
Frontiers in Immunology | www.frontiersin.

Edited by:
Zong Sheng Guo,

Roswell Park Comprehensive Cancer
Center, United States

Reviewed by:
Tasneem Motiwala,

The Ohio State University,
United States

Sam Kung,
University of Manitoba, Canada

*Correspondence:
Hao Zhang

haolabcancercenter@163.com
Hongmei Dong

hmdong0411@126.com

†These authors share first authorship

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 26 September 2021
Accepted: 04 November 2021
Published: 22 November 2021

Citation:
Xie F, Dong H and Zhang H (2021)

Regulatory Functions of Protein
Tyrosine Phosphatase Receptor

Type O in Immune Cells.
Front. Immunol. 12:783370.

doi: 10.3389/fimmu.2021.783370

MINI REVIEW
published: 22 November 2021

doi: 10.3389/fimmu.2021.783370
Regulatory Functions of Protein
Tyrosine Phosphatase Receptor
Type O in Immune Cells
Feiling Xie1,2†, Hongmei Dong1,2*† and Hao Zhang1,2,3,4*

1 Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China,
2 Department of Pathology, School of Medicine, Jinan University, Guangzhou, China, 3 Department of General Surgery,
The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China, 4 Minister of Education Key Laboratory of
Tumor Molecular Biology, Jinan University, Guangzhou, China

The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple
signal transduction pathways and therefore they play important roles in many cellular
processes, including immune response. As a member of PTP family, protein tyrosine
phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine
phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated
PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells,
macrophages and other immune cells. Therefore, PTPROt may play an important role in
immune cells by affecting their growth, differentiation, activation and immune responses. In
this review, we will focus on the regulatory roles and underlying molecular mechanisms of
PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.
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INTRODUCTION

The protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein tyrosine
kinases (PTKs) themselves or their downstream targets and play key regulatory roles in multiple
signal transduction pathways (1). Earlier studies have identified a total of 107 genes encoding
members of the PTP family in human genome (2). However, the number of the PTP family has
increased to 125 recently because some enzymes previously not considered as PTP family have
recently been found to possess tyrosine phosphatase activity (3). Based on the amino acid sequence
and substrate specificity of each PTP, they have been divided into 4 categories: classical
phosphorylated tyrosine (pTyr)-specific PTPs, dual-specific phosphatases (DSPs), Cdc25
phosphatase, and low molecular weight PTPs (LMW-PTPs). Among them, classical pTyr-specific
PTPs can be further split into intracellular PTPs and receptor-type PTPs. The former is mainly
found in the cytoplasm, while the latter is mainly located on the cell membrane with extracellular
domains responsible for ligand-specific binding (4). All PTPs contain a characteristic motif C(X)5R
(S/T) in their conserved catalytic domain, rendering them a shared catalytic mechanism (5).
Dysfunctional PTPs are responsible for a myriad of human diseases, including cancer, diabetes,
autoimmune diseases, and neurological disorders (6).
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Proper immune response is essential for a healthy body, while
aberrations in immune cell growth, differentiation and activation
lead to inappropriate immune response and result in a wide array
of diseases (7–9). Although abnormal immune responses are
initiated through different mechanisms (10, 11), accumulating
evidence suggests that dysfunctional PTPs lead to an imbalance
between PTPs and PTKs (12, 13), and subsequently the immune
responses. For example, 57-64 PTP-coding genes are generally
expressed in immune cells, while 58-76 PTP-encoding genes
show specific cellular expression patterns of different lineages
(14–16). Protein tyrosine phosphatase receptor type O (PTPRO),
also known as glomerular epithelial protein 1 (GLEPP1), PTP-
U2, PTP-OC, PTPROt, NPHS6, PTP Phi, belongs to the
receptor-type pTyr-specific enzymes, more specifically the R3-
subtype receptor-type PTPs (RPTPs), and was first identified in
rabbit glomerular epithelial cells (podiocytes) (17). Subsequently,
PTPRO has been found in humans, drosophila, mice, and
chicken, suggesting that this gene is well conserved among
different interspecies (18–20). The PTPRO gene is located on
human chromosome 12p12-p13 (18) and is capable of encoding
various transcripts controlled by separate promoters in a tissue-
specific manner (21). The two most studied isoforms are the full-
length PTPRO and the truncated PTPRO (PTPROt),
respectively, and both are selectively expressed in distinct cell
types. The full-length PTPRO, referred as PTPRO, is
predominantly expressed in epitheliums of kidney and brain
(18, 19), especially the glomerular epithelial cells in kidney, and
therefore is also termed glomerular epithelial protein 1
(GLEPP1). PTPRO comprises an extracellular domain with 8
type III fibronectin-like repeats, a transmembrane domain, and
an intracellular catalytic PTP domain (18, 22, 23), and is essential
for glomerular filtration (24) as well as synapse formation (25). It
has been reported that PTPRO can serve as a tumor suppressor
and predictor for diagnosis and prognosis in various cancers
(26–30). Besides, downexpression of PTPRO in epithelial cells
attributes to promoter methylation in multiple types of cancers,
including hepatocellular carcinomas (HCC) (31), breast cancer
(28, 32), lung cancer (27) and esophageal cancer (29), suggesting
that PTPRO may be a candidate target for tumor epigenetic
therapy. Additionally, given the role of PTPRO in restricting
tumor-promoting Jak/Stat signaling transduction that is
associated with tumor immunity (33), recent studies have also
begun to focus on the functional impact of PTPRO on immune
cells residing in tumor microenvironment (30, 34, 35).

