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The uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with
endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full
complement of cell types contributing to this phenotype has yet to be identified, as
most studies have focused on bulk tissue or select cell populations. Herein, through
integrating whole-tissue deconvolution and single-cell RNAseq, we comprehensively
characterized immune and nonimmune cell types in the endometrium of women with or
without disease and their dynamic changes across the menstrual cycle. We designed
metrics to evaluate specificity of deconvolution signatures that resulted in single-cell
identification of 13 novel signatures for immune cell subtypes in healthy endometrium.
Guided by statistical metrics, we identified contributions of endometrial epithelial,
endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes,
macrophages, and granulocytes to the endometrial pro-inflammatory phenotype,
underscoring roles for nonimmune as well as immune cells to the dysfunctionality of
this tissue.

Keywords: endometriosis, deconvolution, bulk tissue transcriptomics, single-cell analysis, eutopic endometrium
1 INTRODUCTION

Human endometrium is a complex tissue that remodels during the menstrual cycle under the
regulation of ovarian-derived steroid hormones. It is characterized by phenotypic changes in diverse
cell groups and changes in their relative abundance by cell proliferation and infiltration (1).
Endometriosis is a common, steroid-hormone-dependent disorder in which endometrial-like tissue
invades pelvic organs, eliciting an inflammatory response and fibrosis, resulting in chronic pelvic
pain and/or infertility. The latter is due mainly to abnormal eutopic endometrium (within the
uterus) that is inhospitable to embryo implantation (2).
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Previous bulk RNAseq and microarray analyses revealed
altered transcriptomic profiles in the eutopic endometrium of
women with versus without endometriosis (3–5). With disease,
the eutopic endometrium displays a pro-inflammatory
transcriptomic feature and fails to elicit normal steroid
hormone responses that are essential for endometrial
transformation (4, 6–8). This pro-inflammatory feature was
also observed in the microarray and RNAseq profiles of
isolated endometrial stromal fibroblasts (eSFs), mesenchymal
stem cells (eMSCs), and macrophages (9, 10). However, the
full complement and abundance of cell types contributing to the
pro-inflammatory feature have yet to be identified and are
addressed herein.

While single-cell (sc)RNAseq characterization can provide
insights into the phenotypes of endometrial cell populations,
current costs of this technology can be prohibitive for profiling
samples at the scale required for the context of endometrial
disorders. Accurate profiling in this context requires sufficient
sampling in both disease and control individuals across the
diverse hormonal milieu of the menstrual cycle. Even though
evolving multiplexing strategies can help mitigate the high cost
of single-cell technologies, deconvoluting whole tissue level data
into cell types provides a promising alternative (11–20), where
insights such as abundance variation can be derived with high
statistical power from previously characterized bulk tissue
samples, particularly those involving clinical samples for which
prospective large-scale collection and phenotyping would require
major investments of time and effort. Cell-type deconvolution
relies on using appropriate cell-type signatures for the tissue of
interest. While one strategy is to apply tissue-specific signatures
derived from sorted cells or scRNAseq (21–25), it is limited by
cell types known to the tissue, availability of signatures, and
batch effects from different technologies used to derive the
signatures (15), and often does not allow for discovery of new
cell types.

To leverage the advantages and overcome the limitations of
these approaches, in the current study, we used both whole tissue
deconvolution analysis (26) and scRNAseq analyses to
characterize the human endometrium from women with or
without endometriosis. A signature compendium of 64
classical human cell types derived from diverse organs in 6
human tissue consortia were used, and a gene set enrichment-
based deconvolution method was adapted (26). The applicability
of each signature to the human endometrium was evaluated by
building statistical metrics using scRNAseq endometrial data
obtained from women without endometriosis (27). In addition to
guiding data interpretation, signature evaluation prompted in-
depth single cell level identification and annotation of 13
immune cell type/subtypes in healthy endometrium, including
those whose identities and functions have been less well
characterized and explored in endometrial biology. Herein, we
present a comprehensive characterization of the cellular
composition of the human endometrium across the menstrual
cycle in women with and without endometriosis and the
identification of cell types with altered abundance in one or
multiple menstrual cycle phases of women with disease.
Frontiers in Immunology | www.frontiersin.org 2
2 RESULTS

