGF-b), stimulating fibrogenesis in a positive loop, in addition to mitochondrial morphology alterations and deficiency in
fusion proteins (2). (B) Schematic representation of mito-therapy strategies for IPF. Mitochondrial antioxidants lead to control of mitochondrial oxidative stress and,
consequently, reduce TGF-b expression and activity (1), whereas mitochondrial fission inhibitors are capable of protecting pulmonary fibrosis models from
mitochondrial fragmentation and posterior mitophagy factors (2). Created with BioRender.com.
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mitochondria and augmented expression of OPA1 and MFN1/2
(18). This data indicates that mitochondria fusion is
predominant in IPF lung epithelial cells (18). In contrast, the
absence of mitochondrial fusion proteins Mfn1/2 in murine
AECII is strongly associated with less production of surfactant
lipids and subsequent spontaneous fibrotic remodeling in the
lung, leading to higher morbidity and mortality in these animals
(54). Therefore, deficiency in mitochondrial fusion may be
linked to disruption in lipid metabolism, AECII injury, and
further fibrosis (54). Similarly, the main protein involved in
Frontiers in Immunology | www.frontiersin.org 5
fission, Drp1, has been shown to have critical involvement in the
development of pulmonary fibrosis, and when inhibited, it
prevents mitochondrial fragmentation and pulmonary fibrosis
in a bleomycin-induced model (55, 56). These data suggest that
the relationship between mitochondrial dynamics and cell
survival/death programming is complicated and may vary
between individual cell types and disease conditions (49).

The dynamics of intracellular organization and localization of
mitochondria are likely to influence several aspects of cellular
physiology. A bidirectional coupling between mitochondrial
FIGURE 3 | Main mitochondrial alterations in Asthma. (A) Asthma, which in most cases is strongly linked to allergen sensitization, is characterized by a Th2
inflammatory response via cytokines IL-4, IL-5, and IL-13, leading to bronchial hyperresponsiveness and remodeling (1). Features of asthma have also been
associated with increased mtROS, endoplasmic reticulum (ER) stress, reduced fusion proteins, and increased fission dynamics (2). (B) Schematic representation of
mito-therapy strategies for asthma. Mitochondrial target and localized antioxidants attenuate asthmatic pathophysiologic characteristics, especially controlling mtROS
levels (1). On the other hand, mesenchymal stromal cells (MSCs) actively transfer mitochondria directly via gap junctions or through mechanisms of nanotubes and
extracellular vesicles and are associated with beneficial effects in asthma models of airway injury and inflammation (2). Created with BioRender.com.
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morphology/dynamics and motility has been proposed as an
interconnected signaling pathway involved in cellular function
(57). The subcellular distribution of mitochondria can be actively
modified in response to energy demand and stress. Organelle
dislocation is mediated by cytoskeleton and motor proteins
(Miro1/2, actin, microtubules kinesin, and dynein), which can
interact with mito-dynamic proteins and can interfere with
endoplasmic reticulum (ER) communication (26, 58–61).
Mitochondrial intracellular movement is directly linked to
calcium signals, which at different concentrations can induce
mitochondrial translocation or provide a mechanism to retain
mitochondria at Ca2+ signaling sites, regulating local power
supply (62, 63). This can be particularly important for
epithelial cells in chronic lung diseases, such as asthma and
COPD, which have a high cell turnover rate and increased energy
requirements (20). Other biochemical signals have been involved
in the distribution of mitochondria, such as hypoxia, which has
been reported to cause mitochondrial translocation to the
perinuclear region (64). However, intentional subcellular
mitochondrial positioning in chronic lung disease cells and
what these mechanisms tell us about mitochondrial function is
still a poorly studied topic.
MITOCHONDRIAL REDOX SIGNALING

Together with NADPH oxidases, mitochondria are the major
source of ROS, a mitochondrial subproduct generated during
the electron transport chain (ETC) flux (65). About 3% of the
electrons leak in this process, reacting with oxygen on the
mitochondrial matrix to form superoxide (O2-), which is
converted into hydrogen peroxide (H2O2) by superoxide
dismutase 2 (SOD2) (65, 66). Although ROS are essential for
physiologic functions, oxidative/antioxidative imbalance can be
detrimental, particularly in organs continuously exposed to
oxygen and, consequently, highly susceptible to injury
mediated by ROS such as the lungs (67–70).

