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Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical
response in hematological malignancies, including B-cell leukemia, lymphoma, and
multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is
actively evaluated. Currently, multiple basic research projects and clinical trials are being
conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in
CAR-T cell therapy have been made in hematological tumors, the technology still entails
considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity,
paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment,
and low infiltration level of immune cells into solid tumor niches, which are even more
complicated than their application in hematological tumors. Thus, progress in the scientific
understanding of tumor immunology and improvements in the manufacture of cell
products are advancing the clinical translation of these important cellular
immunotherapies. This review focused on the latest research progress of CAR-T cell
therapy in lung cancer treatment and for the first time, demonstrated the underlying
challenges and future engineering strategies for the clinical application of CAR-T cell
therapy against lung cancer.

Keywords: chimeric antigen receptor, T cell, immunotherapy, lung cancer, engineering strategy
1 INTRODUCTION

Lung cancer is one of the most frequently occurring malignant tumors worldwide and is
characterized by a substantially high malignancy and poor prognosis (1). According to the latest
global cancer statistics, lung cancer remains the leading cause of cancer-related deaths worldwide
(2). Lung cancer can be histologically classified into two main subtypes: small-cell lung carcinoma
(SCLC) and non-small-cell lung carcinoma (NSCLC) (3). NSCLC accounts for approximately 85%
of diagnosed lung cancer cases and can be further divided into adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma (4, 5).
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The present therapeutic measures for NSCLC primarily
include surgical resection, chemoradiation, molecular-targeted
therapy, and immunotherapy (6). The surgical resection
procedure was based on the TNM stage of NSCLC patients.
Conventional or stereotactic radiotherapy is applicable
to patients with surgically unresectable NSCLC (7).
Platinum-based double-agent combination chemotherapy is
generally accepted as the standard chemotherapy regimen for
NSCLC (8) . Neoadjuvant chemotherapy is appl ied
preoperatively to downgrade the cancer stage, whereas
adjuvant chemotherapy is administered postoperatively,
primarily involving cisplatin-based combination regimens (7).
The primary molecular-targeted therapies include epidermal
growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs),
anti-EGFR monoclonal antibodies, fusion gene ALK and ROS1
inhibitors, and anti-vascular endothelial growth factor receptor
monoclonal antibodies (9–12). Combined therapy with multiple
immune checkpoint inhibitors, such as a combination of
nivolumab and ipilimumab, has been shown to achieve better
response rates than monotherapy (13, 14).

Non-surgical treatment involving systemic chemotherapy
plus radiotherapy is the mainstream procedure for SCLC
patients because metastases occur when SCLC is newly
diagnosed. Etoposide-platinum and topotecan are the standard
first-line and second-line regimens for SCLC patients,
respectively (15, 16). Although SCLC is very sensitive to
chemotherapy, many SCLC patients relapse due to the clinical
development of chemoresistance. Moreover, nivolumab was the
first FDA-approved immunotherapy agent for SCLC treatment
(17). Several small molecular inhibitors, including PARP
inhibitors, have also been demonstrated to exert anti-tumor
activity in SCLC in clinical trials (18, 19). However, due to the
heterogeneity of tumors, it is imperative to explore effective
novel therapies.

Chimeric antigen receptors (CARs) are engineered receptors
that can enable modified T cells to recognize and kill tumor cells
expressing a tumor-specific antigen (20). CAR-T cells contain
two sections: autologous T cells separated from the peripheral
blood of patients and integration of CARs into T cells through
genetic engineering in the laboratory. Patient’s T cells are
extracted, isolated, and genetically engineered to express a
CAR on their surface, targeting tumor-specific antigens of
cancer cells. The modified CAR-T cells are amplified in vitro
and then infused back into the patients (Figure 1) (21).
Subsequently, CARs can identify and bind to specific antigens
expressed on cancer cells and consequently eliminate and kill
cancer cells (22, 23).

CAR-T cell therapy is an emerging method against
hematological malignancies and has demonstrated satisfactory
curative effects, which is a substantial breakthrough in adoptive
cell therapy (24, 25). CAR-T cells targeting CD19 have become a
leading engineered T-cell therapy strategy against relapsed or
refractory acute lymphocytic leukemia and B-cell non-Hodgkin
lymphoma (26, 27). Yescarta (axicabtagene ciloleucel) and
Kymriah (tisagenlecleucel) are currently approved to treat B-
cell-derived malignancies, with response rates greater than 80%
(28, 29). Recently, Tecartus (brexucabtagene autoleucel) has also
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been approved for the treatment of adult mantle cell lymphoma
(30, 31). However, only targeting CD19 did not show
considerable efficacy in most refractory multiple myeloma
(MM) patients, partly due to the lower expression of CD19
on the cell surface of myeloma, and there is no FDA-approved
CAR-T cell therapy against it (22, 32, 33). Clinical trials have
indicated that CD269 (B cell maturation antigen, BCMA) and
CD138 (also known as syndecan 1) molecules, which are mostly
expressed in mature B cells or plasma cell surfaces, could exert
substantial anti-MM activity (34–36). The unprecedented
achievements of CAR-T cell therapy in hematological
malignancies have also improved the use of CAR-T cells in
various solid tumors.
1.1 The Design and Development of
CAR Structure
CARs are artificial fusion proteins that comprise four major
parts: extracellular antigen recognition and binding domains,
spacer/hinge domains, transmembrane domains, and
intracellular signaling domains (37, 38). Every component of
the CAR structure has unique properties and has evolved to
optimize the CAR function (39). The extracellular domains
are responsible for recognizing and binding the targeted
tumor-specific antigens, whereas intracellular signal domains
FIGURE 1 | Manufacturing procedures of CAR-T cells. T cells are firstly
collected from the peripheral blood of the patients. The activated and
amplified T cells are genetically engineered with CAR structure via retroviral,
lentivirus or other vectors. CAR-T cells are then expanded ex vivo and a
quality control procedure is applied. Finally, those modified T cells were
infused back into the patients.
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primarily induce T-cell proliferation and corresponding signal
transduction (Figure 2) (40). Recently, armored CAR-T cells
have been engineered to overcome immunosuppressive tumor
microenvironment (TME) (41). Engineered CAR-T cells can
secrete various cytokines such as IL-12, chemokines, or co-
expressing immunomodulatory ligands to alter the inhibitory
microenvironment in the TME and support CAR-T cell
function (20).

