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Immunomodulatory therapies have fueled interest in targeting microglial cells as part of the
innate immune response after infection or injury. In this context, the colony-stimulating
factor 1 (CSF-1) and its receptor (CSF-1R) have gained attention in various neurological
conditions to deplete and reprogram the microglia/macrophages compartment.
Published data in physiological conditions support the use of small-molecule inhibitors
to study microglia/macrophages dynamics under inflammatory conditions and as a
therapeutic strategy in pathologies where those cells support disease progression.
However, preclinical and clinical data highlighted that the complexity of the
spatiotemporal inflammatory response could limit their efficiency due to compensatory
mechanisms, ultimately leading to therapy resistance. We review the current state-of-art in
the field of CSF-1R inhibition in glioma and stroke and provide an overview of the
fundamentals, ongoing research, potential developments of this promising therapeutic
strategy and further application toward molecular imaging.
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INTRODUCTION

Inflammation is a biological process triggered by injuries, infections
and damages suffered by the cells that disrupt tissue homeostasis.
Together with the innate and adaptive immune responses, they are
discussed as essential factors in the onset and progression of many
neurological conditions (1). Therefore, the use of neuroprotective
and immunomodulatory agents that curtail inflammation has
become an essential area of research. The failure of clinically
effective translation is partly due to the complexity of molecular
alterations and the spatiotemporal functional dynamics of the
different cellular players. Still, targeting specific inflammatory and
immune pathways represents a promising therapeutic strategy in
many neurological diseases requiring further investigations (1). One
of themajor players highly investigated is microglia (2–5). As part of
the resident immune cells, microglia quickly activate after injury by
producing chemokines, cytokines and other signalling molecules.
These cells show evolving detrimental pro- and/or beneficial anti-
inflammatory properties, worsening and/or promoting tissue repair,
respectively (6, 7). Their spatiotemporal function and contribution
to disease have been extensively investigated using different systems
(genetic animal models, drug-based interventions) (8, 9). In this
review, we focus on the pharmacological intervention employing the
colony stimulating factor-1 receptor (CSF-1R) inhibitors, which
stands as a powerful drug-based approach to study microglia
dynamics under inflammatory conditions, with a promising
translational value (10).
MICROGLIA

Microglial cells serve as regulators of homeostasis in the central
nervous system and represent the first line of defence against
infection and injury (11). They are long-living cells and have an
intrinsic capacity for self-renewal (12, 13). Highly ramified, they
continuously sense the local environment by extending and
retracting their processes (14, 15). In case of injury or
infection, microglia are highly dynamic cells capable of
undergoing quick transcriptome changes depending on the
type of signals sensed in their environment (15).

They play a significant role in neuronal plasticity and synaptic
connections (14, 16). They shape neuronal networks and control
synaptic pruning, serving an essential role in learning and
memory. Furthermore, microglia secrete neurotrophic factors
that affect synaptic plasticity and promote synapse formation,
including insulin-like growth factor 1 (IGF-1), brain-derived
neurotrophic factor (BDNF) and transforming growth factor
(TGF)-b (17). Mice depleted of microglia showed deficits in
learning tasks and significantly reduced synapse formation (16).
It highlights the importance of microglia in activity-dependent
plasticity, with proper neuron-microglia cross-talk essential for
neural network landscape (18).

Microgl ia show region-dependent molecular and
transcriptional heterogeneity in physiological conditions.
Masuda et al. (19) reported the existence of ten microglia
subtypes in the healthy mouse brain (19, 20). Ten clusters (C1-
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C10) were differentiated by their different gene expression
profile, including C1-C6 to be embryonic microglia and C7-
C10 to be postnatal microglia. Results indicated that tmem119,
Selplg and Slc2a5 markers were highly expressed in postnatal
microglia compared to embryonic microglia, indicative of cell
maturation. It was suggested that the four postnatal clusters
might be related to different cell functions (19). Additional
clusters were observed in inflammatory conditions, such as
demyelinating and neurodegenerative diseases, suggesting that
a pathological environment can trigger additional disease-
specific microglial subpopulations (20, 21), displaying enriched
disease-related genes. Moreover, some microglia clusters may
also be depleted in neurodegenerative diseases (22).