Mitochondrial ROS (mtROS) can act as a second messenger,
promoting physiologic signals of cellular stress and leading to
mitochondrial translocation (64, 67). Particularly in the lungs,
due to their anatomy and continuous exposure to the
environment, mitochondrial respiration is an important
endogenous source of oxidative stress (71, 72). When in excess,
mtROS leads to uncoupled ETC, calcium imbalance, impaired
communication between the ER and mitochondria, and
damaged mtDNA, and acts as an inflammatory signal (73).

Mitochondrial damage has an important role in the
pathogenesis of COPD, in which ROS levels exceed the
antioxidant defenses (74). The abundant ROS production can
be explained by CS and CSE lipophilic components were capable
of disturbing mitochondrial function and increasing the mtROS
in ASM cells from patients with COPD (75). Oxidative stress
causes lipid peroxidation, resulting in protein carbonylation,
commonly referred to as “carbonyl stress,” that is predominantly
associated with chronic diseases (76). In this cycle, carbonyl
stress can damage mitochondrial proteins and drive further
endogenous production of ROS (69).
Frontiers in Immunology | www.frontiersin.org 6
Increased mtROS has been demonstrated in a number of
fibrotic disorders, including pulmonary fibrosis. Oxidants have a
direct impact on the production of the most potent fibrogenic
cytokine, transforming growth factor b (TGF-b), inducing its
gene expression. The overexpression of this central mediator of
fibrogenesis increases the production of mtROS by blocking
complex III activity and suppressing the antioxidant system in
a reciprocal upregulation (positive loop) (77–79). mtROS also
causes oxidation of lipids and proteins identified in bleomycin-
induced mouse models of pulmonary fibrosis and in patients
with IPF (80, 81). Similarly, exposure to asbestos fibers both
in vitro and in vivo leads to increased mtROS production, which
regulates lung epithelial cell apoptosis and fibrosis (82, 83).

Oxidative stress also plays an important role in allergic airway
disorders. Airway remodeling and the immune response in
asthma pathogenesis have been associated with mitochondrial
metabolism, including the redox state (84). The most prominent
stimuli of asthma, environmental factors, can lead to damage to
specific chain-complex proteins, sustaining ROS generation, and
can further lead to airway hyperresponsiveness (AHR) (85, 86).
The cellular redox imbalance results in inflammatory infiltration
and cell damage and can lead to severe asthma and reduction of
the corticosteroid response (87–89). The more severe symptoms
in allergic disorders have been associated with mitochondrial
defects around complexes I and III, which are responsible for the
majority of mtROS production due to electron leakage (85).
Several markers of oxidative activity are present in people with
asthma. These patients have increased production of ROS by
inflammatory cells, such as macrophages, eosinophils, and
neutrophils, which lead to an increased concentration of
exhaled hydrogen peroxide and secretion of myeloperoxidase
and eosinophil peroxidase (87–91).
MITOPHAGY

Mitophagy is a selective form of apoptosis for dysfunctional
mitochondria, classically through phosphatase and tensin
homolog (PTEN)-induced putative kinase 1 (PINK1)
degradation (92). Permeabilization of the outer mitochondrial
membrane via apoptosis regulator Bcl-2 associated X (BAX)
and/or Bcl-2 homologous antagonist/killer (BAK), or the
opening of the mitochondrial permeability transition pore
(mPTP) in the inner mitochondrial membrane leading to the
release of intrinsic apoptosis-induced factors, such as
cytochrome c, is described to initiate the mitochondrial
apoptotic pathway (93, 94). Permeabilization of the outer
membrane (MOMP) and activation of fusion and fission
mechanisms are necessary to release cytochrome c from cristae
junctions (95, 96). Excessive levels of mtROS can induce
mitophagy, which in turn removes and recycles toxic or
damaged mitochondria, reducing mtROS, to maintain the
intercellular balance between oxidants/antioxidants, triggering
a negative feedback loop mechanism (97, 98).