1.1.1 Antigen Recognition and Binding Domains
The single-chain variable fragment (scFv) is derived from the
variable heavy and variable light chains of a monoclonal
antibody connected by a flexible linker (42). It is the major
component of the extracellular antigen recognition and binding
moieties, which can effectively recognize tumor antigen targets in
a major histocompatibility complex (MHC)-independent
manner and trigger CAR downstream signaling and CAR-T
cells (43). The scFv sequences determine the specificity and
binding affinity of the targeted antigens of the CAR (44). The
high affinity of scFv has been reported to result in on-target, off-
tumor toxicity, and severe cytokine release syndrome (45).
Moreover, scFv can be designed to bind to soluble ligands,
such as transforming growth factor-beta (TGF-b), contributing
to the conversion of the immunosuppressive role of TGF-b (46).
Single-domain antibodies (known as nanobodies or VHHs),
whose variable regions only contain heavy chains instead of
light chains, are stable camelid-derived single-domain antibodies
(47). They are smaller in size and have a similar affinity to
traditional scFv; however, they avoid the shortcomings of
traditional scFv, such as low folding efficiency and tendency to
aggregate (48, 49). In addition, cytokines (50), ligands (51–54)
and antigen recognition peptides (adnectins and designed
ankyrin repeat proteins) could be applied as an option for
antigen recognition and binding regions of CARs (55, 56).
Frontiers in Immunology | www.frontiersin.org 3
1.1.2 Hinge Domains
The length of the hinge regions can be adjusted to optimize the
distance between CAR-T cells and targeted tumor cells, ensuring
the folding efficiency of CAR scFv and providing a flexible and
persistent connection for CAR signal transduction (57). In
addition, the domains also augment the binding affinity of
CAR-T cells and targeted cells (38). Hinge domains play a
crucial role in regulating the expression and transport
efficiency of CAR and the definition of the CAR signaling
threshold (57). The spacer domains enable the CAR to access
target epitopes that are otherwise sterically inaccessible (58).
They can also be used to modulate synaptic cleft distances, as
distal membrane antigen epitopes commonly require shorter
spacers, whereas proximal membrane antigen epitopes require
longer spacers (58, 59). Non-IgG-based spacers, including CD8
and CD28, and IgG-based spacers, such as IgG1 or IgG4, have
been proven to be equally effective and are utilized in the
construction of CAR hinge domains (58, 60). The spacers
containing Fc domains must be changed after recognizing the
targeted antigens, in case of in vivo interactions with cells
expressing Fc gamma receptors that result in off-target
activation of CAR-modified T cells or impaired antitumor
efficacy (61).

1.1.3 Transmembrane Domains
The transmembrane domains serve as anchors to connect the
extracellular antigen-binding domain to the cell membrane and
transduce extracellular antigen-recognition signals to the
intracellular domains (38, 58). They primarily originate
from type I transmembrane proteins, including CD3z,
CD8-alpha, CD4, or CD28 (20, 62). The stability and function
of CARs are associated with transmembrane domains
(38). Bridgeman et al. reported that CARs containing the
CD3z transmembrane domain can form a complex with
FIGURE 2 | The structure and evolution of CAR-T cells from the first generation to the fourth generation. The CAR-T cells are consisted of extracellular tumor
antigen binding domains (scFv, nanobodies), hinge regions, transmembrane regions and intracellular signaling domains. Different generations of CAR structures are
primarily characterized by distinct intracellular signaling domains. The first generation of CAR-T cells only contain a CD3z intracellular signaling domain, with less
persistence and efficacy in clinical practice. The second or third generation of CAR-T cells include one or more costimulatory molecules, and the next generation of
CAR-T cells are engineered to express cytokines, which greatly improve their competence to eliminate the tumor cells.
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endogenous T cell receptor (TCR), and subsequently, may
induce T cell activation (63). In vivo studies indicated that
CD8-alpha resulted in lower levels of inflammatory cytokines
and T-cell activation-induced death than CD28 (64). CD28 is
currently the most stable transmembrane domain (39). Third-
generation CAR T cells carry a B7-family inducible costimulator
(ICOS) transmembrane domain (65). The persistence and anti-
tumor activity of CAR-T cells is substantially promoted when
the ICOS transmembrane domain is connected to an ICOS
intracellular domain (62).

1.1.4 Intracellular Signaling Domains
The endodomains normally comprise a CD3z transducer, and
one or more co-stimulatory signaling molecules such as CD28, 4-
1BB (CD137), CD27, ICOS, OX-40, MYD88/CD40, and
KIR2DS2 (66). This design pattern further prolongs the
survival time and promotes the proliferation and antitumor
activities of CAR-T cells (38, 67, 68). CD28 and 4-1BB, fused
to the intracellular CD3z domain, are the most extensively
studied and intensively applied co-stimulatory molecules (69).
However, their clinical efficacy is far from each other. CAR-T cell
therapy based on 4-1BB costimulatory domain is generally
admitted to have more superior clinical efficacy, because 4-1BB
costimulatory domain could ameliorate the exhaustion mediated
by CAR signaling (70, 71). CAR-T cell product based on CD28
costimulatory domain initiates faster antitumor property, while
compared with 4–1BB costimulatory domain, it is less persistent
since fewer central memory T cells are formed (72) (Table 1).
Additionally, CAR-T cells, incorporated two costimulatory
molecules, such as ICOS and 4-1BB, have showed tremendous
efficacy in preclinical mouse models (62, 73).The other co-
stimulatory signaling molecules, including CD27 (74, 75), OX-
40 (76, 77), MYD88/CD40 (78) and KIR2DS2 (79) have
demonstrated promising efficacy in preclinical models but have
not been tested in clinical trials.