A major limitation in tracking microglia-specific
contributions to different pathological pathways is that they
share many common features with bone marrow (BM)-derived
macrophages, including morphologies, surface markers and
other characteristics (23). That explains the frequent use of the
terminology microglia/macrophages to describe this family of
mononuclear myeloid cells. In response to infection or injury,
peripheral myeloid cells (including macrophages, bone marrow-
derived monocytes, etc.) are recruited to the injured tissue and
exhibit similar morphology and expression patterns to microglia,
forming a pool of indistinguishable activated myeloid cells (24).
However, microglial cells do have a unique transcriptomic
signature, and therefore they potentially exert different
functions compared to macrophages. Microglia also show
physiological differences: (i) resident microglia cells are long-
lasting cells, (ii) they self-renew and (iii) they are not replaced by
peripheral bone marrow-derived cells (17). Recently, Butovsky
et al. described putative 89 markers for resident microglial cells
(5), including P2ry12, Tmem119, Olfml3, Hexb, Sall1, etc.,
identified in gene-expression studies. Different genetic and
pharmacological strategies have been implemented and are
currently developed to investigate microglia/macrophages
functions, including genetic ablation or inhibition of the
previously reported markers. A promising approach includes
inhibiting the colony stimulating factor-1 receptor by small
molecule inhibitors since this receptor is almost exclusively
expressed by microglial cells in a steady-state brain where it
regulates their developmental functions, including survival,
differentiation, and proliferation.
CSF-1R INHIBITION-INDUCED
DEPLETION AND REPOPULATION IN
PHYSIOLOGICAL CONDITIONS

The colony-stimulating factor-1 receptor (CSF-1R), also known as
macrophage colony-stimulating factor (M-CSF) receptor, is a
transmembrane tyrosine kinase receptor found at the cell surface
ofmicroglial cells, bone-marrow-derivedmacrophages,monocytes,
andother cell types (osteoclasts, dendritic cells). TheCSF-1/CSF-1R
axis regulates cell survival, proliferation, differentiation, and
functions of the mononuclear phagocytes (25, 26).
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CSF-1R exists as an autoinhibited form and activates through
dimerization and auto-phosphorylation of several tyrosine
residues initiating a signalling cascade and the internalization
of the receptor. The cascade is activated upon binding the
endogenous CSF-1 or interleukin-34 (IL-34) and includes
PI3K-AKT and AMPK pathways implicated in macrophages
differentiation. Both cytokines promotes macrophages survival,
differentiation and proliferation but show different ability to
polarize macrophages (27). They share low primary sequence
homology, but show similar folding/tertiary structure and
interact with overlapping regions of CSF-1R (26). They exhibit
different spatiotemporal patterns of expression and play
complementary roles during development and adulthood. In
the brain, CSF-1 is primarily expressed by the innate immune
cells (astrocytes, microglia and oligodendrocytes) while IL-34 is
secreted by neurons. IL-34 acts locally, not only on CSF-1R, but
also on protein tyrosine phosphatase-z (PTP-z) and CD138,
while CSF-1 is also found in the circulation and selective for
CSF-1R (26). Furthermore, blocking of CSF-1 and IL-34 led to
significant depletion in white and grey matters respectively,
highlighting that those cytokines are differentially required for
microglia maintenance in the different brain compartments (28).
Accordingly, microglia are reduced by 30% in Csf1-null brains
while reduced by 70% in IL-34-null brains but almost fully
depleted in CSF-1R-/- deficient mice (29).

A low level of CSF-1 stimulates microglia survival and
inhibits protein degradation, while increased CSF-1 expression,
as observed in inflammatory conditions, was associated with cell
proliferation and enhanced migration (26). Additionally, CSF-1R
activates several regulators of multipotent progenitor cell
differentiation, directing the cell fate toward monocyte/
macrophages or granulocytes.

Many CSF-1R inhibitors have been developed (Dasatinib,
PLX3397, PLX5622, Ki20227, PLX647, GW2580). Among them,
PLX5622 (Plexxikon Inc.) is a potent inhibitor of the kinase
activity (KI = 5.9 nM) showing high selectivity over other kinases
(29, 30). X-ray crystal structure of the CSF-1R-PLX5622 complex
shows that PLX5622 binds to the active site (pocket) of the CSF-
1R by forming hydrogen bonds (30).