However, unlike PTPRO, the truncated isoform of PTPRO,
known as PTPROt, is produced by an alternative intronic and
cell-type specific promoter and is structurally unique with a
much shorter extracellular region composed of 8 amino acids
(21, 36). Nevertheless, its transmembranal domain and cytosolic
catalytic PTP domain are identical to that of PTPRO (36),
suggesting that PTPROt also encodes a fully functional protein
tyrosine phosphatase that captures and catalyzes specific
substrates but may generate disparate effects compared to
PTPRO due to different cell types they are in. PTPROt is
preferentially expressed in hematopoietic cells and cells of
monocyte-macrophage lineage, including osteoclasts (37) and
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macrophages (38), and is closely associated with osteoclast
activity (39) and lymphocyte development (36). The expression
levels of PTPRO/PTPROt as well as its substrates in various
immune cells are summarized in Table 1.

In this minireview, we will summarize the expression, the
regulatory roles and the underlying molecular mechanisms of
PTPRO/PTPROt in the growth and differentiation of immune
cells. We will discuss the PTPRO/PTPROt-regulated immune
processes in different types of immune cells and the new insights
into PTPRO/PTPROt-related diseases and therapies.
THE REGULATORY FUNCTIONS OF
PTPRO/PTPROT IN B CELLS

