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Treg therapies are being tested in clinical trials in transplantation and autoimmune
diseases, however, the impact of inflammation on Tregs remains controversial. We
challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFa and
observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28)
beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high
expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNg, IL-4,
and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2
using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS
expression. These results prompted us to consider using CD28SA together with IL-6
and TNFa without aCD3/28 beads (beadless) as an alternative protocol for therapeutic
Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative
phosphorylation, increased energy production, and higher antioxidant potential during
beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive
functions in vitro and in vivo. These results demonstrate that human Tregs positively
respond to proinflammatory cytokines with enhanced proliferation without compromising
their lineage identity or function. This property can be harnessed for therapeutic
Treg manufacturing.

Keywords: Tregs, inflammation, IL-6, TNFa, CD28 signaling, metabolomics, GVHD
INTRODUCTION

Tregs are a subset of CD4+ T cells that prevent unwanted immune activation in steady state and
promote resolution of immune response at the site of inflammation (1–3). In mouse models of type
1 diabetes, Tregs isolated from inflamed islets, but not from lymphoid organs, are able to suppress
anti-islet autoimmune attacks (4). In humans, higher FOXP3 in graft biopsies predicts reversibility
of T cell-mediated rejection of kidney transplant whereas higher Tregs in the tumor
microenvironment is associated with worse prognosis (5, 6). However, it has been suggested that
Tregs may be destabilized under certain inflammatory conditions and there has been debate on the
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impact of proinflammatory signals on Treg function (7). During
immune activation, proinflammatory cytokines such as TNFa
and IL-6 are produced by macrophages, neutrophils, T cells, B
cells, and stromal cells (8–11). a and IL-6 promote T cell
activation (12, 13) and increase resistance to Treg-mediated
suppression (14–16), both of these functions contribute to
mounting an effective immune response. While there is
consensus that TNFa and IL-6 heighten effector T cell (Teff)
resistance to suppression by Tregs (17, 18), their direct impact on
Tregs, especially on human Tregs, is unclear.

The effect of TNFa on mouse Tregs has been extensively
studied. While TNFa impairs the differentiation and function of
TGFb-induced Tregs (19), it is generally accepted that TNFa
exerts positive effects on thymic derived Tregs (20–22). TNFa
optimally activates Tregs via upregulating TNFR2, 4-1BB, and
OX40 expression (23, 24). TNFR2-deficient Tregs lose Foxp3
expression and cannot protect against colitis when co-transferred
with naïve CD4+ T cells into Rag1KO mice (25). TNFR2-
expressing Tregs are critical to suppressing EAE by limiting T
cell activation in the CNS during overt inflammation (26).
Finally, TNFa-primed mouse Tregs have enhanced efficacy
against graft-versus-host disease (GVHD) when compared with
unprimed Tregs (27, 28). Overall, these results suggest that
TNFa negatively affects TGFb-induced Tregs, but exerts a
positive effect on thymic derived Tregs in mice.

The effects of TNFa on human Tregs has been more
controversial. Tregs isolated from rheumatoid arthritis patients
have been reported to lose FOXP3 expression and convert into
pathogenic T cells when exposed to TNFa in vitro (29, 30). TNFa
partially abrogated the suppressive function of CD4+CD25+ T
cells isolated from chronic HBV-infected patients (31).
Activation of the canonical NF-kB pathway in CD45RA- Tregs
by TNFa-TNFR2 interaction downmodulated their suppressive
function (32). However, these findings have been challenged by
others who report a pro-regulatory role of TNFa in optimally
activating Tregs isolated from healthy donors, without negatively
affecting their in vitro suppressive function (33). Similar to
studies in mouse Tregs, TNFR2 expression identifies a subset
of highly suppressive Tregs isolated from PBMC (34). TNFR2
signaling has been shown to enhance human Treg proliferation
in response to IL-2 via activation of the non-canonical NF-kB
pathway (35). As a result, TNFR2 agonists are used in ex-vivo
human Treg expansion protocols to facilitate homogeneous high
purity cellular products (36, 37). Multiple studies have shown
that TNFa blockade therapy paradoxically exacerbate
autoimmune pathologies (38, 39), suggesting a regulatory role
of TNFa in these disease settings.

Multiple studies reported a negative role of IL-6 on mouse
Tregs. IL-6 prevents the differentiation of naïve CD4+ T cells into
peripherally induced Tregs in a dominant and non-redundant
manner (40). IL-6 has been reported to destabilize mouse thymic
derived Tregs and drive them to produce IL-17 in vitro (41).
However, Tregs isolated from inflamed CNS lesions in EAE-
affected mice are insensitive to IL-6-driven Th17 conversion due
to a downregulation of IL-6Ra and gp130 (42). IL-6 has been
found to increase the rate of Foxp3 proteasomal degradation via
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downregulation of the expression of deubiquitinase USP7, which
is normally upregulated and associated with Foxp3 in the nucleus
of Tregs (43). In contrast, IL-6 Tg mice harbor increased
numbers of Tregs in their lymphoid organs with intact
functional capacity against naïve T cells in vitro (44). While
IL-6 enhances the generation of Th17 cells, classic signaling via
IL-6Ra induces double positive RORgt+Foxp3+ Tregs with potent
immunoregulatory properties in a mouse model of
glomerulonephritis (45). The prevailing view is that IL-6
negatively impacts mouse Tregs, but emerging data suggest
that differential mode of signaling (classic versus trans-
signaling) may have divergent impacts on mouse Tregs.

Similar to findings in mouse Tregs, IL-6 prevents in-vitro
induction of human Tregs from conventional T cells (Tconvs)
(46). Peripheral blood CD4+CD25+ Tregs downregulate FOXP3
and lose their suppressive function following IL-6 exposure (47).
Retinoic acid downregulates IL-6Ra and renders Tregs
insensitive to the destabilizing effect of IL-6 (47). gp130hi Tregs
are enriched amongst naïve CD45RA+ Tregs isolated from
human PBMC and have lower in vitro suppressive capacity
when compared to gp130lo Tregs (48). Another group has
reported the presence of a subpopulation of human IL-
6RahiCD45RA- Tregs in PBMC that have potent suppressive
capacity in vitro, demethylated Treg-specific demethylated
region (TSDR) and a Th17 transcriptional signature (49). These
studies highlight the heterogeneity of circulating human Tregs.
However, there is paucity of studies measuring the direct impact
of IL-6 on human Tregs.