1.2 The Generation of CAR−T Cells
Different generations of CAR structures, characterized by
distinct intracellular signaling domains, have been designed to
improve the safety and efficacy of CAR-T cell therapy against
various cancers (80). First-generation CAR-T cells only contain
one intracellular signaling domain, CD3z, with less impressive
clinical efficacy for the lack of persistence and proliferative
activity (38). Inclusion of the costimulatory molecules
equipped with second-generation CAR-T cells with the
necessary signals for activation considerably prolonged the
survival time of CAR-T cells and improved clinical outcomes
Frontiers in Immunology | www.frontiersin.org 4
in cancer patients (81). Third-generation CAR-T cells aggrandize
a costimulatory molecule compared with second-generation
CAR-T cells, consisting of CD3z and two costimulatory
molecules (CD27, CD28, 41BB, ICOS, OX-40, etc.), further
augmenting and enhancing their competence to clear tumor
cells (82, 83). In particular, the fourth generation of CAR-T cells
known as T cells redirected for universal cytokine-mediated
killing (TRUCK), which can recruit nuclear factor of activated
T cells (NFAT) to induce the release of cytokines IL-12 IL-15 and
granulocyte–macrophage colony-stimulating factor (84). The
anti-tumor activity of the fourth generation of CAR-T cells is
enhanced by overcoming the immunosuppressive effect of the
TME (Figure 2). The fifth-generation CAR-T cells, which is
proposed to remove the TCR alpha and beta chains through gene
editing technology, avert the risk of graft-vs.-host disease, and
manufacture “off the shelf” products, are still under
investigation (85).

Although the structure of CARs is constantly evolving to
promote efficacy and diminish the cytotoxic effects of CAR-T cell
therapy, second-generation CAR-T cells still remain the
mainstay of clinical application (86).

1.3 NSCLC and SCLC−Associated
Antigens for CAR−T Cell Therapy in
Preclinical Studies
CAR-T cell therapy has emerged as a novel approach to adoptive
cell immunotherapy in recent decades. In solid cancers, it is more
complex to construct CAR-T cells because it is difficult to
identify tumor-specific antigens to be targeted. Several surface
antigens have already been evaluated in preclinical studies as
potential CAR-T cell therapy targets. Thereafter, we provide
detailed descriptions of several novel targets.

1.3.1 Mesothelin (MSLN)
MSLN, a tumor differentiation antigen with the low expression
on normal mesothelial cells, is overexpressed in a wide range of
solid cancers, including lung cancer, mesothelioma, and
pancreatic carcinoma; therefore, it could be used as a potential
target (87, 88). High expression of MSLN is commonly
correlated with negative clinical outcomes in NSCLC (67). In
ex vivo experiments, MSLN-targeted CAR-T cells exerted
substantial inhibitory effects on cancer cell proliferation and
invasion (89). The efficiency of MSLN-targeted CAR-T cell
therapy has been assessed in subcutaneous mouse lung cancer
models (90). A slower growth rate of tumor size was observed in
the tail vein injection of MSLN-targeted CAR-T cells (89). In
TABLE 1 | Comparison of properties of different costimulation 4-1BB versus CD28 in CAR-T cell.

Property 4-1BB CD28

Expansion ability Low High
Anti-tumor response Persistent Rapid
Susceptibility to exhaustion Low High
Phenotype formation Memory phenotype Effector phenotype
Metabolic type Fatty acid oxidative metabolism Glycolytic metabolism
Overall efficacy Superior Inferior
November 2021 | Volum
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summary, MSLN-targeted CAR-T cells could be feasible for
MSLN-positive cancers, such as NSCLC.

1.3.2 EGFR
EGFR belongs to the HER/ErbB family of receptor tyrosine
kinases that transduces extracellular growth signaling into the
cells (91). More than 60% of NSCLC patients harbor activating
EGFR mutations, contributing to the overexpression of EGFR,
making it possible to target EGFR as a treatment for CAR-T cell
therapy against NSCLC (91). EGFR-CAR T cells were found to
exhibit greater cytotoxic activity in vitro (92). In nude mouse
subcutaneous xenografts, EGFR-CAR T cells dramatically
decreased tumor size and volume (93). The above results
indicate that EGFR-targeted CAR-T cell therapy could be
applied to NSCLC patients in the future (94).

1.3.3 Receptor Tyrosine Kinase-Like Orphan
Receptor 1 (ROR1)
ROR1 is a crucial oncofetal glycoprotein that can sustain pro-
survival and pro-apoptotic signaling in lung adenocarcinomas (95,
96). It has been proposed as a targeted antigen in CAR-T cell
therapy as theoverexpressionofROR1proteinhas beenobserved in
variousmalignancies, including lung cancer (97, 98). ROR1-CART
cells maintained their anti-tumor activity, cytokine secretion, and
proliferation in NSCLC models in vitro and in vivo (97, 99).
Carolina et al. demonstrated the safety and function of second-
generation ROR1 CAR-T cells in macaques (100).