B cell receptor (BCR) is a transmembrane protein located on the
surface of B cells and functions as a key regulator of B cell
development and adaptive immune response. Like most of the
other receptors associated with lymphocyte activation and
differentiation, the BCR signaling is largely dependent on the
phosphorylation of tyrosine residues mainly by Syk kinases and
Src-family kinases (SFKs), such as Lyn (11, 52). PTPROt expressed
in B cells was shown to restrain the BCR signaling cascade by
suppressing the phosphorylation of Syk and SFKs (40, 41).
Another study using a transgenic mouse model with PTPROt
overexpressed in B cells, further confirmed the important role of
PTPROt in BCR signaling pathway (53). By dephosphorylating
the key components of BCR-mediated signaling pathway, Syk and
Lyn, PTPROt can promote B cell cycle arrest, induce cell
apoptosis, reduce cell proliferation, and is involve in activation
and differentiation of B cells (36, 40, 41) (Figure 1A). Of note,
PTPROt can either activate SFKs by dephosphorylating the
inhibitory C-terminal site (Y527/Src, Y507/Lyn) or restrain SFK
activity by dephosphorylating its autophosphorylation site (Y416/
Src, Y397/Lyn), suggesting that PTPROt can play a dual role in a
context-dependent manner in B cells (53). On the other hand, in a
mouse model of chronic lymphocytic leukemia (CLL) with
endogenous PTPROt complete depletion due to disruption on
the distal promoter of PTPRO gene, loss of homozygous PTPROt
alleles in CLL cells leads to reduced activity of the BCR signaling,
most likely owing to the lack of dephosphorylated Lyn at Y507
(54). Consistent with these data, it has been reported that loss of
PTPROt in normal mice shows no significantly abnormal B cell
activity, while PTPROt-deficient CLL mice exhibit higher tumor
burden and shortened lifespan due to inhibition of the BCR
signaling (54). One of the possible explanations for the normal
B cell activity in PTPROt-deficient mice is that the function of
PTPROt under physiological conditions is redundant for BCR
signaling due to other receptor-type PTPs, such as CD45 and
CD148 (55, 56). Nevertheless, mouse model with simultaneous
absence of PTPROt and other SFK-regulating PTPs in B cells are
needed for further confirmation. On the other hand, similar to the
non-redundant role of PTPROt in BCR signaling in CLL,
downregulation of PTPROt due to frequent methylation has
been demonstrated to relate with aggravated diseases evidenced
by clinical samples as well as in vivo and in vitro experiments,
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which can be attenuated by DNA hypomethylating drug
decitabine (5-aza-deoxycytidine) to restore PTPROt expression
(41, 57). In this regard, PTPROt seems to be more important in B
cell-related lesions. Furthermore, several factors transcriptionally
or epigenetically downregulate PTPROt in B cell lymphoma by
targeting its promoter directly (58) or indirectly (59). Therefore, a
better understanding of the regulatory roles of PTPROt in B cells
may offer novel therapeutic strategies in the treatment of B cell-
related diseases. In addition, recent studies have emphasized the
significant role of B cells in solid tumor microenvironment,
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aiming to develop novel strategies for tumor immunotherapy
and improve the effect and application of immunotherapy (60–
62). Tumor-infiltrating B lymphocytes (TIBs) are found in some
tumor tissues and are found to be positively correlated with
patients’ response to immunotherapy, offering a new strategy for
tumor immunotherapy (63–65). Notably, TIBs respond to BCR
stimulation (61). Since PTPROt is involved in B cell development
and activation via the BCR signaling pathway, it will be interesting
to explore how PTPRO/PTPROt of TIBs to reshape tumor
microenvironment and effect tumor immunotherapy.
CBA

FIGURE 1 | Regulatory functions and mechanisms of PTPRO/PTPROt in immune cells. (A) In B cells, PTPROt induces apoptosis and negatively regulates BCR
signal cascade amplification via dephosphorylating BCR-triggered Syk and Lyn at its active tyrosine phosphorylation site (Y397). Activation of the associated adaptor
proteins SHC and BLNK, and downstream signaling events, including MAPK/ERK activation, are blocked by PTPROt, leading to the inhibition of B lymphocyte
proliferation. PTPROt can also dephosphorylate Lyn at its inhibitory tyrosine phosphorylation site (Y507) and TCR-associated tyrosine kinase ZAP70 anomalously
expressed in human primary chronic lymphocytic leukemia (B-CLL). (B) In T cells, PTPROt is mainly responsible for the inhibition of inactive Lck with Y505
phosphorylated, and thus enhances TCR signaling as well as its downstream events, including T cell proliferation and T effector cell differentiation. T effector cells
boost immune response via the secretion of IFN-g. PTPROt can also motivate NF-kB signaling pathways, which facilitate the production of pro-inflammatory factors,
IFN-g and TNF-a, and subsequently enhance immunity. On the other hand, PTPROt inhibits the phosphorylation of Stat5 and blocks its promotion on the
differentiation of regulatory T cell. The latter negatively regulates immune response by suppressing T effector cell differentiation through secreting inhibitory TGF-b, IL-
10 and IL-4. (C) PTPROt can promote the motility of macrophages but inhibit adhesion via promoting phosphorylated paxillin dephosphorylation, which can be
blocked by CSF-1. In an inflammatory environment, such as LPS stimulation, NF-kB signaling pathways are motivated by PTPRO/PTPROt with increased
phosphorylated IkBa and p65, which induce the expression of pro-oxidation and pro-inflammatory genes and thus aggravate inflammation and promote immune
response. PTPRO can also block Jak2/Stat1 and Jak2/Stat3/c-Myc pathways so as to enhance immunity via reducing the expression of PD-L1.
TABLE 1 | PTPRO/PTPROt expression, substrates and functions in immune cells.