2.1 Traditional Differential Expression
Analysis Identifies Immune Pathways
Associated With Endometriosis Across
the Menstrual Cycle
Microarray data were obtained from a public dataset
(GSE51981), which was first processed and batch-corrected,
followed by differential expression and pathway enrichment
analyses to ensure agreement of data processing with previous
literature (Figure 1). Table 1 describes the study population
consisting of 105 samples across various disease stages (34
control, 24 stage I–II, 47 stage III–IV) and cycle phases (47
proliferative endometrium (PE), 24 early secretory endometrium
(ESE), 34 mid-secretory endometrium (MSE)).

Batch correction successfully mitigated laboratory-associated
variations (Figure S1). Based on PCA dimensionality reduction
plots, samples tended to cluster by disease/stage (case) versus
control and by phase (Figure 1B). Heatmap clustering, focusing
on genes highlighted as differentially expressed (FDR < 0.05, and
log2 fold change >1) in any sample stratification, revealed strong
clustering based on case versus control status (Figure S2A). Phase-
stratified analysis revealed overall concordance in the results
(Figures S2B–D). Several differentially expressed genes were
identified across multiple phases, but also some phase-specific
associations with endometriosis (Figures S2B, C). Among
significantly upregulated genes, 79 were common to all menstrual
phases such as FOSB, FOS, JUNB, and EGR1, and 182 were shared
across at least two phases. In addition, there were 27 genes specific
to ESE, 106 to MSE, and 428 to PE. Among the significantly
downregulated genes, 246 genes were common across all menstrual
phases, including CTSZ, SNTN, AGR3, and OLFM4, and 693 genes
were shared across at least two phases. In addition, there were 64
genes specific to ESE, 201 specific to MSE, and 962 specific to PE.
Stratified analysis allowed the identification of phase and disease
stage where dysregulation occurred (Supplementary Table S1). For
example, CTSW, with functional roles in natural killer cells and
cytotoxic T-cells and identified as upregulated in disease in previous
unstratified analysis (4), was upregulated only in MSE in our
analysis. The endothelial cell-related gene HSP90B1 was only
elevated in PE, MSE, and stage I–II endometriosis. Immune-
associated genes GNLY and C1QA were upregulated only in stage
I–II and MSE, respectively. Discordance across phases is consistent
with previous reports (7, 28); however, it is important to note that
arbitrary differentially expressed genes (DEG) cutoffs may have
amplified some of these differences as fold–fold plots revealed a high
degree of correlation between phase-stratified disease versus control
DEG results (Figure S2D). Similarly, concordant DEG signatures
were also observed when data were stratified by disease stage
(Figure S3).

Pathway analysis, conducted with GSEA targeting MSigDB’s
Hallmark Pathways, confirmed the general concordance noted with
disease versus control DEG fold changes across stratifications and
also recapitulated known biology in that many immune pathways
were among those associated with disease. Interferon alpha and
gamma responses, TGF-beta and IL-2 STAT5 signaling, and
January 2022 | Volume 12 | Article 788315
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complement pathways were upregulated in endometriosis
consistently across most menstrual phase and disease stage
stratifications (Figure S4; FDR < 0.05). TNF alpha signaling and
allograft rejection, on the contrary, were significantly downregulated
in disease across all cycle phases (FDR < 0.05).

2.2 Evaluation of Applicability 64
Cell-Type Deconvolution Signatures
to Endometrial Tissue
Cell-type deconvolution provides a powerful opportunity to
computationally disentangle bulk transcriptomic data into
Frontiers in Immunology | www.frontiersin.org 3
individual cell types. After confirming the agreement between
our data processing with previous literature, we turned toward
applying this technique by adapting a gene set enrichment-based
deconvolution method (26) for use in the human endometrium
(Figure 1). The original method provided a comprehensive
signature compendium for 64 classical human cell types
derived from multiple organ types based on 6 human tissue
consortia. To allow for discovery of new cell types and
relationships between cell types, rather than using prior
knowledge to select a subset of the signatures for analysis, we
opted to utilize all signatures and rely on statistical metrics to
TABLE 1 | Cohort Statistics.