1.3.4 Mucin-1 (MUC1) and Prostate Stem Cell
Antigen (PSCA)
Aberrant high expression of MUC1 regulates the expression of
programmed death-ligand 1 (PD-L1) in cancer cells, which could
prevent cancer cells from being cleared by the immune system
(101, 102). PSCA, a glycosylphosphatidylinositol (GPI)-
anchored cell surface protein, belongs to the Thy-1/Ly-6 family
(103). MUC-CAR T cells and PSCA-CAR T cells identify and
eliminate PSCA+ or MUC1+ NSCLC cells, respectively, in vitro
(104). PDX mouse subcutaneous models generated from NSCLC
patients whose tumors only express PSCA or both PSCA and
MUC1 were applied to explore the efficacy of PSCA and MUC1
CAR-T cells against NSCLC. Tumor growth was substantially
inhibited in CAR-PSCA T cells. Thereafter, a combination of
PSCA and MUC1 CAR-T cells exerted a synergistic effect on
tumor survival (104). Therefore, MUC1 and PSCA could be
promising CAR-T cell therapy targets for the treatment
of NSCLC.

1.3.5 Human Epidermal Growth Factor Receptor 2
(HER2)
HER2 belongs to the HER/ErbB family of receptor tyrosine
kinases involved in cell proliferation and angiogenesis (105).
The anti-tumor effect of HER2 CAR-T cells against two NSCLC
cell lines, A549 and H1650, was observed in a 96-h co-culture
assay (106). Moreover, in orthotopic or subcutaneous A549
NSCLC mouse xenograft models, HER2 CAR-T cell therapy
decreased tumor growth and could not completely eliminate
tumors (106, 107).
Frontiers in Immunology | www.frontiersin.org 5
1.3.6 Carcinoembryonic Antigen (CEA)
CEA is an oncofetal glycoprotein generally expressed during fetal
development; however, its expression declines after birth (108).
CEA levels increase rapidly in the tumorigenesis and
development of lung cancer (109). Therefore, preclinical
studies of CAR-T cell therapy targeting CEA have been
conducted. CEA-targeted CAR-T cells have been found to
eradicate advanced lung carcinomas (110).

1.3.7 PD-L1
Immunotherapy targeting programmed death-1(PD-1)/PD-L1
signaling has achieved substantial progress in NSCLC
treatment. Accumulating evidence shows that PD-L1, both in
tumor cells and in the TME, suppresses T cell proliferation and
mediates anti-tumor immunity (111). PD-L1-targeted CAR-T
cells exhibited robust cytotoxic effects against NSCLC cells
in vitro and in vivo (112, 113). Therefore, PD-L1-targeted
CAR-T cells could be a novel curative approach for PD-L1-
positive NSCLC patients.

1.3.8 Fibroblast Activation Protein (FAP)
FAP is a marker expressed on cancer- associated fibroblasts
(CAFs) in a majority of human malignancies (114). FAP
molecule itself and FAP-positive cells in TME could contribute
to cancer cell proliferation, invasion, angiogenesis and
extracellular matrix (ECM) remodeling (115).

FAP targeted CAR-T cells inhibited the proliferation of TC1
and A549 lung cancer cells by eliminating FAP-positive stromal
cells in mice models (114, 116). In contrast, another study
claimed that FAP targeted CAR-T cell achieved limited
antitumor efficacy and severe side effects for bone marrow
stromal cells (BMSCs) were also being killed (117). Therefore,
the feasibility of targeting FAP as a specific antigen in CAR-T
therapy remains to be verified.

1.3.9 Other Targeted Antigens
Several tumor antigens, such as lung-specific X (LUNX), variant
domain 6 of CD44 gene, melanoma-associated antigen-A1
(MAGE-A1), erythropoietin-producing hepatocellular
carcinoma A2 (EphA2), and glypican-3 (GPC3), are under
active investigation for application as targeted antigens of
CAR-T cell therapy against NSCLC (118–122). For SCLC,
CD56-and Delta-like ligand 3 (DLL-3)-targeted CAR-T cells
are being explored (123, 124). Bivalent tandem CAR-T cells
are equipped with two targeted antigens. CD70, B7-H3, MUC1,
PSCA, PD-L1, and CD80/CD86, have exhibited enhanced
antitumor efficacy in lung cancer (104, 125). B7-H3 is one of
inhibitory ligands, which belongs to B7 immunoglobulin family.
Although its corresponding immune checkpoint receptors
remain undetermined, the inhibitory role of B7-H3 has been
confirmed in preclinical studies (126). The expression of B7-H3
is aberrantly augmented in a wide range of solid tumor tissues,
compared with normal tissues, which supports the possibility of
targeting B7-H3 in CAR-T cell therapy against lung cancer (125,
127). CD80/CD86 are immune checkpoint ligands shared by
inhibitory CTLA-4 and costimulatory CD28. CD80/CD86-
targeted CAR-T cells have been generated to reverse the
November 2021 | Volume 12 | Article 782775
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inhibitory CTLA4-CD86/CD86 signals and prevent the survival
of B cell malignancies and other tumors including NSCLC (128).
The efficacy of CAR-T cell therapy, which targets both tumor
cells and tumor-associated macrophages in the TME, has also
been validated in NSCLC (129) (Figure 3).