In this study, we examined the direct impact of TNFa and IL-
6 on human Tregs in an ex-vivo culture system and evaluated the
in-vivo function of TNFa and IL-6 exposed human Tregs in a
xenogeneic GVHD model in humanized mice. Our data show a
positive role of both IL-6 and TNFa on Tregs in promoting their
proliferation without lineage destabilization, suggesting that
Tregs can respond to proinflammatory signals to increase their
presence at sites of inflammation without compromising their
lineage stability.
MATERIALS AND METHODS

Human Peripheral Blood Samples
De-identified peripheral blood units were purchased from
StemCell Technologies (Vancouver, Canada). Peripheral blood
samples from 25 healthy donors (11 male and 14 female)
between the age of 21 and 72 were used.

Ex-Vivo Treg Culture
Human blood samples were processed the same day after
collection using ficoll (Cytiva, Marlborough MA) density
gradient to isolate PBMC. PBMC were stained with anti-CD4
FITC (clone OKT4), anti-CD25 APC (clone 4E3) and anti-
CD127 PE (clone HIL-7R-M21, all from BD Biosciences, San
Jose, CA). CD4+CD25+CD127lo/- Tregs and CD4+CD25-CD127+

Tconvs were purified using FACS. Post sort analyses
confirmed >99% purity. Purified Tregs were plated in 48-well
December 2021 | Volume 12 | Article 783282
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plate at a density of 1x105 cells/well in 250mLmedium consisting of
10% heat-inactivated fetal bovine serum (Biosource International),
nonessential amino acids, 0.5 mM sodium pyruvate, 5 mM Hepes
and 1mM glutaMax I (all from Invitrogen) in an RPMI-1640 base.
Human anti-CD3 and anti-CD28-conjugated dynabeads (aCD3/
CD28 beads; Fischer Scientific,Hampton,NH)were added to the T
cells at 1:1 bead to cell ratio. Alternatively, CD28 superagonist
(CD28SA) (5mg/mL; clone anti-CD28.1; Ancell, Stillwater, MN)
were used to stimulate the T cells. Recombinant human IL-2 (either
300IU/mLor15IU/mL, as indicated in the result section; Proleukin,
Prometheus laboratories, Switzerland)were added at concentration
indicated. Recombinant human IL-6 (15 to 150ng/ml as indicated
in the result section; Peprotech, Rocky Hill, NJ) and recombinant
humanTNFa (50ng/ml; Peprotech,RockyHill,NJ)were also added
in selected wells. Etanercept (5mg/mL; ETN-Enbrel, Pfizer) was
added in selected experiments. Ex-vivo expansion cultures were
supplemented with fresh media containing IL-2 on day 0, 2, 5, and
every other day thereafter, until the cells returned quiescent state
(typically, day 9 for aCD3/CD28 bead-stimulated Tregs and day 14
for CD28SA stimulated Tregs). IL-6 andTNFawere supplemented
on days 0, 2, and 5 of culture. aCD3/28 bead stimulated CD4+

Tconvs were included in some experiments as a reference
cell population.

Flow Cytometry
Single-cell suspensions were recovered from ex-vivo expanded
Treg cultures. The cellular suspensions were first stained with
surface antibodies to CD4 (Per-CP; clone SK3), CD25 (PE-Cy7;
clone 4E3), TNFR2 (APC; clone hTNFR-M1), and fixable
viability dye (APC-e780, all from purchased from BD
Biosciences) prior to fixation and permeabilization using kit
according to manufacturer protocol (catalog number 88-8824-
00; Thermofisher) and intracellular staining for FOXP3 (e450;
clone PCH101) and HELIOS (FITC; clone 22F6, both from BD
Biosciences). The samples were analyzed on a FACS LSR-II flow
cytometer (BD Biosciences) and analyzed using FACSDiva (BD
Biosciences) or Flow Jo software (Tree Star, Ashland, OR).

In-Vitro Treg Suppression Assay
Ex-vivo expanded human Tregs were harvested on day 7 of
culture and varying numbers of Tregs were then co-cultured with
1x 105 ex-vivo expanded Tconv at Treg/Tconv ratios of 1:1, 1:2,
1:4 and 1:8 in the presence of aCD3/CD28 beads (1:10 bead to
Tconv ratio). 0.5mCi [3H]- Thymidine was added 16hrs before
the cells were harvested for analysis on day 4 of co-culture.
Triplicate wells were established for each condition.

TSDR Analysis
Ex-vivo expanded Tregs (2x106 from each condition) were
harvested on day 7 of culture and then cryopreserved in FBS
containing 10% DMSO at -80°C. The samples were submitted to
Epigendx (Boston, MA) for analysis of DNA methylation of the
TSDR in FOXP3 intron 1 using the ADS783FS2 assay.

Cytokine Assay
Supernatants of Treg and Tconv cultures were aspirated on day 7
and sent for analysis using a 42-plexed Luminex human cytokine
Frontiers in Immunology | www.frontiersin.org 3
detection kit (EveTechnologies, Vancouver, Canada). The
cytokine concentrations were normalized per 106 cells for each
condition. For all culture conditions, Cells were plated at 1x105/
well in one well of 48-well plates in 250mL medium supplemented
with cytokines as indicated; culture media were doubled on day 2;
then cells were counted and resuspended at 2.5x105 cells per 1mL
on day 5; and the supernatant was collected on day 7 for multiplex
Luminex analysis on day 7 and the cell counts on day 7 were used
to normalize the cytokine concentrations.
HUMANIZED NSG MOUSE GRAFT-
VERSUS-HOST-DISEASE MODELS

Eight to twelve-week-old NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
(NSG, Jackson Laboratory, Stock No 005557) male mice were
bred in our animal facilities in specific pathogen-free conditions.
To induce GVHD, NSG mice were irradiated (2.5Gy) one day
prior to retroorbital vein infusion of either 4 x106 fresh PBMCs
or ex-vivo expanded Tconvs. In GVHD prevention experiments,
some mice receive co-infusion of ex-vivo expanded Tregs. In
GVHD treatment experiments, Tregs were infused 4 days after
PBMC infusion. Xenogeneic GVHD development was evaluated
by clinical examination and body weight measurements for
either 60 days (prevention experiments) or 100 days (treatment
experiments). To assess the phenotypical stability of ex vivo
expanded Tregs after adoptive transfer, irradiated NSG mice
were injected with 2x106 fresh autologous PBMCs 9 days before
receiving 4x106 CFSE-labeled Tregs. On day 5 after Treg
infusion, peripheral blood and lung tissue were obtained for
analyses using flow cytometry.