Immune cell Expression Substrates Functions

B cell High (36) Syk (40), Lyn and ZAP70 (41) Inhibition on B cell proliferation and activation (36, 40);
promotion on B cell apoptosis (40)

T cell High (34, 42) Lck (34) Promotion on T cell proliferation, proinflammatory factor secretion and T effector cell differentiation
(34, 42);
inhibition on regulatory T cell differentiation (34)

Macrophage High (38) Paxillin (43) Promotion on macrophage motility, chemotaxis, and inhibition on macrophage adhesion (43–45);
promotion on inflammation and immune response (46–51)

Dendritic cell High (14, 45) Undetermined Undetermined
NKT cell High (14) Undetermined Promotion on inflammation (42)
NK cell High (42)/Low (14) Undetermined Promotion on inflammation (42)
Neutrophil High/Low (45) Undetermined Promotion on chemotaxis (45)
Mast cell Low (14) Undetermined Undetermined
NKT cell, natural killer T cell; NK cell, natural killer cell.
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THE REGULATORY FUNCTIONS OF
PTPRO/PTPROT IN T CELLS

T cells are the major players of the cellular immunity. Proliferation,
differentiation and activation of T cells heavily depend on T cell
receptor (TCR)-mediated signaling pathways. SFKs, especially SFK
Lck and its downstream ZAP70 are crucial for TCR signaling
pathway (66–68). It has been demonstrated that the ectopically
expressed Lck and ZAP70 in H293T cells can be dephosphorylated
by PTPROt, and that PTPROt-catalyzed dephosphorylation of Lck
(Y394) leads to Lck inhibition (41). Although mice with PTPROt
deficiency specifically in T cells have not been developed, PTPRO-
deficient mice generated by targeting the putative exon 3, the
interruption of which also leads to the depletion of PTPROt (24),
also provide evidence to unveil the underlying function of PTPROt
in T cells. In this respect, in vitro study on PTPROt-deficient T cells
isolated from PTPRO-deficient mice suggested that Lck as well as
TCR are activated by PTPROt (34) (Figure 1B). Since the level of
phosphorylated Lck (Y505) in PTPROt-deficient T cells are higher
than that of wild-type T cells, it is proposed that PTPROt promotes
T cell proliferation by activating Lck (34). Further investigation
found that on the one hand PTPROt promotes T effector cell (Teff)
differentiation by activating Lck, and on the other hand it inhibits
regulatory T cell (Treg) differentiation by enhancing Stat5
dephosphorylation. These findings suggested that by maintaining
the proper Teff/Treg balance in tumor microenvironment PTPROt
can enhance T cells’ anti-tumor immune response (34) (Figure 1B).
In addition, in fulminant hepatitis (FH) the PTPROt/NF-kB
signaling pathway plays an indispensable role in both innate and
adaptive immunity through inducing CD4+ and CD8+ T cells to
secrete IFN-g and TNF-a (42). Apart from the regulatory role of
PTPROt in T cell activation, proliferation and differentiation, a
recent study reported the governance of PTPRO on T cell quantity
in a novel indirect way through downregulating the expression of
PD-L1 on the surface of tumor-associated macrophages (TAMs)
(46). The activation of PD-1/PD-L1 signaling pathway is widely
involved in a series of processes such as T cell activation,
proliferation and apoptosis, and inhibits the cellular immune
response mediated by T cells. Tumor cells and tumor
microenvironment limit host immune response by upregulating
PD-L1 to bind to PD-1 on the surface of tumor-specific CD8+ T
cells (69). Moreover, the expression of PD-L1 in tumor cells is
largely supported by the activation of EGFR, MAPK, PI3K/Akt or
Jak/Stat3 pathways (70), some of which are found to be restrained
by PTPRO in several cancer types (33, 40, 71). Therefore, it can be
implied a novel role of PTPRO/PTPROt as a prohibitor of tumor
immune escape, and PTPRO/PTPROt potentially serves as a
promising candidate for future therapeutic interventions, shedding
a new light on anti-tumor immunotherapy.
THE REGULATORY FUNCTIONS OF
PTPRO/PTPROT IN MACROPHAGES