1.4 NSCLC and SCLC−Associated
Antigens for CAR−T Cell Therapy in
Clinical Trials
CAR-T cell treatment has achieved substantial success against
several hematological malignancies. At present, the primary task
is to broaden the applications of CAR-T cell therapy frommerely
hematologic tumors to multiple solid tumors. Thus, its safety and
efficacy in solid cancers are under intensive investigation. The
feasibility of CAR-T therapy against solid tumors is currently
being evaluated in approximately one-third of CAR-T clinical
trials (130). Among them, the majority are on CAR-T therapy for
the treatment of lung cancer. The extraordinary progress of
CAR-T therapy for lung cancer is promising; however, many
challenges and hurdles exist. Therefore, the clinical application of
CAR-T in NSCLC and SCLC treatment is still under intensive
exploration. The optimal target for CAR-T cell therapy is
specifically expressed or generally overexpressed in tumor cells,
whereas it is expressed at very low or limited levels in normal
peripheral cells or tissues (131). Current clinical trials of CAR-T
therapy against NSCLC and SCLC primarily focus on MSLN,
MUC1, GPC3, PSCA, EGFR, CEA, HER2, PD-L1, ROR1, and
other promising targets (Table 2).
2 CHALLENGES AND ENGINEERING
STRATEGIES

Over the past few years, there has been a rapid increase in the use
of CAR-T cell therapy to treat hematological malignancies and
solid tumors. Many clinical trials have made substantial
Frontiers in Immunology | www.frontiersin.org 6
achievements; however, severe therapeutic responses to CAR-T
cell therapy and unsatisfactory treatment efficacy hinder rapid
development. In 2010, a patient with multiple metastases of
colon cancer died after administering CAR-T cells targeting
ERBB2. The patient experienced respiratory distress within 15
min after CAR-T cell transfusion and died five days after the
treatment (132). Compared with hematological malignancies,
solid tumors face a unique set of challenges, including issues
confusing hematological malignancies, more severe and
complicated related toxicities, the lack of a strongly expressed
tumor-associated antigen target, low infiltration of T cells in
tumor tissue, CAR-T cell exhaustion, and a highly
immunosuppressive and metabolically challenging TME, which
limit the safety and effectiveness of treatment (133–135). Future
studies to develop practical engineering strategies to enhance the
efficacy of CAR-T cell therapy and minimize adverse reactions
should be conducted.

2.1 Overcoming Treatment-Related
Toxicities
CAR-T cell therapy can result in a range of toxicity events. The
major treatment-related toxicities include cytokine release
syndrome (CRS) and immune effector cell-associated
neurotoxicity (ICANS), which particularly peak in the first
or second week of CAR-T cell administration, respectively
(133). Patients with CRS mostly have common manifestations
such as fever, tachycardia, hypoxia, dyspnea, hypertension,
coagulopathy, and elevated serum cytokines, including
interleukin-6 (IL-6) (136, 137). ICANS is characterized by
tremor, encephalopathy, cerebellar alteration, or seizures (138).
Both CRS and ICANS are caused by the activation of CAR-T
cells and cytokines secreted by the associated immune cells.
CAR-T cells can release pro-inflammatory cytokines, including
IL-2, IL-6, and IFN-g, and then activate more immune cells to
secrete IL−1RA, IL−10, IL−6, IL−8, IFNa, and other cytokines,
which eventually could lead to massive cytokine release (139).
Hemophagocytic lymphohistiocytosis/macrophage activation
FIGURE 3 | Potential targeted antigens for CAR-T cell therapy in preclinical and clinical trials. In the right, antigen targets are listed against SCLC and NSCLC. As
shown in the left of the figure, these antigens are also broadly applied in CAR-T cell therapy against other solid tumors.
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syndromehas also been reported followingCAR-T cell therapy. It is
characterized by hyperinflammatory syndrome andmultiple organ
dysfunction (140). IL−6/IL−6R antagonists and corticosteroid
usage can interrupt the inflammatory process and play a
substantial role in symptom remission (141). It is critical to detect
these treatment-related toxicities early and provide appropriate
treatment based on the toxicity grade as soon as possible.

Selecting co-stimulatory signaling molecules and
transmembrane domains could have an impact on cytokine
production and CAR-T cell function. Compared with CD28/
Frontiers in Immunology | www.frontiersin.org 7
CD3z CAR T cells, 4–1BB/CD3z CAR T cells amplified more
slowly, persisted for a longer time, and secreted less cytokines
(142). CAR-T cells with CD8-alpha transmembrane domains
have been shown to release less cytokines than those with CD28
domains (64). In addition, the inclusion of inducible caspase-9
safety switches to CARs has been verified to control the
expansion of CAR-T cells and the load of cytokines (143). In
summary, genetic modification of CAR designs might help
reduce the generation of cytokines and the incidence of
treatment-related toxicities (Figure 4).
FIGURE 4 | The treatment-related and on-target, off-tumor toxicities and corresponding management strategies of CAR-T cell therapy.
TABLE 2 | Underlying targeting antigens of NSCLC and SCLC for CAR-T cell therapy in clinical trials.

Clinical Trial Cancer type Targeting antigen Sponsor Estimated
Enrollment

Phases Status

NCT03054298 NSCLC Mesothelin University of Pennsylvania 18 Phase 1 Recruiting
NCT03330834 NSCLC PD-L1 Sun Yat-sen University 1 Phase 1 Terminated
NCT04489862 NSCLC aPD1, MSLN Wuhan Union Hospital, China 10 Early

Phase 1
Recruiting

NCT03392064 SCLC delta-like protein 3 (DLL3) Amgen 6 Phase 1 Suspended
NCT03198546 SCLC GPC3 Second Affiliated Hospital of

Guangzhou Medical University
30 Phase 1 Recruiting

NCT04348643 Lung cancer CEA Chongqing Precision Biotech Co.,
Ltd

40 Phase1/
2

Recruiting

NCT04864821 Lung cancer CD276 (B7-H3) PersonGen BioTherapeutics (Suzhou)
Co., Ltd.