Under physiological conditions, CSF-1R inhibition causes a
reversible depletion of the microglial population within a few
days (29, 31). Roughly, around 50% of the microglia population
is depleted within three days and over 90% after one week of
treatment (29), with sustained effect over the month with
continuous administration (29, 31). Elmore et al. (29) showed
that depletion was induced via apoptosis (29) and did not result
from the cell dedifferentiation into an intermediate cell type (32).
Depletion did not have a discernible impact on baseline
inflammation-related markers level (ROS, cytokines). However,
investigations on the resistant Iba-1+ cells in wild-type brains
indicated that those cells displayed elevated inflammatory
chemokines and proliferation marker and reduced homeostatic
markers expression (13).

Elimination of CSF-1R+ cells has no apparent long-lasting
impact on neurological functions (29, 33, 34). Torres et al. (34)
showed a transient alteration in spatial learning and memory
Frontiers in Immunology | www.frontiersin.org 3
after seven days of treatment (PLX3397) that vanished after 21
days, as previously reported by others (29). Additionally, no
apparent effect on brain volume or blood-brain barrier integrity
was observed under physiological conditions (29).

Besides, peripheral myeloid cells, including monocytes/
macrophages, also express CSF-1R. Therefore, the depletion of
microglia may affect the baseline peripheral immune response
depending on the duration and way of administration. Otxoa-de-
Amezaga et al. (35) observed a reduction in a minor subset of
blood Ly6C- monocytes which are dependent on CSF-1R (35). A
recent investigation reported that systemic PLX5622 treatment
leads to broad myelosuppression and has long-term
consequences even after drug withdrawal (36). CSF-1R
inhibition significantly reduces CCR2+ monocytes, F4/80+ and
MerTK+ cells, T lymphocytes in bone marrow, and also spleen
and blood cell populations (36).

PLX5622 treatment has minimal impact on neurons while its
effect on astrocytes and oligodendrocytes is still controversial.
Elmore et al. (29) observed a slight increase in GFAP and S100
markers (at mRNA and protein level) (29, 37) but no changes in
cell number or morphology (29, 38) after short-term treatment.
However, Torres et al. (34) indicated that GFAP+ cells had
thicker processes and higher intensity after seven days of
treatment with PLX3397 (34). These results were consistent
with Erblich et al. (39) that showed higher expression of GFAP
and cell density in mice lacking CSF-1R (39).

Of interest, the action of drug-induced CSF-1R inhibition is
reversible, meaning that withdrawal of the treatment allows the
fast replenishment of the microglial population (40) from the
resistant cells (13) without contribution from the bone marrow-
derived cells. After near-complete depletion, repopulating
microglia displayed enlarged cell bodies and a lack of
ramifications within three days post-withdrawal (29, 40). After
seven days, the microglia number increased by 160% of that in
control mice, showing intermediate morphology and a cluster-like
organization (13). By day 21 post-withdrawal, microglia returned
to normal morphology and number (13, 40). Furthermore, Zhan
et al. (41) indicated that PLX5622 withdrawal triggered the
proliferation of the (Iba-1+) microglial cells and non-microglial
(Iba-1-) cell populations within the first days of repopulation (13).
They identified small subsets of Iba-1- DCX+ and Iba-1- Olig2+,
markers of neurogenesis and oligodendrocytes, indicating that
repopulation affects other resident cell types.

Comparison of gene expression indicated that BM-derived
macrophages are highly different from steady-state microglia
and, newly generated microglia after repopulation. Fewer
differences were observed between control and newly
repopulating microglial cells (32), indicating that repopulating
microglia can keep most of their steady-state signature (13).
However, morphologically, all three subtypes show similar cell
body features. More detailed investigations revealed that
repopulated microglial cells have a different transcriptome than
resident microglia, showing upregulated cell-cycle (proliferation)-
related gens Cdk1a and Mki67 and migration-related gene CD36
(32) but their impact on cell functionality has still to
be investigated.
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Additionally, Elmore et al. reported that control and newly
repopulated microglia likely responded to lipopolysaccharide
stimulation, indicating that both repopulated and steady-state
microglia might also show similar reactivity and functional
activity (42, 43). However, ex vivo analysis suggested that
repopulated microglia showed reduced pro-inflammatory gene
expression after stimulation to Toll-like receptor agonists (44),
indicating that in some cases newly repopulated microglia might
have attenuated pro-inflammatory activity, depending on the
signalling molecules they sense.