TNFR2 Gene Deletion Using CRISPR
Ribonucleoprotein complexes were made by complexing crRNAs
and tracrRNAs chemically synthesized (Integrated DNA
Technologies (IDT), Coralville, IA) with recombinant Cas9NLS
(QB3 Macrolab, UC Berkley, CA) as previously described (50).
Guide RNA sequences used for gene editing were (1)
GGTTCTTGACTACCGTAATT (scrambled gRNA) and (2)
GGCAUUUACACCCUACGCCC (TNFR2 gene). Briefly,
Lyophilized RNAs were resuspended at 160mM in 10mM Tris-
HCL with 150mM KCL and stored in aliquots at minus 80. The
day of electroporation, CrRNA and tracrRNA aliquots were
thawed and mixed at a 1:1 volume and incubated 30 minutes
at 37°C for annealing. The 80µM guide RNA complex was mixed
at 37°C with Cas9 NLs at a 2:1 gRNA to Cas9 molar ratio for
another 15 minutes and the mixture is defined as RNP at 20µM.
RNP were electroporated using a Lonza 4D 96-well
electroporation system (code EH115). Genome editing
efficiency was measured by assessing cell surface TNFR2
expression using flow cytometry on days 4 and 8 of culture.

Metabolomics
At least 2x 106 FACS sorted fresh and ex-vivo expanded Tregs
were collected on days 0 and 7 of culture, respectively. The cells
were stored according to manufacturer protocol prior to being
December 2021 | Volume 12 | Article 783282
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sent for analysis using capillary electrophoresis- and liquid
chromatography- mass spectrometry platforms to generate
their global metabolic profi le (Human Metabolome
Technologies, Boston, MA).

Statistics
Kaplan-Meier survival graphs were constructed, and a log-rank
comparison of the groups was used to calculate p-values. The
paired t test was used for comparison of experimental groups.
Differences were considered significant for p less than 0.05.
Prism software (GraphPad Software, San Diego, CA) version 9
was used for data analysis and graphing data.

Study Approval
All experiments were approved (IACUC protocol No.
AN183959-02) and conducted in accordance with UCSF
IACUC regulations.
RESULTS

IL-6 and TNFa Promoted Proliferation of
Lineage-Committed Tregs
To determine the direct effects of TNFa and IL-6 on human
Tregs, we challenged FACS purified CD4+CD25+CD127lo/- Tregs
(sorting strategy shown in Supplemental Figure 1) with IL-6
and/or TNFa, during in vitro activation. We stimulated the cells
with anti-CD3 and anti-CD28 (aCD3/28) beads in the presence
of 300 IU/ml recombinant human IL-2 to simulate antigen
activation of Tregs. Activated Tregs formed multicellular
clusters, which was followed by cell proliferation and return to
a single-celled quiescent state by day 9 of culture as previously
reported (51). FACS purified CD4+CD25-CD127+ Tconv were
also stimulated using the same conditions and proliferated more
intensely than Tregs (Supplemental Figure 2). The addition of
IL-6, TNFa, or both in the Treg cultures resulted in persistent
cell clustering (Figure 1A). Moreover, combination of IL-6 and
TNFa resulted in significantly improved Treg expansion, which
mainly manifested during the later stage of culture (Figure 1B).

It has been previously reported that CD28 superagonist
antibodies (CD28SA) can also induce ex-vivo expansion of
human Tregs (52). We thus replaced the aCD3/28 beads with
CD28SA and evaluated the impact of IL-6 andTNFa in the context
of a different mitogenic stimulation. While CD28SA-stimulated
Tregs showed delayed kinetics in proliferation when compared to
their aCD3/CD28-stimulated counterparts, the cells proliferated
more persistently, resulting inmore overall expansion (Figures 1C,
D). Exposure to both TNFa and IL-6 resulted in robust cell
clustering over a prolonged period and synergistic enhancement
of cell expansion that was far more pronounced than seen with
aCD3/CD28 bead-stimulated Tregs (Figures 1B, D).

Since FOXP3 had been reported to limit Treg proliferation and
metabolism (53), we wondered if the enhanced proliferation in the
presence of TNFa and IL-6 was due to destabilization of Tregs. We
measured the expression of FOXP3 and HELIOS, the two lineage-
defining transcription factors for Tregs (54), on days 9 and 14
Frontiers in Immunology | www.frontiersin.org 4
during the ex vivo expansion (Supplemental Figure 3). The results
showed that Tregs exposed to IL-6 and/or TNFa maintained high
levels of FOXP3 and HELIOS expression (Figures 1E, F).
Furthermore, we analyzed TSDR methylation status in Tregs
cultured in various conditions. The results showed a high degree
of TSDR demethylation in all expanded Tregs (Figure 1G),
supporting the flow cytometric data to show that the exposure to
IL-6 and/or TNFa did not alter Treg identity.

To further assess if IL-6 and/or TNFa induced effector functions
inTregs,weanalyzed the supernatantofTregandTconvcultureson
day 7 after stimulation using a 42-plex Luminex assay. Among the
42 cytokines in the panel, 21 were not present in any of the T cell
cultures, 3were added (IL-2, IL-6, andTNFa), and 18were detected
in Treg cultures. Among the 18 de novo cytokines detected, the
amounts found in Treg cultures were markedly lower than those
seen in Tconv cultures (Figure 2A). Particularly, no increase in
IFNg (Th1), IL-4 (Th2),or IL-17A(Th17)were seen inaCD3/28bead
or CD28SA stimulated cultures by the exposures to IL-6 and/or
TNFa (Figure 2B). In fact, IL-6 did not induce increased secretion
of any of the cytokines.On the other hand, exposure toTNFa, alone
or in the presence of IL-6, led to a consistent trend of increase of
CCL3 and CCL5 (Figure 2C). Taken together, these experiments
revealed that IL-6 and TNFa exposure resulted in robust human
Treg proliferation without lineage destabilization.