Intriguingly, both enhanced and impaired mitophagy have
been implicated in the pathogenesis of COPD. Pink1-deficient
November 2021 | Volume 12 | Article 782074
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mice showed protection against the main characteristics of
COPD, such as airspace enlargement, mucociliary clearance,
and mitochondrial dysfunction (99). Accordingly, increased
expression of PINK1 in lung epithelial cells of patients with
COPD has also been observed, along with increased necroptosis
markers, impaired alveolar macrophage autophagy (100),
mitochondrial dysfunction, and morphology alteration in
skeletal muscle (101). On the other hand, insufficient
mitophagy and reduced expression levels of PARK2 (parkin
RBR E3 ubiquitin-protein ligase) can accelerate senescence and
are part of the pathogenesis of COPD (52). The PINK1-PARK2
pathway has been proposed as a crucial mechanism implicated in
mitophagic degradation (102). Mitochondria with depolarized
membrane stabilize PINK1, resulting in recruitment of PARK2
to mitochondria, which leads to mitochondrial substrates
ubiquitination (102). Concomitant accumulation of
ubiquitinated proteins is recognized as at least partly reflecting
insufficient mitophagy (103).

PINK1, LC3-I/II, and other mitophagy factors, which are
responsible for normalizing mitochondrial morphologic and
functional integrity, play a protective role in the pathogenesis
of COPD (104). The exposure of pulmonary fibroblasts to CSE
led to damaged mitophagy, an increase in cell senescence,
mtDNA damage, decreased mitochondrial membrane
potential, and ATP levels, later restored by a specific
mitochondrial antioxidant (51). These data demonstrate the
important role of mitophagy in the pathogenesis of COPD,
leading to senescence or programmed cell death depending on
the level of damage (52).

In addition, TGF-b can also lead to mitophagy, stabilizing the
mitophagy initiating protein PINK1 and inducing mtROS (38).
TGF-b is known to stimulate ROS production, and oxidative
stress can activate latent TGF-b, setting up a bidirectional
signaling and profibrogenic cycle (78, 105). Mechanisms that
activate TGF-b-mediated pro-fibrotic events and the PI3K/Akt
signaling cascade are important pathways involved in the
progression of pulmonary fibrosis (106, 107). In this context,
berberine was capable of inhibiting PI3K/Akt/mTOR cascade
activation, enhancing autophagy, and mitigating fibrotic markers
in a bleomycin-induced rodent model of pulmonary fibrosis
(107). PINK1 deficiency was recently correlated with pulmonary
fibrosis, and its impaired expression led to an accumulation of
damaged mitochondria in lung epithelial cells from patients with
IPF (18). Pink1-deficient mice are more susceptible to developing
pulmonary fibrosis in a bleomycin model, suggesting PINK1 may
be necessary to limit fibrogenesis (38). These data together
suggest that downregulation of autophagy or mitophagy is
deleterious, whereas its upregulation is protective in IPF (108).