Some depletion-repopulation paradigms in pathological
conditions indicated that repopulation may resolve the activated
microglial phenotypes and therefore, solve chronic microglia/
macrophages-induced neuroinflammation (40, 45). Repopulation
reduced almost half of the 46 genes overexpressed following
neuronal lesion (40). Those genes were related to monocyte
chemoattraction, endothelial transmigration of leukocytes and
microglial proliferation, survival, phagocytic activity, and
apoptotic pathway. It also resulted in the almost complete
reversal of behavioural impairment observed with the elevated
plus maze and Morris maze test. Similarly, (45) investigated the
therapeutic effect of microglia depletion and repopulation during
the chronic phase of experimental traumatic brain injury. They
reported that short-term depletion followed by repopulation
rescued microglia morphology, reduced neuroinflammation,
oxidative stress, apoptosis and improved motor and cognitive
functions (45).

On the other hand, there are also reports of absent therapeutic
effects of microglia repopulation. In experimental autoimmune
encephalomyelitis (EAE), drug withdrawal resulted in a rapid re-
emergence of symptoms, leading eventually to peak scores
comparable to those in control EAE mice, associated with an
increase in microglia number 5-6 days after drug withdrawal
(46). Moreover, the newly generated microglia triggered a
degenerative inflammatory response upon their reappearance.
Altogether, it seems that beneficial disease outcomes after CSF-
1R inhibition-induced microglia repopulation are dependent on
the disease model and therapy time window (46).

The Colony Stimulating Factor-1 Receptor
in Glioma
Immunotherapies represent a promising approach for treating
cancer. Despite favorable results obtained treating different tumor
types (47–50), they have not proven to be efficient in glioma so far.
Treatment failure is likely related to the extensive spatial and
temporal heterogeneity of the glioma microenvironment (51) and
the numerous immunosuppressive mechanisms the tumor
exploits, such as immune surveillance evasion.

Microglia are part of the innate immune response and are
responsible for the phagocytosis of abnormal cells. However, in
the tumour microenvironment (TME), they acquire a
pro-tumorigenic phenotype under the influence of the tumour
cells. Similarly, tumour-associated macrophages (TAMs) are
differentiated from monocytes precursors recruited from the
systemic reservoirs to the tumour in response to cytokines and
chemoattractants released by tumour cells, including the CSF-1
Frontiers in Immunology | www.frontiersin.org 4
ligand (52), ultimately supporting the immunosuppressive
environment (53, 54). In glioma, these cells are also known as
glioma-associated microglia/macrophages (GAMM) and
represent around 30-50% of the total tumour mass (55).
Single-cell profiling indicated that microglia and TAMs
differentially contribute to the glioma environment over time,
with an early microglial and late TAM contribution (51). GAMM
favour tumour progression by releasing pro-tumorigenic, pro-
survival and growth factors (56). They promote escape from the
tumour immune response by boosting glioma angiogenesis,
growth and invasion (57), suppression of cytotoxic T cell
functions and induction of an immunosuppressive regulatory
T (Treg) cell response (58). Additionally, GAMM has been
associated with tumour progression and therapy resistance
(59). Therefore, targeting GAMM may provide an important
advantage over current standard therapy (60).

Efficient targeting of TAM using small molecule CSF-1R
inhibitors was assessed in many tumour models, including
solid tumours and breast cancers (61, 62). High levels of CSF-1
and CSF-1R have been observed in high-grade human glioma,
supporting their pivotal role in tumour growth. The level of
CSF-1 was correlated with tumorigenesis and increased GAMM
density. Accordingly, targeting the CSF-1/CSF-1R axis may
represent a potential therapeutic approach in glioma (63).

Significant reduction of TAM was achieved in different
tumour models using CSF-1R inhibitors, partly due to the
impaired recruitment and maturation of infi ltrating
monocytic TAMs precursors (64). While CSF-1R inhibition
reduces the GAMM density, resistant cell populations were
observed across different tumour types, including glioma (65,
66). Interestingly, Pyonteck et al. observed a substantial
reduction in tumour growth, whereas Coniglio et al. reported
a more subtle effect with decreased cell invasion and no effect
on proliferation or survival, highlighting that CSF-1R
inhibition therapeutic effects may depend on the glioma
subtype (proneural vs mesenchymal). Nevertheless, the
resistant TAM showed downregulated pro-tumorigenic
markers expression, potentially slowing tumour progression
in pancreatic cancer, cervical and mammary tumour and
melanoma or improving the response to other treatments
(67–69). In glioma models, CSF-1R inhibition delays
recurrence and slightly prolonged overall survival (70) by
altering the immune cell polarization state toward a less
immunosuppressive phenotype (66). Different CSF-1R
inhibitors and anti-CSF-1R antibodies have been tested in
preclinical studies and clinical trials (71), to lower TAM
burden, reprogram GAMM towards an anti-tumorigenic
phenotype and stimulate the T-cells response (61). Despite
promising results, they failed to show substantial efficacy across
multiple tumor types (71) as well as in glioma (72, 73). Therapy
resistance was predominantly associated with increased Foxp3+