These results contradicted previous reports on the
destabilizing effect of proinflammatory cytokines on Tregs (29,
30, 55, 56). Many of these studies stimulated Tregs in the
presence of lower concentration of IL-2 than we used. We
hypothesized that the high concentration of IL-2 in our culture
condition may have protected Tregs from the destabilizing effect
of TNFa and IL-6. Therefore, we challenged the Tregs by
reducing IL-2 concentration from 300 IU/ml to 15 IU/ml. Treg
expansion was minimal with reduced IL-2, even when they were
exposed to IL-6 and/or TNFa. FOXP3 expression was reduced
when compared to cells cultured in 300 IU/ml of IL-2 but
remained significantly elevated when compared to that
expressed by similarly expanded Tconvs (Supplemental
Figure 4A). HELIOS expression was comparably high in Tregs
cultured in 15 IU/ml and 300 IU/ml of IL-2 (Supplemental
Figure 4B). More importantly, Tregs exposed to TNFa and IL-6
in the presence of low IL-2 maintained demethylated TSDR
(Supplemental Figure 4C) and did not produce more effector
cytokines (Supplemental Figure 5A), including IFNg, IL-4, or
IL-17 (Supplemental Figure 5B) when compared to Tregs
stimulated without these cytokines. Similar to cultures
stimulated in the presence of high IL-2, co-culture with
TNFa stimulated higher secretion of CCL5 in Tregs
(Supplementary Figure 5C). Thus, IL-6 and TNFa did not
induce Treg destabilization even when IL-2 was limited.

Ex-Vivo Expanded Human Tregs Produce
TNFa and Depend on TNFR2 Signaling to
Proliferate and Safeguard Their Identity
While analyzing cytokine secretion in Treg cultures, we noticed
that TNFa was consistently detected in all cultures in higher
amounts in aCD3/28 bead-stimulated cultures than in CD28SA-
December 2021 | Volume 12 | Article 783282
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FIGURE 1 | IL-6 and TNFa augmented ex-vivo proliferation of lineage committed human Tregs. FACS purified human Tregs were stimulated with either aCD3/28
beads or CD28SA and cultured in the presence of 300 IU/ml rhIL-2 with or without TNFa and IL-6 for 12 and 14 days as indicated (A) Microscopic pictures of
aCD3/28 bead-stimulated Treg cultures on day 8 of culture. Original magnification was 10x. (B) An example of aCD3/28 bead-stimulated Treg expansion kinetics
from one representative experiment (left) and a summary of fold expansion on day 12 of 3 to 6 independent experiments (right) are shown. (C, D) Same as panel
(A, B), except the Tregs were stimulated with CD28SA and overall expansion (right panel) was assessed on day 14. Statistical significance was assessed using one-
way ANOVA and Dunnett’s multiple comparisons posttest using IL-2 alone as reference. p values are stated. Results shown used cells from 3 distinct donors and
are representative of 6 independent experiments using cells from 6 distinct donors. (E, F) Flow cytometric analysis of FOXP3 (E) and HELIOS (F) expression in Tregs
on day 9 after stimulation. Representative histograms (left) and summaries of mean fluorescent intensities (MFI) from 3 independent experiments (right) are shown.
Statistical significance was assessed using one-way ANOVA with Geisser-Greenhouse’s correction and Dunnett’s multiple comparisons test using either Tconv or
Treg treated with IL-2 alone (E, F) as a reference. p values are marked as ns, not significant, p > 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (G) Heatmap
summary of TSDR demethylation of Tregs expanded in various conditions. Results shown are averages of Treg cultures using 2 unrelated male donors in 2
independent experiments.
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stimulated cultures (Figure 3A). The amount of TNFa in the
supernatant was not affected by the concentration of IL-2 or the
addition of IL-6. Moreover, another TNF superfamily member,
lymphotoxin a (LTa), was also consistently detected (Figure 3B).
The presence of TNFa, but not IL-6, resulted in significantly
increased level of LTa in the aCD3/28 bead-stimulated Treg
culture supernatant and a trend of increased LTa in CD28SA-
stimulated cultures (Figure 3B). Both of TNFa and LTa bind to
TNFR1 and TNFR2 (57). It has been well-established that Tregs
preferentially express TNFR2 (24). In vitro stimulation with
either aCD3/28 beads or CD28SA uniformly increased TNFR2
expression, although CD28SA induced upregulation was delayed
compared to aCD3/CD28 beads (Figure 3C). Thus, activated
Tregs produced TNFa and LTa and also have increased
expression of TNFR2, suggesting that TNFa and LTa may
function as autocrine or paracrine factors for activated Tregs.

To investigate a potential role of TNFR2 in human Treg
activation, we evaluated the impact of etanercept, a soluble
Frontiers in Immunology | www.frontiersin.org 6
TNFR2-Fc fusion protein, in ex-vivo Treg proliferation.
Addition of etanercept significantly reduced Treg proliferation
induced by either aCD3/CD28 beads or CD28SA (Figure 4A).
The inhibitory effect of etanercept was most pronounced during
the later stage of Treg culture, suggesting that TNFR2 signaling
did not affect initial Treg proliferation likely due to delayed
induction of TNFR2 or TNFa and LTa. Furthermore, etanercept
significantly decreased TNFR2 expression and the expanded
Tregs showed a trend of moderate reduction in CD25, FOXP3,
and HELIOS expression (Supplemental Figure 6).

To directly examine the role of TNFR2 in human Treg
proliferation, we deleted TNFR2 gene in purified Tregs using
CRISPR/Cas9 technology. On day 4 after activation, only 27.3%
of aCD3/CD28 bead stimulated cells electroporated with gRNA
targeting the TNFR2 gene were TNFR2+ when compared to
87.75% of cells that were electroporated with scrambled gRNA
(Supplemental Figure 7A). Similarly, 14.5% of CD28SA
stimulated cells were TNFR2+ when compared to 52.6% of
A B

C

FIGURE 2 | Tregs expanded in IL-6 and TNFa did not secrete more proinflammatory cytokines. FACS purified human Tregs were stimulated with either aCD3/28
beads or CD28SA and cultured in the presence of 300 IU/ml rhIL-2 with or without TNFa and IL-6 as indicated. Cytokine and chemokine secretion in the culture
supernatant of various Treg cultures was assessed using a multiplex Luminex panel. Supernatant of aCD3/28 bead stimulated Tconv cultures is included as a
reference. (A) Heatmap summary of cytokines and chemokines that were present in any of the culture condition is shown. (B) IFNg, IL-4, and IL-17 concentrations in
the Day 7 culture supernatants are shown. (C) CCL3 and CCL5 concentrations in the Day 7 culture supernatant are shown. Results shown are summaries of 3
independent experiments using cells from 3 unrelated donors. Statistical significance was assessed using one-way ANOVA with Geisser-Greenhouse’s correction
and Dunnett’s multiple comparisons posttest using Treg treated with IL-2 alone (B, C) as reference. p values are marked as *p < 0.05, ***p < 0.001.
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cells that were electroporated with scrambled gRNA
(Supplemental Figure 7B), indicating successful TNFR2
deletion in the majority of Tregs. We observed that TNFR2KO
Tregs have significantly reduced ex-vivo expansion with either
aCD3/CD28 bead or CD28SA stimulation (Figure 4B),
demonstrating a positive role of TNFR2 signaling in ex-vivo
proliferation of human Tregs. It is worth noting that, on day 8
post activation, 44.2% of aCD3/CD28 bead-stimulated and
44.6% of CD28SA-stimulated cells were TNFR2+, increased
from those detected on day 4 after stimulation. This suggested
that the few TNFR2-sufficient Tregs after CRISPR editing had a
proliferative advantage over their TNFR2KO counterparts
(Supplemental Figures 7A, B). Similar to our observation
using etanercept, TNFR2KO Tregs showed a trend of
decreased expression of CD25, FOXP3, and HELIOS when
compared to TNFR2+ Tregs (Supplemental Figures 7C, D).
Together, these results demonstrated a role of TNFR2 in
promoting human Treg ex-vivo proliferation and a potential
role in preserving Treg lineage by sustaining FOXP3, HELIOS,
and CD25 expression.