Environmental factors and allergens are the main factors
involved in the development of allergic airway inflammation
and asthma, leading to oxidative stress, mitochondrial
dysfunction, and cellular senescence (109–112). Environmental
pollutants can induce mitophagy, ROS, and mitochondrial
damage, which activate the PINK/Parkin pathway (113, 114).
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has
been shown to be an important mediator in allergic
Frontiers in Immunology | www.frontiersin.org 7
inflammation, ROS production, and correlated with the
severity of asthma (115, 116). Oxidized CaMKII stimulates
transcriptional activators of TGF-b and can lead to a
profibrotic phenotype, a key factor in the development of
asthma airway remodeling (115, 117, 118). Recently, the
allergen-ROS-ox-CaMKII-mitophagy axis was demonstrated to
play an important role in the development of allergic airway
inflammation, indicating that CaMKII may be a therapeutic
target for asthma (119). However, studies on mitophagy and
asthma are still limited.
ER INTERACTION AND CALCIUM
REGULATION

The ER is responsible for intracellular Ca2+ storage; protein
synthesis, transport, and folding; lipid and steroid synthesis; and
carbohydrate metabolism (120). This organelle interacts with
mitochondria through membrane ER contact sites, which
involve portions of membrane known as mitochondrial
associated membranes (MAMs), which play role in structural
and functional linkage for intracellular functions (121, 122). At
the MAMs, Ca2+ is transferred and can interfere in
mitochondrial metabolism, stimulating ETC complexes and
regulating ATP production (123).

ER-mitochondria interaction provides a platform for the
regulation of mitochondrial dynamics and is related to
different pathophysiologic contexts, such as immune response
and cell death (124). ER stress, normally caused by unfolded
proteins and mitochondrial dysfunction, leads to an increase in
ROS production, which, in a vicious cycle, leads to further ER
stress (125). However, which mechanism triggers the processes –
endoplasmic/sarcoplasmic reticulum stress (ER/SR stress) or
mitochondrial dysfunction – is still unclear.

ER-mitochondria crosstalk is disrupted inCOPDby stress, such
as inhaled tobacco products and pollutants (126). Previous studies
have shown increased expression of proteins related to ER stress
(chaperones,GRP78,CHOP) in lung cells frommice exposed toCS,
bronchoalveolar lavage fluid, and tissue samples from chronic
cigarette smokers (127–129). Similarly, AECII injury associated
with ER stressmarkers is awell‐accepted theory in the pathogenesis
of IPF (130). Increased mitochondrial content in AECIIs and
mitochondrial dysfunction associated with ER stress were found
in highly fibrotic areas in IPF lungs (18, 131, 132). Findings in
bleomycin-treated mice and AECII of IPF lungs have shown that a
disruption in the crosstalk between ER and mitochondria occurs,
probably involving mitochondrial homeostasis-control
mechanisms, ER stress induced by PINK1, and integrated stress
response transcription factors 3 and 4 (ATF3 andATF4) (130, 133).

ER stress-induced by TNFa and ROS has also been shown to
reduce the proteins involved in the connection between ER and
mitochondria through MAM, such as Mfn2, in human airway
smooth muscle (hASM) cells (134). The exposure of hASM cells
to TNFa, a proinflammatory cytokine that mediates the
inflammatory response in asthma, led to the activation of ER
stress pathways, disrupted mitochondrial proximity to the ER,
November 2021 | Volume 12 | Article 782074

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Caldeira et al. Mitochondria and Chronic Lung Diseases
and decreased Mfn2 protein expression, impairing mitochondrial
mobility (134, 135). This creates the possibility of a vicious cycle
with reduced Mfn2 expression and altered mitochondrial
function (125).

Some aspects involving mitochondrial dynamics and ER
interaction via MAMs remain enigmatic. However, the
mitochondria-ER contact sites role mediating immune
responses through facilitation of the NOD-like receptor protein
3 (NLRP3)-inflammasome assembly are well known, including
second messenger mechanisms such as mitochondrial ROS (136,
137). These multiprotein complexes are composed of the sensor
protein NOD-like receptor family, an adaptor protein with
caspase domain (ASC), and a pro-caspase 1 protein. When
oligomerized, these complexes sense microbial and damage
signals (DAMPs and PAMPs), inducing the active form of IL-
1b or IL-18 when activated (138).