Treg influx in response to macrophage depletion (74) and
enhanced recruitment of other pro-tumorigenic cell
populations such as myeloid-derived suppressor cells (75, 76).
Those studies highlighted the main role of the TME in
supporting therapy resistance.
December 2021 | Volume 12 | Article 787307

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barca et al. CSF-1R in Neurological Disorders
CSF-1R monotherapy falls short in providing therapeutic effects
due to acquired resistance (66, 76, 77) (Figure 1). In experimental
glioma models, CSF-1R inhibition significantly prolonged overall
survival while recurrence was observed in a considerable subset of
animals. Acquired resistance to long-term CSF-1R inhibition was
correlated with increased insulin-like growth factor (IGF-1)
signaling between macrophages and tumor cells, leading to
aberrant activation of phosphatidylinositol 3-kinase (PI3K)
signaling, therefore promoting tumor cell survival and invasion
(77). Glioma recurrence was also associated with increased levels of
granulocyte-macrophage (GM)-CSF and interferon (IFN)- g,
leading to TAM persistence (66). Other studies reported that
upregulation of the T cell immune checkpoint molecules, such as
programmed cell death 1 ligand (PD-L1) and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), should also be
considered as a potential escape mechanism from CSF-1R
monotherapy (67, 78). Antonios et al. (78) demonstrated
that CSF-1R therapy indirectly promotes tumor-infiltrating
lymphocytes (TILs) recruitment within the gl ioma
microenvironment (78). TILs are an important cellular source of
PD-L1 expression and therefore, their infiltration could promote
Frontiers in Immunology | www.frontiersin.org 5
immune escape and resistance mediated by the PD-1/PD-L1 axis.
Altogether, resistance to CSF-1R monotherapy may be explained
by the cellular heterogeneity of the tumor microenvironment
beyond GAMM. Accordingly, single-agent therapy with CSF-1R
inhibitor has demonstrated very modest results in glioblastoma
clinical trials, showing no significant improvement of the
progression-free survival of the patients (79, 80).

Accordingly, ongoing studies are currently combining CSF-
1R therapy and immune-checkpoint inhibitors in different types
of tumors (81). CSF-1R therapy in cancer seems to have mostly a
synergistic effect and improve other treatments, such as adoptive
cell transfer immuno-therapy or platinum-based chemotherapy
in breast cancer models (82, 83). In glioma, CSF-1R inhibition
was combined with ionizing radiation and potentiated the
response of the tumour to irradiation, indicated by decreased
irradiation-induced monocytes recruitment, reduced pro-
tumorigenic TAMs and longer survival (84). CSF-1R inhibitors
are also reported to enhance the anti-tumoral T-cell responses
when combined with immune-checkpoint inhibitors like anti-
PD-1 antibodies (70, 78, 85). In glioma, the combination of both
therapies increased cytotoxic CD8+/CD4+ and CD8+/FoxP3+ T
FIGURE 1 | CSF-1R inhibition monotherapy in glioma. In glioma models, CSF-1R inhibition delays recurrence, and therefore slightly prolong overall survival with
no significant effect on tumour growth. Reported resistance mechanisms to CSF-1R inhibition include increased insulin-like growth factor (IGF-1) signaling between
macrophages and tumor cells, ultimately promoting tumor cell survival and invasion (77), increased levels of granulocyte-macrophage (GM)-CSF and interferon
(IFN)- g, leading to TAM persistence (66) and increased tumor-associated lymphocytes infiltration favoring the immunosuppressive PD-1/PD-L1 signaling (78).
Created with Biorender.com.
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cell ratios, indicative of an enhanced anti-tumour activity (70),
leading to longer-term surviving animals. Interestingly, Ali and
colleagues investigated different combinatorial therapies,
considering CSF-1R, PD-1 and other targets, in glioblastoma
and highlighted the importance of the therapy-induced time-
dependent changes in TME cells (86). Therefore, further
preclinical and clinical research should combine CSF-1R
inhibition with other therapies to enhance therapeutic effects
and investigate the optimal therapy paradigm.