24 Early
Phase 1

Not yet
recruiting

NCT03740256 Advanced HER2
Positive lung cancer

HER2 Baylor College of Medicine 45 Phase 1 Recruiting

NCT02706392 NSCLC ROR1 Fred Hutchinson Cancer Research
Center

60 Phase 1 Recruiting

NCT03525782 NSCLC MUC1, PD-L1 The First Affiliated Hospital of
Guangdong Pharmaceutical
University

60 Phase1/
2

Recruiting

NCT02587689 NSCLC MUC1 PersonGen BioTherapeutics (Suzhou)
Co., Ltd.

20 Phase1/
2

Unknown

NCT04025216 NSCLC TnMUC1 Tmunity Therapeutics 112 Phase 1 Recruiting
NCT03198052 Lung cancer HER2, Mesothelin, PSCA, MUC1, Lewis-Y,

GPC3, AXL, EGFR, Claudin18.2, or B7-H3
Second Affiliated Hospital of
Guangzhou Medical University

30 Phase 1 Recruiting

NCT03060343 NSCLC PD-L1, CD80/CD86 Yu Fenglei 10 Phase 1 Unknown
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2.2 On-Target, Off-Tumor Toxicity
Although the targeted tumor-associated antigens are carefully
screened, many normal cells still suffer from the attack of T cells
because they express the same or similar antigens. On-target, off-
tumor toxicity, manifesting multiple organ injury and failure, is
an issue impeding the development of CAR-T cell treatment.
Thus, there is an urgent need to explore safer targeted tumor-
associated antigens for lung cancer treatment. To date, MSLN,
EGFR, ROR1, MUC1, PSCA, and HER2, as described previously,
are the most targeted antigens in CAR-T cell therapy for NSCLC.
Several other tumor antigens, including LUNX and B7-H3, also
exhibit great potential as targeted antigens in CAR-T cell therapy
because they are aberrantly expressed in lung cancer tissues, with
a relatively low expression in normal tissues (118, 144).

The on-target toxicity is antigen-oriented, and shielding of a
CAR-targeted antigen expressed on normal tissues could
minimize toxicity and optimize the efficacy of CAR-T cell
therapy. Some renal cell carcinoma patients developed hepatic
enzyme disorders that required discontinuation of therapy after
receiving anti-carbonic anhydrase IX (CAIX) CAR-T cell
therapy. This on-target toxicity can be overcome by pre-
administration of parental anti-CAIX monoclonal antibodies to
block the CAIX antigen sites in the liver (145). In addition,
decreasing the affinity of scFv by mutagenesis or using lower-
affinity scFv as a replacement could also substantially reduce on-
target, off-tumor reactivity without affecting the antitumor activity
(45). Other attempts include the construction of inhibitory CARs,
which could protect the normal cells from being attacked by
targeted CAR-T cells, and dual-target CAR-T cells, which require
two signals to be full activated (146). Recently, an inducible CAR-T
cell, was developed to be activated via focused ultrasound within
specific tumor sites, which could dramatically mitigate the on-
target, off-tumor toxicity, in comparison to conventional CAR-T
cells (147) (Figure 4).
2.3 Evasion of Antitumor Immune
Responses
A common mechanism for tumor cells to evade immune
surveillance in CAR-T cell therapy is the downregulation or
even loss of targeted antigens, whose expression level could exert
a direct impact on the therapeutic efficacy (148). Targeting
CD19/CD20 CAR-T cell therapies have led to promising
achievements in treating B-cell malignancies in recent years
(149). Tumor-associated antigens in hematologic malignancies
are highly expressed and easier to target, whereas antigens in
solid tumors have greater heterogeneity and lower expression
levels, making it difficult to eliminate solid tumor cells (150).
Intratumor heterogeneity might be a key factor contributing to
the evasion of antitumor immune responses (151). In lung
cancer, common targets such as MSLN, MUC1, PSCA, and
epithelial cell adhesion molecule, have intratumoral
heterogeneity, leading to an unsatisfactory outcome of CAT-T
cell therapy in lung cancer (21). Many clinical studies have
shown that when tumors relapse after treatment, tumors are
found to undergo antigen loss or become antigen-negative (50,
152). This phenomenon may be mediated by the selective
Frontiers in Immunology | www.frontiersin.org 8
pressure applied by CAR-T cells to tumor cells, leading to the
progressive selection of antigen-negative cells (82).

To overcome the evasion of antitumor immune responses,
one approach is to engineer CARs with dual-specificity (i.e.,
simultaneously targeting two antigens) (153). Bispecific T cell-
engagers (BiTEs), consisted of two scFvs, are produced by
genetically engineered CAR-T cells to redirect both T cells and
CAR-T cells against specific tumor cells (154, 155). EGFRvIII-
specific CAR-T cells secreting BiTE have shown to circumvent
antigen escape in glioblastoma, and its effect on lung cancers
remains to be further investigated (154). Tandem CAR-T cells
can mitigate antigen escape and translate into superior antitumor
activity (156, 157) (Figure 5). Armored CAR-T cells secreting
pro-inflammatory cytokines, such as IL-18, have also been
shown to elicit an enhanced antitumor immune response in
preclinical models (158).

2.4 Physical Barriers
Cancer-associated fibroblasts (CAFs) and fibrotic environment
contribute to the formation of physical barrier, preventing the
CAR-T cells from being trafficked into tumor sites. Less
infiltration of CAR-T cells into tumor tissues is another reason
why the efficacy of CAR-T cell therapy in NSCLC is not as ideal
as that in hematological malignancies.