Increased mRNA levels of NLRP3 inflammasomes in
bronchial tissues and systemically, as well higher levels of IL-
18 and IL-1b were found in patients with acute exacerbation of
COPD than in smokers (139). Similarly, higher expressions of
NLRP3 and IL-1bwere found in isolated macrophages and BALF
of patients with different phenotypes of asthma, and in animal
models of this disease (140–142). Additionally, knockdown Drp1
favors NLRP3 activation in mouse bone marrow-derived
macrophages, and Mfn2 protein was required for NLRP3
activation after RNA virus infection to form NLRP3-Mfn2-
MAVS complex (143, 144). MAVS (mitochondrial antiviral
signaling), also has an important role in the pathophysiology
of lung fibrosis in a bleomycin-induced model, through their
main expression in pulmonary macrophages, amplifying
multiple DAMPs signaling (145). MAVS aggregation is
observed in lung tissues from human patients with IPF (146).
MAVS is well known to induce antiviral genes, acts as a second
adapter to the optimal activity of the NLRP3 inflammasome,
contributing directly to IL-1b production without inducing IFN-
b expression (146). Considering the close relationship between
mitochondria and the ER, and their significant contribution to
inflammasome activation and chronic lung diseases, MAMs and
NRLP3 may be a potential new therapeutic target.
DISCUSSION

As highlighted in this review, the contribution of mitochondrial
dysfunction in the development of the main chronic lung
diseases is unquestionable. All evidence suggests the urgent
need and the great potential of therapeutic approaches
considering mitochondria as a target.

Mitochondria as a Target and
Localized Antioxidants
Restoration of the cellular antioxidant/oxidant level is a good
proposal to protect cells and tissue from oxidative stress-
mediated disorders (147, 148). Murine models of ovalbumin
(OVA)-induced airway inflammation and hyperresponsiveness
have shown attenuated asthmatic lung pathophysiologic
Frontiers in Immunology | www.frontiersin.org 8
characteristics when the redox state was restored using a small-
molecular-weight thiol antioxidant compound, N-acetylcysteine
amide (AD4) (87, 88). Recently, mitochondrial target
antioxidants began to be widely studied as therapeutic
approaches to diseases in which oxidative stress appears to be
critical (149).

MitoTEMPO was reported as a SOD mimetic antioxidant
that inhibits mtROS. It is combined with the lipophilic cation
triphenylphosphonium (TPP+), a membrane-permeant cation
that permits the accumulation of antioxidants inside
mitochondria by the membrane potential generated (150).
Treatment with mitochondrial-targeted antioxidant
MitoTEMPO reduces significant features of asthma in cultured
cells and in OVA-challenged mice, suggesting that controlling
mtROS levels may reduce TGF-b expression and activity (118).
MitoTEMPO also contributes to decelerating fibroblast
senescence in patients with IPF (151). However, MitoTEMPO
failed to inhibit airway inflammation and bronchial
responsiveness in an acute ozone-induced murine model of
airway inflammation and bronchial hyperresponsiveness (152).
Another mitochondrial-specific antioxidant linked to TPP+, the
mitoquinone (MitoQ), is a derivative of coenzyme Q and was
capable of reversing mitochondrial dysfunction, inflammation,
and AHR after mice exposure to ozone (69, 153). Both MitoQ
and Tiron, a mitochondrial localized antioxidant, were effective
in inhibiting TGF-b-induced proliferation and CXCL8 release in
ASM cells from patients with COPD (69). In addition, SS-31, a
mitochondrial-targeted agent, is beneficial in other respiratory
conditions such as mechanical ventilation-induced diaphragm
weakness and pulmonary arterial hypertension in vivo (154,
155). These data reinforce the role of mitochondrial ROS and
its potential as a therapeutic approach in lung chronic disease.
However, faced with so many types of mitochondrial
involvement in pathological processes viewed in this review,
the real contribution of mtROS is a question that remains open.