The Colony Stimulating Factor-1 Receptor
in Stroke
Microglial cells play a significant role in initiating, maintaining,
and resolving the inflammatory response after stroke. Microglia
cells drastically change their morphology, gene expression,
expression of inflammatory mediators, and surface molecule
organization after detecting signs of injury such as intracellular
calcium waves or ATP release. Based on the temporal changes of
marker expression, microglial cells have potentially an early
(beneficial) anti-inflammatory effect, while detrimental pro-
inflammatory microglia seem to dominate at later stages (87).
In experimental stroke, the level of anti-inflammatory markers
peaked around day 4 post ischemia, while a wave of pro-
inflammatory markers increased over the first two weeks,
peaking around day 14 post ischemia (87).

PLX5622 and derivatives have been investigated in transient
and permanent middle cerebral artery occlusion (MCAo) rodent
models to understand how microglia depletion prior to stroke
may affect disease outcomes. From the preventive studies, data
confirmed that microglia might confer protection against injury
at an early stage (Figure 2A). A 21-day PLX3397 microglia
depletion prior to a transient middle cerebral artery occlusion
(tMCAo) worsens disease outcomes, including increased brain
injury, enhanced excitotoxicity and altered neuronal activity
(89). Effect on brain injury/infarct size was also observed in a
TBI mice model (90): depletion of microglia using PLX5622
(from 7 days before to 3 days after TBI) also increased the core
size at day 3 (90).

In line with these findings, Wei Na Jin et al. (91) reported that
uninterrupted PLX3397 treatment before and after MCAo
exacerbated neurological deficits, brain inflammation (cytokine
levels), cell death and leukocyte infiltration within the first days
after ischemia (35, 91). Similarly, 35 reported continuous CSF-
1R inhibition starting three weeks before ischemia increased the
number of infiltrating neutrophils but reduced the numbers of
monocytes (-40%), F4/80+ macrophages (-80%) at day 4 post
ischemia (35). Additionally, increased CD4+T and NK cell
counts correlated with a decrease of the corresponding
leukocyte subsets in the spleen. Altogether, these studies
suggest that the presence of CSF-1R+ cells has beneficial effects
within the first 3 days post ischemia, reducing neurological
deficits, cell death, ROS levels, leukocytes infiltration,
neuroinflammatory markers (such as pro-inflammatory
cytokines IL-1a, IL-1b, IL-6 and TNF-a) and increasing levels
of growth factors (IGF-1) in some cases. Additionally, CSF-1R
depletion prior to and after MCAo reduces the pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 6
astrocytic reactivity (including IL-1a, IL-1b, iNOS, TNF-a, IL-6)
with no change in astrocytes number (35, 91). Interestingly, Li
et al., (11) used the same paradigm in an intracerebral
haemorrhagic model (ICH model) and found the opposite
results (11). Altogether, these studies support a neuroprotective
role of microglial cells within the first days after stroke, which
may partially be explained by its phagocytic and inflammatory
activity on infiltrating cells at early stages.

Recently, our group assessed the immunomodulatory effect of
long-term PLX5622 administration in the post ischemic phase
using in vivo multimodal imaging (88). We demonstrated that
CSF-1R inhibition transiently decreased neuroinflammation
within the infarct, while a sustained decrease was observed in
the contralateral healthy tissue, correlating with Iba-1+

(microglia/macrophages) dynamics. Interestingly, the decrease
in activated microglia/macrophages number in remote areas
such as the contralateral side may moderate the impact of
spreading depression and ultimately global inflammation, as
observed by the global decrease in pro- and anti-inflammatory
markers expression in both hemispheres at late stage
(Figure 2B). Moreover, long-term CSF-1R inhibition also
affected homeostatic balance and tissue reperfusion, albeit
transient, as indicated by diffusion- and perfusion-weighted
MR imaging.