By serving as the first line of defense against pathogenic
microorganisms, macrophages play an important role in both
Frontiers in Immunology | www.frontiersin.org 4
innate and adaptive immunity. Mechanically, macrophages secrete
large quantities of cytokines and chemokines, such as IL-1, IL-6,
IL-12, TNF-a and CXCL8, to attract other types of immune cells
to initiate a local inflammatory cascade (72). Through colony-
stimulating factor 1 (CSF-1) and dephosphorylation of paxillin,
PTPROt is involved in the regulation of macrophage morphology
to decrease adhesion ability, resulting in increased motility and
chemotaxis (43–45) (Figure 1C). Under inflammatory conditions,
such as bacterial endotoxin lipopolysaccharide (LPS) stimulation,
the macrophages with PTPRO deficiency fail to upregulate both
toll-like receptor 4 (TLR4) and TLR4/NF-kB pathway and
therefore lead to reduced secretion of pro-inflammatory
cytokines. On the other hand, overexpressed PTPRO not only
upregulates TLR4 but also promotes macrophage-mediated
inflammation, resulting in aggravated local tissue injury and
organ dysfunction (47–49) (Figure 1C). Nevertheless, the
precise mechanism underlying the interaction between PTPRO
and TLR4 still remains unknown, and mouse model with
macrophage-specific PTPRO deficiency could provide a deep
understanding of the correlation. Notably, recent study has
demonstrated that the inflammation-promoting PTPROt in liver
macrophages also forms a negative feedback loop to restrict
inflammation by promoting mitophagy to reduce ROS
production (73). Therefore, it is of great significance to prevent
the destructive effect of PTPRO/PTPROt in macrophages to
maintain microenvironment balance. In this respect, several
non-coding RNAs have been identified to target to regulate the
expression of PTPRO at the posttranscriptional level, offering new
targets for the treatment of PTPRO/PTPROt-mediated excessive
inflammation in macrophages. For example, miR-6869-5p
downregulates PTPRO in placenta-derived mononuclear
macrophages and enhances M2 macrophage polarization and
thus astricts inflammation (50). MiR-548c-5p acts as anti-
inflammatory factor via suppressing the expression of PTPRO
and the activation of PTPRO/NF-kB pathway in LPS-stimulated
macrophages (51). However, more unknown miRNAs have yet to
be predicted and proved to regulate the expression of PTPRO in
the basic research stage, and in vivo experiments are needed to
promote clinical transformation. Despite of the pro-inflammation
effect of PTPRO, PTPRO in TAMs is found to positively regulate
the immune response of T cells and thus suppress tumor
progression (46). By prohibiting PD-L1 on the surface of TAMs
through blocking Jak2/Stat1 and Jak2/Stat3/c-Myc pathways,
TAM-associated PTPRO can prevent T cells from draining in
HCC microenvironment (46). This observation raises the
possibility that combination of PTPRO and immune checkpoint
inhibitors could enhance anti-tumor immunity synergistically.
THE REGULATORY FUNCTIONS OF
PTPRO/PTPROT IN OTHER TYPES OF
IMMUNE CELLS