Finally, we exposed TNFR2KO Tregs to IL-6 and TNFa to
assess the requirement for TNFR2 in Treg proliferative boost by
these cytokines shown in Figure 1. We observed that TNFR2KO
Tregs had a diminished proliferative response to IL-6 and TNFa
when compared to control Tregs (Figure 4C). Moreover,
TNFR2KO Tregs had significantly decreased expression of key
Treg lineage markers CD25, FOXP3, and HELIOS (Figure 4D).
Together, these results suggest that TNFR2 signaling enhanced
Frontiers in Immunology | www.frontiersin.org 7
human Treg proliferation and safeguarded their identity during
exposure to proinflammatory cytokines.

Beadless Protocol for Ex-Vivo Expansion
of Human Tregs
Ex-vivo expanded human Tregs are currently being evaluated in
clinical trials in transplantation and autoimmune diseases (58).
Current Treg manufacturing processes rely on multiple rounds
of stimulation with aCD3/28 beads (59). Our results of highly
efficient expansion of stable human Tregs using one cycle of
CD28SA stimulation in the presence of IL-2, IL-6, and TNFa
prompted us to consider this protocol as an alternative approach
to expand Tregs for clinical use. We thus compared rates of Treg
expansion induced with 1 or 2 rounds of aCD3/28 bead
stimulation versus those achieved with single round of
CD28SA stimulation with or without the addition of IL-6 and
TNFa. Tregs stimulated with aCD3/28 beads entered cell
expansion more rapidly than that induced by CD28SA, but the
cells rested by day 9 and required restimulation to proliferate
again (Figure 5A). In contrast, Tregs stimulated with CD28SA
continue to proliferate and began to rest by 14 days after
stimulation. Addition of IL-6, TNFa, or both did not lead
more rapid entry into cell division, but more persistent
proliferation resulting in more total cell yields at the end of the
two-week expansion (Figure 5A). Given the concern of the
reported negative impact of IL-6 on Tregs, we determined if
the persistent Treg proliferation can be achieved using less IL-6.
Altering IL-6 concentrations from 15 ng/ml to 150 ng/ml in the
context of the beadless protocol resulted in similar Treg
expansion yields (Figure 5B).

The pattern of persistent proliferation after CD28SA
stimulation in the presence of TNFa and IL-6 when compared
with aCD3/28 bead stimulation suggested that Tregs cultured in
these two protocols were in distinct metabolic states. We thus
performed metabolomic profiling of aCD3/28 bead-stimulated
versus CD28SA+IL-6+TNFa beadless-stimulated Tregs by using
capillary electrophoresis mass spectrometry. Intracellular
concentrations of 116 metabolites involved in glycolysis,
pentose phosphate pathway, TCA cycle, lipid metabolism, urea
cycle, and polyamine, creatine, purine, glutathione,
nicotinamide, choline, and amino acid metabolisms were
captured (Supplemental Table 1). We selected day 7 for the
comparison because the Tregs in both protocols were briskly
proliferating and had comparable fold expansion at that time,
but about to diverge in the rate of proliferation.

Activated Tregs with beads or the beadless protocol had
significantly higher concentrations of all 20 amino acids than
freshly purified Tregs (Figure 6A). All the amino acids, except
aspartate, were present at equal or higher concentration in Tregs
expanded with the beadless protocol when compared to those
expanded with aCD3/28 beads. It was also notable that cysteine
was only detected in Tregs stimulated with the beadless protocol
and not detected in fresh or bead-stimulated Tregs. Both
aspartate and cysteine are non-essential amino acids, and their
altered levels may indicate altered metabolism of these amino
acids in Tregs under different culture conditions.
A B

C

FIGURE 3 | Activated Tregs produced TNFa and LTa and increased TNFR2
expression. FACS purified human Tregs were stimulated with either aCD3/28
beads or CD28SA and cultured in the presence of 300 IU/mL (H) or 15 IU/mL
(L) rhIL-2 with or without IL-6 as indicated. (A) TNFa and (B) LTa concentration
in the Day 7 culture supernatant of various T cell cultures. (C) Flow cytometric
analysis of TNFR2 expression in Tregs stimulated with either aCD3/28 beads or
CD28SA on day 0, 4 and 8 after stimulation. Representative histograms (left)
and summary of percentage of TNFR2+ Tregs from 3 independent experiments
(right) are shown. Statistical significance was assessed using one-way ANOVA
and Dunnett’s multiple comparisons posttest using Treg treated with IL-2 alone
(A, B) or Day 0 (C) as reference. p values are marked as ns, not significant,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Glycolysis was activated by both protocols with a trend of
higher concentrations of glycolytic intermediates in the beadless-
stimulated Tregs (Figure 6B). Notably, Tregs in the beadless
protocol contained 10 times higher concentration of lactic acid
compared to bead stimulated Tregs, indicating highly active
glycolytic activities. Concurrently, beadless-stimulated Tregs had
higher oxidative phosphorylation (OXPHOS) activities indicated
by the higher concentrations of TCA intermediates when
compared to bead stimulated Tregs, which were nearly depleted
Frontiers in Immunology | www.frontiersin.org 8
of TCA intermediates of cis-aconitate, isocitrate, alpha-
ketoglutarate, fumarate and malate (Figure 6C). Thus, Tregs in
the beadless protocol were in a high energy state with concurrent
activation of both glycolysis and OXPHOS whereas bead
stimulated Tregs mostly relied on glycolysis for energy production.