It is still unknown when and for how long microglia must be
eliminated to enhance recovery: data may indicate that
microglial activity is essential within the first days to reduce
peripheral cell infiltration and cytotoxicity while it may become
detrimental later on (87). Additionally, previous short-term CSF-
1R inhibition studies in other disease models supported that
PLX5622-induced microglia repopulation could reduce
inflammatory cytokines expression, brain damage and resolve
behavioural impairment. Altogether, those studies highlighted
the importance of targeting microglia/macrophages within an
optimal therapeutic time window to leverage their beneficial
activity during the post ischemic phase. To date, no study on
repopulation and/or short-term CSF-1R inhibition in stroke has
been reported.

In Vivo Molecular Imaging of CSF-1R
In vivo assessment of CSF-1R inhibition therapy response and
target engagement would benefit from developing imaging
probes specifically targeting CSF-1R and/or microglial
cells (Figure 3).

In this context, Horti et al. (92) developed the new radiotracer
11C-CPPC targeting the CSF-1R. Preclinical assessments seem to
indicate high selectivity and binding specificity in animal models
of acute LPS-induced neuroinflammation and post-mortem
Alzheimer’s disease human tissue (92) while others reported
higher off-target binding and lower specificity (93). Therefore,
other CSF-1R antagonist radioligands are currently investigated,
potentially showing higher sensitivity and larger dynamic range
in preclinical models (94). In addition, macrophage-targeted
diagnostic tools are currently developed to visualize immune
cell accumulation in a variety of inflammatory disease and
assessed in the context of CSF-1R inhibition-induced
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microglia/macrophages depletion and other targeting
immunotherapies (95).

The translocator protein (TSPO)-PET imaging has been
widely used to study inflammation dynamics, immune cell
activation and/or microgliosis in preclinical and clinical
studies. Despite several well-known caveats, TSPO-PET
imaging allows assessing global inflammation, visualizing areas
of immune cell infiltration and defining tissue heterogeneity (96–
98). Moreover, TSPO-PET has been used as a therapy readout in
clinical trials in patients with primary glioblastoma or melanoma
brain metastasis treated with chemoradiation or immunotherapy
(NCT02431572). The validation of TSPO-PET tracers in clinical
settings is necessary to improve the understanding of glioma-
associated inflammation and microglia-targeting therapy
resistance mechanisms. In a preclinical trial, seven days of
CSF-1R inhibitor (PLX3397) in a non-human primate resulted
in a significant reduction of 11C-PBR28 (TSPO) volumes of
distribution by 46% from baseline, consistent with microglia
depletion, which recovered after 12 days, supporting TSPO-PET
as a CSF-1R inhibition therapy readout (99). However, the
cellular sources of TSPO during or after treatment were not
investigated. This finding encourages conducting back-
translational studies to understand the biological mechanisms
after CSF-1R therapy together with TSPO-PET imaging as a
therapy readout.
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Recently, our group reported the suitability of 18F-DPA-714
PET imaging, used as a biomarker of TSPO-dependent
neuroinflammation and immune cell activation, to track the
immunomodulatory effect of long-term PLX5622 administration
in the post ischemic phase (88). We demonstrated that CSF-1R
inhibition transiently decreased radiotracer uptake within the
infarct, correlating with the dynamics of TSPO and microglia/
macrophages ex vivo. Therefore, we supported the use of TSPO-
PET imaging as a microglia-targeting therapy readout in stroke.

It should be noted that none of the TSPO radioligands is cell-
specific or function-specific. Among the emerging targets, the
purinergic metabotropic 12 receptor (P2Y12R) PET tracer is an
attractive imaging biomarker to study microglial function (100,
101). P2Y12R expression is restricted to microglia in the CNS
and absent on peripheral immune cells, involved in microglial
chemotaxis and cytokine/chemokine signaling. In the
inflammatory cascade, P2Y12R is downregulated in a pro-
inflammatory environment and upregulated with exposure to
anti-inflammatory stimuli, and therefore considered as a suitable
biomarker for anti-inflammatory microglial cells (101).
However, its temporal dynamics in an inflammatory
environment remains not well understood (100): the specific
role of P2Y12R seems to be disease- and stage-dependent. To our
knowledge, only one P2Y12R-PET radioligand has been
developed, the ethyl6-(3-(3-((5-chlorothiophen-2-yl)sulfonyl)
A