2.4.1 CAFs
CAFs are the predominant component of stromal cells in the
TME and cannot be cleared by apoptosis (159). Owing to the
heterogeneity of CAFs, they could play a dual role in pro-
tumorigenicity and anti-tumorigenicity (160). They could
regulate the growth, invasion, and angiogenesis of tumor cells
by reshaping the ECM and secreting soluble growth factors
(160). Moreover, growth factors, cytokines and chemokines,
including fibroblast growth factor (FGF), TGF-b, C-X-C motif
chemokine ligand 12 (CXCL12), and IL-6, are also secreted by
CAFs to mediate immunosuppressive responses (161). Hence,
they can be applied as potential targets for anticancer treatment.
However, many challenges still prevail in modulating CAFs as an
ideal target for CAR-T cell therapy. As previously mentioned,
FAP-targeted CAR-T cell therapy induced lethal adverse effects
because CAR-T cells attacked FAP-positive BMSCs (117). In
addition, CAFs have been shown to contribute to the
development of therapeutic resistance because the ECM
produced by CAFs could serve as a thick barrier to block the
penetration of drugs (162). Accordingly, we hypothesized that
the physical barrier formed by CAFs could also hinder the
delivery of CAR-T cells into tumor tissues, thus diminishing
the effectiveness and efficacy of CAR-T cell therapy (Figure 6).

Several studies have been made to deplete or remodel the
CAFs in the TME. One potential strategy is to apply FAP-
redirected synthetic Notch CAR T cells or heparanase-
modified CAR-T cells to deliver CAF remodeling molecules to
suppress the expression profile of CAFs (163).

2.4.2 Fibrotic Environment
In contrast to hematological tumors, the infiltrative ability of
CAR-T cells in lung cancer tissues is greatly restrained by the
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presence of a physical barrier. CAF activation, abnormal dense
collagen, and ECM deposition contribute to developing a dense
and fibrotic environment, altering the localization and migration
of effector immune cells in NSCLC, which hinders immune cell
Frontiers in Immunology | www.frontiersin.org 9
infiltration and influences the efficacy of immunotherapy (164,
165). In addition, the extensive fibrotic environment mostly lacks
blood vessels, which creates a hypoxic TME and further impairs
immune function (166).
FIGURE 6 | The TME is primarily composed of tumor cells, immune cells, immunosuppressive cells (including TAM, MDSC and Treg) and cytokines, CAFs, ECM
and dysregulated tumor vasculatures. On the one hand, ECM produced by CAFs forms a physical barrier, impairing the infiltration of the CAR-T cells. On the other
hand, the soluble cytokines secreted by the CAFs mediate immuno-suppressive responses, and consequently, facilitate the survival of tumor cells. The hypoxic and
acidic environment directly deteriorate the metabolism of T cells while activating suppressive Tregs, leading to immunosuppression of CAR-T cells.
A B

FIGURE 5 | Engineering strategies to overcome evasion of antitumor response and immunosuppression of TME. (A) CAR-T cells are engineered to simultaneously
target two antigens (dual CAR-T cells), and secret BiTE to redirect both T cells and CAR-T cells against specific tumor cells and circumvent antigen escape. Tandem
CAR-T cells have bispecific receptors, which could target two different antigens. (B) (a) Armored CAR-T cells expressed immunostimulatory cytokines. Approaches
to overcoming the immunosuppression of immune checkpoints in TME are as follows, (b) CAR-anti-PD-1/PD-L1 antibodies or scFv, (c) PD-1 gene knockout or
downregulation of PD-1 expression by shRNA, (d) express a PD-1 DNR or a PD-1 CSR.
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The binding of chemokines and their corresponding
receptors can mediate the trafficking of CAR-T cells through
fibrotic environment. Hence, one approach to enhance the
infiltration level of CAR-T cells is to engineer them to express
chemokines or transgenic chemokine receptors (167). The CAR-
T cells engineered to express IL-7 and CCL19 have been
validated to increase the infiltration of peripheral CAR-T cells
and dendritic cells and into tumor tissues and enhance the anti-
tumor immune responses (168). Another engineering strategy is
to construct enzyme-modified CAR-T cells to express
heparanase, which accelerates the degradation of ECM and
facilitates CAR-T cell trafficking to tumor sites (169). In
addition, local injection of CAR-T cells is under investigation.

2.5 Immune Suppression in the TME
The TME of lung cancer has an immunosuppressive effect, as T
cell activity is suppressed due to anti-inflammatory cytokines
and upregulated immune checkpoint ligands. Additionally, the
immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Tregs), tumor associated
macrophages, and tumor associated neutrophils are broadly
present in the TME (Figure 6). CAR-T cell therapy against
lung cancer is less efficient because of immune suppression of the
TME and loss of CAR-T cell function.

On e e n g i n e e r i n g a p p r o a c h t o o v e r c ome t h e
immunosuppressive role of TME is to establish armored CAR-
T cells that secrete pro-inflammatory cytokines or chemokines,
such as IL-12, IL-15, and IL-18 (20). These cells can recruit and
activate innate immune cells such as natural killer (NK) cells and
macrophages, and reprogram the immunosuppressive TME,
which subsequently supports the proliferative and antitumor
activity of CAR-T cells (170). In addition, based on blocking
immune checkpoints, genetic knockdown of immune checkpoint
receptors in CAR-T cells, such as PD-1, was demonstrated to
enhance the anti-tumor effect. The clinical outcomes are being
actively assessed in clinical trials on lung cancer (171). Other
strategies include engineering CAR-T cells to secrete immune-
checkpoint inhibitors, including anti–PD-1 scFv and anti–PD-L1
antibodies, to express PD-1 dominant-negative receptors (DNR)
or PD-1 chimeric switch receptors (CSR) (113, 172,
173) (Figure 5).