Cycle-Phase Disease severity Lab origin Total

Control Stages I–II Stages III–IV Giudice Burney Lessey

PE 20 10 17 31 13 3 47
ESE 6 6 12 14 10 0 24
MSE 8 8 18 19 11 4 34
Total 34 24 47 64 34 7 105
January 2022 | Volume 12 | Article 7
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FIGURE 1 | Analysis and Data Overview. (A) Experimental overview showing how endometrial tissue transcriptome microarray data were processed and analyzed.
Data were normalized (see below) and batch corrected. Then, differential gene expression (DGE) analysis was performed with log-fold change outputs run through
pathway enrichment analysis. Similarly, cell-type deconvolution of these bulk tissue samples was performed and validated and then analyzed for differential enrichments
between sample groups. Each of these analyses was run for various stratifications (subsets) of the samples and targeting differences between distinct groupings for
each stratification. These analyses were used to identify, with cycle phase-specific insights, pathways and cells associated with endometriosis. A zoom of how xCell
signatures were evaluated and selected to be representative of endometrial tissue. Left: Permutation test: Microarray transcriptome data were permuted at the gene
level to construct tissue-specific null distributions for xCell’s outputs of its 64 signatures. Right: Microarray transcriptome data from sorted cells were summarized and
combined at different ratios into artificial mixtures. Then xCell was run on these mixtures. Middle: For each of the 64 xCell signatures, a two-score schematic was
designed to evaluate its relationship with respect to each endometrial cell type identified in the single-cell RNAseq dataset (27). A specificity score (ratioNext) was
agnostically quantified and each xCell signature was categorized as either targeted or nontargeted (NA: no ref) based on whether there is an endometrial cell type or
subtype that the signature is targeting, and “On Target” or “Off Target” based on whether the top-ranking endometrial cell type is the signature’s intended target or
not, respectively. (B) Principal component analysis (PCA) of samples, after batch correction, based on (left) transcriptome data or (right) cell-type enrichment scores
and colored by menstrual cycle phase or disease stage.
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infer likelihood that a cell type, of the 64, may be present in
the endometrium.

As a summary, we first evaluated the statistical significance of
xCell results using a permutation test. We then evaluated the
specificity of xCell’s signatures toward endometrial cell types
using a published scRNAseq dataset on healthy human
endometrium. For in-depth evaluation on xCell’s signatures for
immune subtypes, we performed immune cell only scRNAseq
analysis on the scRNAseq dataset and examined the relationship
between xCell’s immune subtype signatures and identified
endometrial immune subtypes. Lastly we applied xCell
enrichment analysis to artificial mixtures constructed from
sorted endometrial cells to further validate our approach.

2.2.1 Evaluation of Statistical Significance of xCell
Output Using Permutation Analysis
xCell produces nonzero abundance scores for all cell-type
signatures assessed, regardless of whether those cell types truly
exist in the tissue. To overcome this, we estimated the statistical
significance of enrichment scores using a permutation test
(Figure 1A, right). Specifically, we permuted the gene labels of
the bulk data of our tissue of interest and recalculated xCell
enrichment scores 1,000 times to generate a dataset-specific null
distribution of enrichment scores for each xCell signature.
Statistical significance of scores from unpermuted data was
then calculated relative to the null distribution to determine
signatures for which enrichment scores were statistically
significant, i.e., putatively above background. The analysis was
performed separately for disease and control samples and for
each cycle phase to ensure retention of cell types that might be
abundantly present only in one condition or during a specific
cycle phase (Figures S5, S6). xCell signatures passing the
permutation test (ecdfnull(median xCell score) > 90%) in at
least one phase of one tissue condition were retained for
further analysis and interpretation. Specifically, 50 of 64 xCell
signatures passed and were deemed statistically significantly
above background (Figure 2A). More signatures were deemed
significant in secretory phases and in the disease condition
(Figure 2A and Figures S5, S6). In total, 22 signatures were
deemed statistically significant only in disease, and only platelets
were deemed above background solely in control samples. Such a
finding is in line with the presumed endometrial infiltration of
additional immune cell types among women with endometriosis
(29) and during secretory phases.