However, antioxidant therapy is still highly questioned for its
disappointing results in clinical trials (156). The beneficial effects
have been determined only by the pharmacologic properties,
ignoring bioavailability and pharmacokinetics, by examining
effects in concentrations that are often impossible to achieve
in vivo (157). Now, antioxidants targeting mitochondria make
this therapy more selective and effective, but before it becomes an
actual therapy for patients, it is still necessary to carefully
establish bioavailability and safety profiles of using more
selective agents to achieve clinically relevant effects.

Mitochondrial Dynamics as a Target
Althoughmitochondria are verydynamicorganelles andchanges in
fusion and fission are constantly observed in chronic lung diseases,
this aspect is often overlooked when considering new therapeutic
approaches. Mito-dynamics seems to be an important target
because evidence indicates that when disrupted, mitochondrial
function is affected negatively (158–160).

Mitochondrial division inhibitor 1 (Mdivi-1) reduces Drp1,
Fis1 genes, and consequently excessive mitochondrial fission
while enhancing Opa1, Mfn1, Mfn2 genes, and mitochondrial
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fusion activity (161). Furthermore, Mdivi-1 induced increased
levels of complex I, II, and IV enzymatic activities (161). This
mitochondrial division/mitophagy inhibitor was capable of
reducing CS-induced cell death and mitochondrial dysfunction
in vitro and protected mice from bleomycin-induced
mitochondrial fragmentation and pulmonary fibrosis (56, 99).
P110, which is a selective inhibitor of Drp1 enzyme activity and
blocks Drp1/Fis1 interaction, was demonstrated to be
neuroprotective and improve mitochondrial function and
integrity (162). These data suggest that inhibitors of Drp1
might be useful for the treatment of diseases in which
excessive mitochondrial fission occurs. Elucidation of
mitochondrial dynamics involvement in different cellular
processes is promising but still superficial, along with the
impact of altered mitochondrial dynamics in chronic lung
diseases physiopathology.

Cell Therapy
Interest in the therapeutic potential of cell therapy in lung biology
and diseases has increased (163, 164). This research area is
expanding rapidly, and several studies have demonstrated the
potential of immunomodulation and regenerative effects of adult
mesenchymal stromal (stem) cells (MSCs), in animal models of
chronic lung diseases such as asthma, COPD, and fibrotic injuries
(165–169).Promising results inanimal studies and incipient clinical
trials have madeMSC therapy further increasingly recognizing the
potential contributionofmitochondrial transfer fromtheMSCsas a
potential mechanism of action (170, 171).

Intercellular mitochondrial transfer occurs via mechanisms
including tunneling nanotube formation between two spatially
separated cells, secretion of extracellular vesicles containing
mitochondria, gap junctions, and cell fusion where cells will
share organelles and cytosolic compounds (172). MSCs can
transfer mitochondria to other cells in response to stress
signals such as the release of damaged mitochondria, mtDNA,
and mitochondrial products along with increased levels of ROS
(173). MSC-mediated mitochondrial transfer can have an impact
on inflammatory responses and cell viability and is emerging as a
therapeutic strategy partially by acting as bioenergetics
supplementation (174, 175).

Active mitochondrial transfer from adult stem cells to cells
pretreated with ethidium bromide, with defective or deleted
mtDNA by mutation, was capable of rescuing aerobic
respiration of these nonfunctional mitochondria (175). BMSCs
exerted protective effects on the alveolar epithelium, restoring the
alveolar metabolism in an acute lung injury (ALI) model. These
cells transferred mitochondria to epithelial cells via connexin-43
gap junctions, directly or through underlying mechanisms of
nanotubes and microvesicles, increasing alveolar ATP
production and reducing the hallmarks of ALI induced by
lipopolysaccharide (176). Intercellular mitochondrial transport
is regulated by Miro1, a calcium-sensitive adaptor protein that
helps the mitochondria to move along microtubules inside the
cells and when overexpressed, increases their mitochondrial
transfer capacity and beneficial effects in asthma models (171).
In addition, mitochondrial transfer from human induced
pluripotent stem cell (iPSC)-derived MSCs to airway epithelial
Frontiers in Immunology | www.frontiersin.org 9
and ASM cells was also identified, rescuing cells from lung
damage induced by CS or oxidative stress (177, 178). iPSC
MSCs also attenuate asthma inflammation, protection
attributed to mitochondrial transfer via connexin 43 (CX43)-
mediated tunneling nanotube (TNT) formation (179). Taken
together, these data demonstrate that BMSCs can transfer
mitochondria and rescue lung damage in different contexts.
However, how much of the positive effects of cell therapy in
chronic lung diseases are exerted solely by mitochondrial transfer
is still unknown.