2.6 Metabolic Profile of the TME
Cumulating evidence supports that metabolism plays an essential
role in the immune response because it could regulate the
function and activity of T cells. The inhibition of T cell
metabolism may directly deteriorate the activity of T cells
while activating suppressive Tregs, resulting in immuno-
suppression (174). The proliferation of CAR-T cells, secretion
of cytokines, and elimination of tumor cells are all energy-
demanding processes. However, tumor cells mostly consume a
large proportion of energy and nutrients, while generate a mass
of immunosuppressive metabolites, such as adenosine, lactate,
and kynurenine (135, 174). Moreover, indolamine-2,3-
dioxygenase (IDO) secreted by tumor cells and MDSC could
catalyze tryptophan into kynurenine, leading to the inactivation
Frontiers in Immunology | www.frontiersin.org 10
of CAR-T cells and the proliferation of Tregs (175) (Figure 6).
On the other hand, the dysregulated vasculatures also result in an
extremely hypoxic and acidic TME. All of the above elements
contribute to the formation of the metabolically hostile TME,
which further impairs the function of CAR-T cells.

Reprogramming the CAR-T cells to adjust their metabolic
properties through genetic or pharmacological inhibition of
adenosine receptors A1 and A2AR substantially elevated CAR T
cell efficacy in breast cancer, which appears to be a promising
method to enhance CAR-T cell function in the TME (176).
Additionally, ROS generated by MDSC exerts a negative impact
on CAR-T cells, and therefore, the reduction of ROS might be a
potential strategy to overcome the metabolic profile of TME.
Furthermore, CD28 and 4-1BB, the co-stimulatory domains
of CAR-T cells, respectively, improved the metabolic fitness of
CAR-T cells in melanoma by upregulating the intake of glucose
and the expression of glycolytic enzymes, and enhancing
mitochondrial biogenesis and oxidative metabolism (177, 178).
However, limited data are available on the metabolic
reprogramming of CAR-T cells in lung cancer.

2.7 CAR-T Cell Exhaustion
The existence of inhibitory ligands in the TME and endogenous
TCRs leads to the gradual exhaustion of CAR-T cells (134).
Clinical evidence has confirmed that CAR-T cell exhaustion
markedly limits the efficacy of CAR-T cell therapy; therefore, it
is imperative to prevent or reduce CAR-T cell exhaustion.
However, it is difficult to reverse the cell exhaustion process
directly by dedifferentiating T cells for exhaustion, which is a
transcriptional and epigenetic forced differentiation state (179).
Therefore, less differentiated T cell populations, such as naive T
cells, whose proliferative activity is more robust, are selected for
CAR-T cell manufacture (180). The negative regulators inducing
T-cell exhaustion include PD-1, CTLA4, T-cell immunoglobulin
and mucin domain 3, and lymphocyte-activation gene 3, which
could restrain the activity of T cells while promoting the
suppressive function of Tregs (181–183).

The above research advancements may shed light on new
strategies to increase CAR-T cell persistence. Engineering
strategies to inhibit these negative regulators primarily involve:
(1) immune checkpoint blockades, (2) genetic knockdown of
negative regulators in CAR-T cells, (3) PD-1 DNR, and
(4) autocrine secretion of anti–PD-1 scFv and anti–PD-L1
antibodies from CAR T cells (20, 73, 182, 184). At present,
combination therapy of CAR-T cells and immune checkpoint
blockades has been utilized to overcome CAR-T cell exhaustion
in clinical trials of NSCLC (185). CRISPR/Cas9-mediated
knockdown of negative regulators in CAR-T cells may become
a novel therapeutic approach to increase the persistence of CAR-
T cells (182). CAR-T cells targeting PD-L1z, equipped with
CAR-T cells with intrinsic blockade properties of PD-1,
demonstrated efficacious antitumor activity in NSCLC models
(113). CAR-T cells secreting anti–PD-L1 antibodies have been
demonstrated to combat T cell exhaustion in a renal cell
carcinoma mouse model (172) (Figure 5). In addition,
transient cessation of CAR signaling, 4-1BB and CD28
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costimulatory signaling, c-Jun, and transcription factors, such as
nuclear receptor subfamily 4 group A, NFAT, and thymocyte
selection-associated high mobility group box protein have also
been shown to regulate T cell exhaustion (179, 184, 186). Further
studies are required to apply these findings to enhance CAR-T
cell resistance to exhaustion.
3 FUTURE OUTLOOK

CAR-T cell therapy has emerged as a novel and effective
immunotherapy against multiple cancers, especially
hematological malignancies. The same issues, such as CAR-T
therapy-related toxicities, on-target, off-tumor toxicity, and
evasion of antitumor responses, have plagued the treatment of
hematologic malignancies; the treatment of solid tumors
encounters even greater challenges. Moreover, the physical
barrier impedes the infiltration of CAR-T cells to tumor sites,
and the TME is immunosuppressive. In recent years, the
successful improvements in the safety and efficacy of the
therapy have facilitated the application of CAR-T therapy in
solid tumors, including lung cancer. CAR structures persistently
undergo evolution to enhance efficacy and reduce the cytotoxic
effects of CAR-T cell therapy. In addition, the engineering
solutions mentioned above are in their early stages and are
being progressively developed towards the clinical application
phase, and further investigations are expected (Figure 7).
Among these engineering strategies, gene editing technology is
one of powerful tools to improve the efficacy and safety of CAR-
T cell therapy and is driving the application of this novel cancer
therapy. The manufacture of “off the shelf” CAR-T cell products
by disrupting the TCR alpha/beta chains through TALENs or
Frontiers in Immunology | www.frontiersin.org 11
CRISPR/Cas9 platform, is currently undergoing the evaluation of
clinical trials (187). The inclusion of inducible caspase-9 safety
switches to CARs could regulate the production of cytokines to
prevent CRS (143). CRISPR/Cas9-mediated knockdown of
negative immune checkpoints enables the CAR-T cells to resist
the immunosuppressive TME. It is too early to appreciate the
promising prospects of this novel immunotherapy approach in
lung cancer treatment until more clinical trials to investigate
these engineering strategies are conducted and evaluated.
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