2.2.2 Evaluation of the Specificity of Cell-Type
Deconvolution Signatures to Human Endometrial
Cells Using Single-Cell RNAseq Data
Even when the output of an xCell signature passes the
permutation test, the associated abundance score does not
necessarily reflect the behavior of its nominal target in the
tissue of interest. Potential for inter-tissue transcriptomic
difference of a cell type or ambiguity in naming a cell type can
lead to low specificity of a signature to its nominal target. To
overcome this challenge, we built two scores to evaluate xCell
signatures’ specificity to (ratioNext) and relationship with
Frontiers in Immunology | www.frontiersin.org 4
(onTarget) known endometrial cell types (Figure 2B, see
Materials and Methods) using a published scRNAseq dataset of
the human endometrium from women without endometriosis
(27). We plotted these two scores alongside all of our xCell
outputs to help interpret the results in the context of endometrial
cell types.

For xCell signatures whose direct nominal target cell type(s)
were identified in the single cell dataset (Figure 2B, black boxes),
we observed high-to-moderate specificity scores with “On target”
classification for all except those targeting the cell type enriched
with endometrial mesenchymal stem cells (low ratioNext, “Off
target”) (30), which we refer to, herein, as eMSCs. Specifically, we
found that all candidate eMSC-targeting signatures (MSC,
pericytes, and smooth muscle cells) were more differentially
upregulated in eSF than in eMSC. The results above were also
validated by artificial mixtures constructed with purified
endometrial cells of varying abundances, described below
(Figures 2C, D).

For xCell signatures without a direct nominal target cell type
in endometrial tissue (onTarget=No Ref), we observed high-to-
moderate specificity scores for keratinocytes, sebocytes, skeletal
muscle, and hematopoietic stem cell (HSC) signatures. Given the
specialized biological function of keratinocytes, sebocytes, and
skeletal muscle, it is unlikely that these cell types are present in
the endometrial tissue. Their high ratioNext scores likely reflect
the transcriptomic similarity between these cell types and
endometrial cell types where they show the highest specificity
(e.g. , endometrial epithelial cells for sebocytes and
keratinocytes). On the other hand, transcriptomic similarity
between HSC and endometrial endothelial cells may suggest a
relationship in developmental lineage.

Importantly, for many xCell signatures that do not have a
direct nominal target cell type but can potentially target a
subtype or a related cell type of an identified cell type
(Figure 2B gray boxes in the heatmap), we observed a high-to-
moderate specificity score and “On target” classification.
Signatures that fall into this category consisted primarily of
immune signatures, as well as signatures for microvascular
(mv) and lymphatic (ly) endothelial cells. We reasoned that a
high specificity score and a “Passed” permutation test suggest
that the associated cell type/subtype likely exists in the single cell
dataset but may have been concealed by more pronounced
differences of major cell lineages when all cell types were
included in the scRNAseq analyses. We therefore performed
heterogeneity analysis on only immune cells in the endometrial
dataset to explore endometrial immune cell heterogeneity and to
aid further evaluation of xCell immune signatures.

2.2.3 Annotation of Endometrial Immune Cell Types
at Single-Cell Level Using xCell Signatures
Immune-only heterogeneity analysis revealed 13 cell types/
subtypes (Figure 3A): 5 were from the original “Macrophage”
cluster and 8 were from the original “Lymphocyte” cluster (27).
Classical immune cell-type markers allow broad annotation of
these cell types/subtypes (Figure 3B). They alone, however, are
not sufficient for confident cell-type annotation or for measuring
January 2022 | Volume 12 | Article 788315
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A