Mitochondrial Therapy
Given the observed results with MSC mitochondrial transfer in
experimental model systems described above, multiple strategies
have been further explored, including local and systemic
administration of healthy isolated exogenous mitochondria,
also called mitochondrial transplantation or mitoception.

Promising outcomes have been demonstrated in in vitro
and in vivo models. Preclinical studies using New Zealand
White rabbits demonstrated cardioprotection in a cardiac
ischemia-reperfusion injury after autologous mitochondria
transplantation from biopsy samples of the pectoralis major
(180). In situ mitochondrial injection was capable of enhancing
post-infarct cardiac function; mitochondria were internalized by
cardiomyocytes 2–8 h after transplantation (180). However, less
than 10% of the transplanted mitochondria were integrated into
cardiomyocytes (180). Using a similar strategy, systemic
intravenously injected mitochondria isolated from cultured
human hepatoma cells (HepG2) were used in mice fatty liver
models, reducing lipid accumulation and restoring hepatocyte
function by less well-known mechanisms (181). Mitochondrial
therapy, using isolatedmitochondria fromC57BL/6J gastrocnemius
muscle, has also shown efficacy in a murine model of lung
ischemia-reperfusion injury, attenuating lung tissue injury, and
mechanical parameters via vascular delivery or nebulization
(182). More recently, systemic mito-therapy using a mitochondria-
rich fraction isolated from BMSCs was capable of decreasing lung,
liver, and kidney injury and increased the survival rate in cases of
cecal ligation and puncture-induced sepsis (183).

An ongoing trial is testing arterial or tissue injection of
autologous mitochondrial transplantation from skeletal muscle
of the chest wall into the ischemic myocardium of patients with
heart ischemia/reperfusion injury, to decrease morbidity and
mortality in patients requiring extracorporeal membrane
oxygenation (ECMO) (NCT#02851758). However, it is not yet
fully understood if and how mitochondria present in the
extracellular space exert effects on cells, and how the
internalization of healthy extracellular mitochondria occurs
after focal or systemic administration. Remains open in the
literature the comparison between the role of MSCs paracrine
secretion and mitochondrial transfer.
CONCLUSION

Mitochondria-targeted therapy may be a new therapeutic for
restoring cellular bioenergetics and function in several airway
November 2021 | Volume 12 | Article 782074
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diseases. Some mechanisms have been acknowledged,
demonstrating the complex role of mitochondria in chronic
lung diseases. Recent studies have challenged the initial
thinking about the central role of mitochondrial oxidative
stress, bringing new data about how differently mitochondrial
responses can be, acquiring diverse phenotypes in morphology,
dynamics, and during mitophagy in distinct diseases. In addition,
mitochondria play an essential role in inflammatory signaling,
via mitochondria-ER communication through MAMs activating
NLRP3/MAVS complexes. Therefore, mitochondrial dysfunction
was unquestionably a factor in chronic lung disease development
and progression. Despite that, innovative and attractive therapy
as mitochondrial antioxidants, cell therapy, and mitochondrial
transfer remains with important open questions which impact
directly their clinical consideration. New insights into these
mechanisms may hold the key for mitochondrial target
treatment, which has remained elusive.
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