The pentose phosphate pathway also utilizes glycolysis
intermediates for purine and pyrimidine synthesis .
Intermediates in the pentose phosphate pathway were elevated
in the beadless protocol expanded Tregs when compared to fresh
A

B

D

C

FIGURE 4 | Ex-vivo proliferation of human Tregs is dependent on TNFR2 expression. FACS purified human Tregs were stimulated with either aCD3/28 beads or
CD28SA and cultured in the presence of 300 IU/ml rhIL-2 with or without TNFa and IL-6 for 10 and 14 days, as indicated. (A) Representative aCD3/28 bead
stimulated Treg expansion kinetics and summary of final fold expansion on day 10 of Treg expanded in the presence or absence of etanercept (left). Similarly,
CD28SA stimulated Tregs were expanded for 14 days (right). Results of 3 independent experiments using 3 unrelated donors are shown. (B) Tregs were gene
edited to delete TNFR2 gene using CRISPR-Cas9 and then stimulated with either aCD3/28 beads (left) or CD28SA (right). Results shown are from 4 independent
experiments using 4 unrelated donors. (C) Same as panel (B), except the Tregs were cultured in the presence of IL-6 and TNFa. Results shown are from 4
independent donors in 4 independent experiments. (D) Tregs were expanded as shown in panel (C) and flow cytometric analysis of FOXP3, HELIOS and CD25
expression was performed on day 8 after stimulation. Results show summary of MFI of FOXP3, HELIOS and CD25 from 4 independent donors in 4 independent
experiments. Paired t-test was used to determine statistical significance. p values are stated.
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and bead stimulated Tregs (Figure 6D). This correlated with
higher concentrations of intermediates of purine biosynthesis
(Figure 6E). The pentose phosphate pathway also converts
NADP+ to NADPH, thus an important regulator of the redox
state of the cell. Moreover, NADPH also supports de novo fatty
acid synthesis. NADP+ and NADPH were present at comparable
elevated concentrations in bead versus beadless stimulated Tregs
(Figure 6D) whereas the NADPH to NADP+ ratios were both
comparably reduced from the fresh Treg baseline (Supplemental
Table 1), suggesting higher antioxidant demand and/or higher
fatty acid synthesis in activated Tregs. NADPH protects
mitochondria against oxidative stress by transferring its
reductive power to oxidized glutathione disulfide (GSSG) to
generate reduced glutathione (GSH). GSH and GSSG
concentrations were consistently low in fresh Tregs, variably
Frontiers in Immunology | www.frontiersin.org 9
and moderately increased in bead stimulated Tregs, and
significantly increased in Tregs activated with the beadless
protocol (Figure 6F). Beadless protocol Tregs had higher levels
of total glutathione, suggestive of greater buffering ability for
reactive oxygen species (ROS). The increased energy production
and de novo nucleotide synthesis combined with higher
antioxidant potential may underscore the better metabolic
fitness and more persistent proliferation of Tregs stimulated
with the beadless protocol when compared to those stimulated
with aCD3/28 beads.

TNFa and IL-6-Exposed Tregs Maintained
Their Function In Vitro and In Vivo
Lastly, we compared the function of Tregs expanded using
aCD3/28 beads versus the beadless protocol. For the in vitro
A

B

FIGURE 5 | Beadless ex-vivo expansion of human Tregs. (A) FACS purified human Tregs were stimulated with either aCD3/28 beads or CD28SA and cultured in
the presence of 300 IU/ml rhIL-2 with or without 150 ng/ml IL-6 and/or 50 ng/ml TNFa for up to 14 days. Expansion kinetics of Tregs from 7 to 14 unrelated donors
in independent experiments are shown. Statistical significance was assessed using one-way ANOVA and Dunnett’s multiple comparisons posttest using aCD3/28 1
stim Day 13 and aCD3/28 2 stim Day 14 as reference. (B) FACS purified human Tregs were stimulated with CD28SA and cultured in the presence of 300 IU/mL
rhIL-2, 50 ng/ml TNFa and varying concentrations of IL-6 (15 ng/ml, 50 ng/ml, and 150 ng/ml) as indicated. Expansion kinetics over 14 days of Tregs of from 3
unrelated donors in 3 independent experiments are shown. Data connected by the same line are from the same donor. Statistical significance was assessed using
one-way ANOVA with Geisser-Greenhouse’s correction and Dunnett’s multiple comparisons posttest using 150 ng/ml IL-6 as reference. p values are marked as ns,
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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suppression assay, we used aCD3/28 beads expanded
CD4+CD25-CD127hi Tconv as responders and mixed in
titrated numbers of Tregs expanded with either aCD3/28 beads
or CD28SA, with or without IL-6 and TNFa. Tregs expanded
with various protocols maintained high suppressive capacity,
suggesting that ex-vivo exposure to IL-6 and TNFa did not
negatively affect Treg suppressive function (Figure 7A).

To measure the in-vivo suppressive function of Tregs, we used
models of xenogeneic GVHD in the NSG mice. Intravenous
injection of 5 x 106 PBMC’s into sub lethally irradiated NSGmice
resulted in the development of GVHD that was lethal in 20 to 30
days (Figure 7B). Co-transfer of 5 x 106 Tregs expanded with
standard aCD3/28 bead protocol or the beadless protocol
significantly attenuated weight loss and improved survival
from GVHD in most of the mice (Figure 7B). To compare the
function of the Tregs expanded with the standard versus beadless
protocols in a more challenging condition, we infused Treg 4
days after PBMC injection. It has been previously reported that
co-infusion of Treg with GVHD-inducing PBMCs effectively
Frontiers in Immunology | www.frontiersin.org 10
prevents Tconv proliferation and improves survival, while
delayed Treg infusion requires higher doses of Tregs to reverse
disease that has already been initiated (60). Indeed, an increased
percentage of humanized NSG mice treated with late Treg
infusion eventually succumbed to GVHD compared to the
GVHD prevention model with PBMC and Treg co-infusions.
However, no differences were identified between Tregs expanded
with the standard protocol versus the beadless protocol in their
ability to prevent weight loss and reduce mortality (Figure 7C).