Apart from the above-mentioned immune cells, other types of
immune cells, such as dendritic cells (DCs), natural killer (NK)
cells, mast cells and neutrophils, are indispensable to the immune
November 2021 | Volume 12 | Article 783370
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system and are displaying promising application values in
disease treatment. PTPRO/PTPROt also plays an important
role in other immune cells. The analyses on the murine global
PTP transcriptome based on the RefDIC database discovered the
high expression of PTPRO in immature DCs, equivalent to that
of macrophages, while lower level of PTPRO was observed in NK
cells and mast cells (14). Although the unchanged mRNA
expression level of PTPRO/PTPROt was found in human
activated DCs (45) and in BALB/c mouse-derived DCs after 4-
hour bacterial LPS stimulation (14), the significant reduction in
PTPRO of mouse DCs after 48-hour LPS stimulation suggested
that PTPRO may be controlled by subsequent cytokines
produced in the early stage but not induced directly by LPS
(14). However, whether the unchanged or altered PTPRO/
PTPROt expression correlates with DC-associated activities,
such as differentiation, proliferation, activation, antigen
presentation and so on, remains largely unknown. Based on
several PTPs, such as PTEN and SHP-1, confirmed to be negative
regulators for DC activation by dephosphorylating and
inactivating receptor-associated tyrosine kinases, which affect
the antigen uptake and presentation capacity of DCs, it is
possible that the membrane-located PTPRO/PTPROt with
similar phosphatase activity may participate in the events
associated with DC activation (74). In addition, PTPRO-
deficient hepatitis mouse model induced by Con A, a hepatic
inflammation inducer, was constructed to investigate the
activation and function of NK/NKT cells (42). This in vivo
investigation on the inflammatory PTPROt-deficient NK/NKT
cells isolated form PTPRO-deficient mouse spleen and liver
mononuclear cells using magnetic beads demonstrated
weakened activation and damaged function of NK/NKT cells
with less detectable IFN-g and TNF-a, which is possibly
attributed to the NF-kB signaling inactivation (42). These data
preliminarily indicated that PTPRO/PTPROt is also an
important factor for the maintenance of NK/NKT cell
function. Furthermore, since the PTPRO/PTPROt catalytic
domain encoding mRNA expression is readily detectable in
mouse neutrophils, inhibitors that targeted to PTPRO/PTPROt
prohibit thioglycolate-induced peritoneal chemotaxis of
neutrophils probably through blocking PTPRO/PTPROt-
mediated dephosphorylation of certain substrates that are
essential for neutrophil motility (45), like the above-mentioned
paxillin in macrophages. However, mechanistic investigation on
how PTPRO/PTPROt regulates these subsets of immune cells
remains largely to be explored. Therefore, more functional
studies are badly needed to illustrate the exact role of PTPRO/
PTPROt in these immune cells in the future so as to achieve more
therapeutic effects.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

In addition to a potent tumor suppressor, PTPRO/PTPROt also
plays a crucial role in the signaling pathways in B cells, T cells
and macrophages. PTPROt has dual impact on B cells via
dephosphorylating a key member of the BCR signaling
pathway, Lyn at its active and inhibitory tyrosine residues
under different circumstances, albeit it is mainly responsible
for the deceleration of B cell-related cancer progression. PTPRO/
PTPROt is also capable of positively enhancing anti-tumor
immunity in both T cells and macrophages while brings about
negative effects in several macrophage-related inflammatory
diseases. Therefore, PTPRO/PTPROt confers a promising
therapeutic target in inflammation and cancers and other
relevant diseases. However, with the development of advanced
technologies, such as RNA sequencing, proteomics, CRISPR and
lineage tracing, more undiscovered and cell-specific substrates
and upstream regulators of PTPRO/PTPROt remain to be
explored to unveil the comprehensive network of PTPRO/
PTPROt. Given the inadequate understanding of the roles of
PTPRO/PTPROt and the underlying mechanisms in other types
of immune cells, additional studies are needed to resolve the
unsettled issues proposed in this review.
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