B

FIGURE 2 | CSF-1R inhibition monotherapy in stroke. (A) Previous studies on brain pre-conditioning reported the absence of microglial cells within the first days
post ischemia (acute phase) worsened disease outcomes, including increased brain injury, peripheral infiltration and pro-inflammatory signaling, ultimately leading to
aggravated neurodeficits. (B) Long-term treatment reveals the existence of an Iba-1+ (microglia/macrophages) cell population resistant to CSF-1R inhibition while
global expression of inflammation-related markers was decreased. Long-term CSF-1R inhibition starting right after surgery led to aggravated motor functions, partly
explained by homeostatic imbalance and impaired infarct reperfusion (88). Created with Biorender.com.
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11C-ureido)azetidin-1-yl)-5-cyano-2-methylnicotinate (101).
While preliminary data looked promising, this tracer revealed
low metabolic stability and lack of blood-brain barrier
permeability. Further preclinical studies must assess other
CNS-penetrant P2Y12R receptor PET radioligand and
investigate the functional spatiotemporal role of P2Y12R.

As part of the same receptor family, the purinergic P2X7
receptor is found to be specifically upregulated in pro-
inflammatory activated microglial cells in response to high ATP
release. This receptor mediates cytokine and chemokines release,
regulates T lymphocytes survival and differentiation (Di 102). A
clinical trial investigated the blocking effect of JNJ-55308942
targeting the P2X7 receptor using the 18F-labelled analog in
healthy volunteers (NCT03437590). The preliminary results in
humans supported the use of the PET-tracer 18F-JNJ-54175446
to provide an insight into P2X7R in health and disease (103). In the
context of CSF-1R inhibition, further studies may consider using
this radioligand to assess (i) the spatiotemporal expression of P2X7
receptor in pathological conditions, (ii) the decrease in P2X7-
expressing pro-inflammatory microglial cells following CSF-1R-
Frontiers in Immunology | www.frontiersin.org 8
and/or any microglia-targeting immunotherapy and (iii) the
potential anti-inflammatory effect of microglia repopulation.
CONCLUSION REMARKS

Glioma and stroke are two complex pathological conditions, both
inducing strong and chronic inflammatory and immunological
responses following alterations of the immune balance. However,
innate, and adaptive immune response differs in major aspects:
origin, progression, and disease-induced phenotype. The
comparison of both diseases represents a very interesting avenue of
research as they represent the two extremes of neurological
conditions. Stroke on the one hand with a strong pro-
inflammatory stimulus (hypoxia, reperfusion) and on the other
hand gliomas with a strong anti-inflammatory immunosuppressive
microenvironment. The comparison thus supports evidence
generation for the role of CSF-1R across neurological diseases.

CSF-1R inhibition studies demonstrate that many discernible
subpopulations of microglial cells co-exist in the inflammatory
FIGURE 3 | Emerging targets for in vivo imaging of CSF-1R inhibition-induced microglial activity modulation. TSPO PET tracers have been widely used to assess
neuroinflammation in different pathologies while they have shown some caveats, including inability to distinguish cellular sources of TSPO and phenotypes. Some of
the newly investigated targets including P2X7R and P2Y12R highlight the different functions of microglial cells in an inflammatory environment. Created with
Biorender.com.
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environment and are differentially sensitive to CSF-1R
inhibition. In both glioma and ischemia, a resistant population
of CSF-1R-independent microglia/macrophages were observed
after long-term PLX5622 treatment. Their contribution to
compensatory mechanisms or therapy resistance still needs
further research. One line of investigation focuses on the
enhanced communication with other immune players,
triggering modulation of the peripheral immune cell
infiltration or activation of resident cells. Still, numerous
compensatory and resistance mechanisms seem to be
implemented by immunological responses beyond microglia/
macrophages cells, limiting the efficiency of CSF-1R inhibition
as a monotherapy. Therefore, research supports its use as a
combination therapy to synergize the therapeutic effects of other
immunomodulatory approaches.

Recently, we validated the use of TSPO-PET in preclinical
studies assessing the therapeutic effect of newmicroglia-targeting
treatments. TSPO-PET employing 18F-DPA-714 allows
visualization of microglia/macrophages depletion-repopulation
and areas of immune cell infiltration. However, a better
knowledge of the therapeutic effects on other immune cell
populations after short-term or long-term CSF-1R inhibition
would improve our understanding of the in vivo TSPO dynamics
upon therapy. Advances in microglia-targeting immunotherapy
should boost the development of microglia-specific PET
radioligands. This could support further clinical trials for
glioma and stroke patients, improve personalized management
and understand the prognostic value of multimodal imaging in
microglia-targeting therapeutic approaches.
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