To assess the phenotypic stability of Tregs after infusion, we
injected 2x106 autologous PBMCs into sub lethally irradiated
NSG mice 9 days prior to adoptively transferring CFSE-labeled
Tregs expanded with either the standard bead-based or the
beadless protocol. We collected blood and lung tissues 5 days
after Treg infusion to analyze the Treg expression of FOXP3.
Beadless expanded Tregs maintained their FOXP3 expression
when compared to the CD8+ T cells among the PBMCs which
were largely FOXP3- (Supplemental Figure 8A). We observed
slightly lower levels of FOXP3 expression in beadless protocol
A B DC

FE

FIGURE 6 | Metabolomic profile of Tregs before and after bead or beadless activation. Tregs were purified from 3 unrelated healthy donors. Tregs from each donor
were divided into three parts: fresh Tregs without in vitro stimulation, Tregs expanded with aCD3/28 beads and IL-2 for 7 days (Bead), and Tregs expanded with
CD28SA, IL-6, TNFa, and IL-2 for 7 days (Beadless). Intracellular metabolites were extracted and subjected to capillary electrophoresis mass spectrometry to profile
116 metabolites. The amount of each metabolite was normalized to the cell number and expressed as pmol/106 cells. The data for each metabolite were then
normalized to the mean of all the samples and log2 transformed so that differences among the three experimental conditions can be compared across different
metabolites. Non-detected metabolites were given a value of 2-52. The transformed data for amino acids (A), glycolysis (B), TCA cycle (C), pentose phosphate
pathway (D), and purine synthesis (E) are summarized as heatmaps. Products of rate-limiting steps or key metabolites are highlighted with bold red text.
(F) Intracellular concentration of reduced (GSH) and oxidized (GSSG) glutathione are shown. Circles represent individual data and data from the same Tregs donor
are represented by the same fill color. Statistical significance was determined using ratio paired t test. p values are as marked. ns, not significant, p > 0.05.
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expanded Tregs when compared to bead-expanded Tregs
(Supplemental Figures 8B, C) and this was associated with
significantly more proliferation of the beadless Tregs
(Supplemental Figure 8D). In summary, these results
demonstrated that ex-vivo expanded Tregs exposed to IL-6 and
TNFa maintained their function in vitro and in vivo in
humanized mouse models of GVHD.
DISCUSSION

In this study, we challenged purified human peripheral blood
Tregs ex-vivo with IL-6 and TNFa to determine their direct effect
on Tregs. Our data collectively demonstrate that human Tregs
Frontiers in Immunology | www.frontiersin.org 11
respond to these cytokines positively by increasing their
proliferation while preserving their lineage identity.

A Treg-enhancing role of TNFa and TNFR2 has been
reported in various mouse models and with human Tregs ex
vivo. In this study, we have identified 3 effects of TNFa on human
Tregs. First, by using TNFR blockers and CRISPR/Cas 9
mediated TNFR2 gene deletion, we further show that activated
human Tregs engage TNFa-TNFR2 in an autocrine or paracrine
fashion for persistent proliferation. Exogenous provision of
TNFa and IL-6 further boosted this effect, suggesting the
endogenous production of TNFa and LTa does not maximally
activate this pathway. Second, TNFa helps to preserve Treg
lineage identity by sustaining high expression of FOXP3 and
HELIOS. This finding is consistent with a previous report that
A

B

C

FIGURE 7 | Tregs expanded with the beadless protocol maintained their in-vitro and in-vivo suppressive function. (A) FACS purified human Tregs were stimulated with
either aCD3/28 beads or CD28SA and cultured in the presence of 300 IU/ml rhIL-2 with or without TNFa and/or IL-6 for 9 days, as indicated. In addition, FACS purified
human Tconvs were stimulated with aCD3/28 beads and cultured in parallel to autologous Tregs. At day 7 of culture, expanded Tregs were harvested and then co-
cultured with 5x 104 ex-vivo expanded Tconv at Treg/Tconv ratios of 1:1, 1:2, 1:4 and 1:8 in the presence of aCD3/CD28 beads (1:10 bead to Tconv ratio). Proliferation
was measured using 3[H]-thymidine incorporation in triplicate wells on day 4 of co-culture. Results shown are representative of 2 independent experiments using 2
unrelated donors. (B) At day 9 of culture, either standard protocol (aCD3/28 beads and IL-2) or beadless protocol (CD28SA, IL-2, IL-6 and TNFa) expanded Tregs were
adoptively co-transferred into sub lethally irradiated NSG mice along with autologous PBMC. Results shown are from 1 experiment with a total of at least 5 mice per
group. (C) Same as panel (B), except the Tregs were injected 4 days after the PBMC infusion. Weight loss and survival were monitored every other day. Results shown
are summary of 2 independent experiments using 2 unrelated donors with a total of 8 mice per group. Kaplan-Meier survival graphs are shown, and a log-rank
comparison of the groups was used to calculate p values. p values are marked as ns, not significant, p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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TNFR2 signaling in human Tregs induces EZH2 to preserve Treg
lineage identity (61). Lastly, TNFa increases Treg secretion
of CCL3, CCL4, and CCL5. It has been shown previously
that mouse Tregs produce CCL3 and CCL4 to attract activated
T cells to suppress them (62). Together, these findings point to
multiple mechanisms of TNFa-TNFR2 in promoting Treg
numerical dominance lineage stability, and function at sites
of inflammation.

In contrast to TNFa, IL-6 has mostly been thought to subvert
Treg functions. Our finding of a lack of destabilizing effect of IL-6
on human Tregs despite the use of supraphysiological
concentration of IL-6 and reduced IL-2 is thus unexpected.
Further review of the literature shows a unanimous conclusion
that IL-6 antagonizes in vitro induction of Tregs from Tconvs by
driving the cells to differentiation into Th17 effectors (15).
Moreover, there is consensus that IL-6 enhances Teff activation
to resist suppression by Tregs (13, 16). The body of literature on
a direct role of IL-6 on lineage committed Tregs, especially on
human Tregs, is limited and more controversial. While it is
difficult to pinpoint the cause of divergent findings between this
study and previous studies that reported Treg destabilizing
effects of IL-6, we suspect that differences in experimental
setup may have contributed. An uncertainty when working
with human Tregs is the identity of the cells at the start of the
experiments depending on the markers used for Treg isolation.
In this study, we isolated human Tregs from peripheral blood
using FACS with markers of CD4+CD25+CD127lo/-. The
addition of CD127 allows isolation of human Tregs with
higher purity and higher yield (63, 64). Isolation of human
Tregs based on the expression of CD4 and CD25 using
magnetic activated cell sorting often results in less pure Tregs
and outgrowth of Tconvs that may be mistaken for destabilized
Tregs. Our findings with Tregs frommany unrelated donors over
the span of 4 years show that acute high dose exposure to IL-6
does not cause destabilization of human Tregs.

In this study, we noted significantly more robust proliferation
of Tregs stimulated with CD28SA when compared to aCD3/28
bead stimulation. Furthermore, IL-6 and TNFa synergistically
enhanced the proliferation stimulated by CD28SA. It has been
reported that IL-6 promotes TNFR2 expression by Tregs in
malignant ascites (65), which may explain the synergy we have
observed. It is worth noting that aCD3/28 bead stimulated faster
entry into cell cycle but earlier rest akin to logarithmic growth;
whereas CD28SA stimulated Tregs showed slower start but more
robust and persistent cell cycling as seen in exponential growth,
especially when IL-6 and TNFa are added. This suggests that
Tregs are capable of exponential growth and the pattern of
expansion stimulated by aCD3/28 beads may be a result of
negative feedback that limits proliferation. The biochemical
basis of the distinct proliferation patterns remains to be
elucidated. In Tconvs, TCR stimulation in the absence of
CD28 signaling activate nuclear factor of activated T-cells that
is not balanced with concurrent activation of NF-kB and
activator protein 1, which leads induction of E3 ubiquitin
ligases Cbl-b and cell cycle arrest (66). CD28-mediated
costimulation complement TCR signaling by activating NF-kB
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and AP1 while releasing the cells from the inhibitory effect of
Cbl-b (66). We speculate that stimulation of Tregs with strong
TCR agonist such as bead-bound aCD3/28 induces imbalanced
activation of transcription factors that triggers negative feedback
to limit Treg proliferation, resulting in short bursts of
proliferation followed by stagnation (67). On the other hand,
CD28SA stimulated T cell activation depends on the expression
of TCR but does not ostensibly induce activation of signaling
intermediates immediately downstream of the TCR such as CD3
chains and ZAP70 (68, 69). Thus, CD28SA delivers a strong
costimulatory signal in the context of a weak TCR signal (70–72),
which may avoid the engagement of negative feedback loops that
leads to earlier cell cycle arrest. The addition of IL-6 and TNFa
may further engage complementary signaling pathways to boost
Treg proliferation. Ongoing work in our laboratory is actively
testing these predications.

Another non-mutually exclusive explanation for the distinct
Treg proliferation patterns is the divergent metabolic programs
induced by aCD3/28 bead versus CD28SA plus IL-6 and TNFa
(beadless protocol). Tregs undergo metabolic reprogramming
after activation to accommodate the anabolic and energy
demands for cell proliferation (73). Previous studies have
reported either preferential fatty acid oxidation (FAO)-fueled
oxidative phosphorylation over glycolysis by Tregs (74–76) or
reliance on both glycolysis and FAO to support Treg
proliferation and suppressive function (77, 78). In our
metabolomic analysis, both bead and beadless stimulations led
to increased intracellular amino acid concentrations, energy
production, and nucleotide synthesis when compared to freshly
isolated Tregs, consistent with their anabolic state. We noted
three major distinctions in the metabolic state of Tregs
stimulated with aCD3/28 beads versus the beadless protocol.
First, while both protocols increased glycolytic flux, the beadless
protocol Tregs had a slightly higher concentration of pyruvate,
but 10 times more intracellular lactate. The conversion of
pyruvate to lactate is coupled with oxidation of NADH to
replenish the NAD+ pool in the cytosol, which is essential in
preventing stagnation of glycolysis from NAD+ shortage (79).
This suggests that Tregs in the beadless protocol had more active
glycolysis. Second, the beadless protocol stimulated Tregs had
higher concentrations of all TCA intermediates measured,
whereas intermediates downstream of citrate were almost
completely depleted in aCD3/28 bead stimulated Tregs. This
suggests that the aCD3/28 bead stimulated Tregs have very low
level of OXPHOS and relied mostly on glycolysis for energy
production. Third, concentrations of total and reduced
glutathione were consistently higher in the beadless protocol
stimulated Tregs, suggestive of greater buffering capability for
ROS. Intense OXPHOS can increase the generation of ROS
leading to cell death. Therefore, reduced glutathione and other
antioxidants are essential for maintaining cells in a high energetic
state by scavenging ROS (80). GSH deficiency in Tregs results in
an imbalanced intracellular redox state and impaired suppressive
function (81). Overall, our data indicate that the beadless
protocol stimulated Tregs have better metabolic fitness that
may contribute to their persistent proliferation.
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It is unclear at this point of our investigations which component
of thebeadlessprotocolcontributed to themore favorablemetabolic
program in Tregs. CD28 costimulation is required for inducing
glycolysis in activated T cells during proliferation (82, 83), and can
also prime mitochondria for increased OXPHOS demand (84).
CD28SA has been shown to drive T effector memory cells into an
adaptable metabolic state that can flexibly maximize glycolysis and
OXPHOS potentials depending on glucose and oxygen availability
(85), but the impact of CD28SA on metabolic programming of
Tregs remains uncertain. Another component of the beadless
protocol, TNFa, may act through TNFR2, to induce a glycolytic
switch in Tregs coupled with shunting of intermediates into the
TCAcycle, therebypromoting anabolic biosynthetic processes (86).
Lastly, it has been reported that STAT3 can localize in the inner
membrane of mitochondria and enhance the efficiency of electron
transport chain and reduce the generation of ROS (87). Further
research is needed to dissect the role of the individual components
of the beadless protocol on Treg metabolism, which is currently
ongoing in our laboratory.

A practical implication of our data is a new protocol for ex-
vivo human Treg expansion. One of the challenges facing Treg
therapy is the ability to reliably manufacture enough Tregs
without the need for repeated stimulations that negatively
affect Treg stability (88–90). The beadless protocol promotes
highly efficient Treg expansion with only one cycle of CD28SA
stimulation. Another advantage of the beadless protocol is the
use of all soluble reagents, thus harvesting of Treg products at the
end of the expansion is simplified. Thus, the beadless protocol
offers several improvements in the Treg manufacturing process.

Taken together, our findings show that human Tregs positively
respond to TNFa and IL-6 by increased proliferation while
safeguarding their lineage stability. With proper stimulation and
the right cytokine milieu, human Tregs can grow exponentially,
which may be a result of balanced transcription and metabolic
programing. We speculate that increased proliferation in response
to inflammatory cytokines allows Tregs to scale to inflammation to
restore immune homeostasis. These properties of Tregs may be
harnessed to improve the manufacturing of therapeutic Tregs for
autoimmune diseases and transplantation.
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