B

D

C

FIGURE 2 | Cell-type specific signature validation for endometrial tissue. Evaluation of xCell’s 64-cell-type signature compendium and endometrial cell types identified
via scRNAseq and artificial mixtures analysis from sorted cell types. (A) Upset plot showing patterns of conditions in which cell-type signature scores were significantly
higher than permuted null distributions (top), as well as the sizes of each individual set (left). (B) Sensitivity (normalized signature score), specificity (RatioNext),
and relationship (onTarget) between xCell’s 64 signatures with endometrial cell types identified at the single cell level. Shown in the heatmap are signature scores
evaluated as percentage of genes in a given xCell signature that were differentially expressed between cells in an endometrial cell type compared to the remaining
cells. Scores were normalized by row mediums. (C) Scatter plots of xCell enrichment scores (y-axis) versus input percentage (x-axis), for each input cell type, with
least-squares regression line overlaid, for artificial mixtures with (gray) and without (black) the SpillOver step. (D) Heatmap of relative, normalized to the max across all
mixes, enrichment scores with annotations at the top indicating the input percentage of each cell type. End, endothelial cells; Epi, epithelial cells; MSC, mesenchymal
stem cells; Fib, eSFs.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7883155
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similarity between identified cell types/subtypes and classically
defined immune cell types for scenarios described below. We
therefore iterated between a signature-based scoring method
(31) using xCell’s signatures and classical marker expression to
annotate the 13 identified cell types/subtypes. Most intriguingly,
we identified one cell type that stemmed from the “Macrophage”
cluster but expressed classical B cell receptor component genes
(e.g., JCHAIN, IGKC) at a high level (Figure 3B). Our signature-
based method revealed a distinct enrichment of plasmacytoid
dendritic cell (pDC) (Figure 3C) and plasma cell signatures in
the same cell type (Figure S7C). The pDC identity of this cell
type was affirmed by the expression of genes uniquely identified
in pDC (32) such as CLIC3 and SCT (Figure 3B) and lack of
expression of classical plasma cell markers such as CD38 and
SDC1 (CD138) (Figure S8A). Similarly, we were able to discern
among monocyte, macrophage, and classical dendritic cell (cDC)
types, identify four NK cell subtypes (NCAM1+, CD160+, CD3+,
FCGR3A+), one B cell type, and Tregs, whose annotation would
not have been possible using classical markers alone due to
marker co-expression in closely related cell groups. On the other
hand, we identified one T cell subtype with high percentage of
CD8 expression [T (CD8+)] (Figures 3B, S8B) and another T
cell subtype with sparse yet unique CD4 expression [T (CD4*)]
(Figure S8B). xCell’s signatures for CD4+ (Figure S7B) and
CD8+ T (Figure S7E) cells, however, were not uniquely enriched
in either of these T cell subtypes. Lastly, one lymphocyte cell type
distinctly segregated from the rest of lymphocytes (Figure 3A)
Frontiers in Immunology | www.frontiersin.org 6
and uniquely expressed KIT and IL23R (Figure 3B). We,
however, were not able to confidently annotate it using either
the signature-based method or classical markers.

In summary, the aforementioned xCell signatures allowed
confident annotation of immune cells in healthy endometrium.
The unique upregulation of their scoring in endometrial immune
cell types/subtypes further confirmed their applicability in
deconvoluting the tissue. Moreover, xCell’s more than 40 immune
cell signatures contain not only the aforementioned lineage-
specifying signatures but also others that are either lineage- or
function-specifying. We therefore scored all immune signatures in
each of the 13 immune cell types/subtypes and plotted the result
alongside deconvolution outcomes of each signature to guide
interpretation (see below and Figures 5, S7, S9).

2.2.4 Validation of the xCell Approach Using Artificial
Mixtures From Sorted Cells
Finally, we validated that xCell enrichment analysis could
be applied to microarray-based profiles of endometrial
transcriptomes by applying the approach to artificial mixtures
of microarray profiles of sorted cells. Microarray expression data
from four FACS-purified endometrial cell types, endothelial cells
(n=11 samples), epithelial cells (n=7), mesenchymal stem cells
(n=28), and eSF (n=31) (9, 33–35), were median -summarized
per gene, combined together into 20 different artificial mixtures,
then analyzed with xCell (Figures 2C, D). The original method
has a built-in compensation step to reduce spillover between
A

B

C

FIGURE 3 | Identification and annotation of 13 immune cell types/subtypes in healthy human endometrium. (A) Dimensional reduction and cluster identification
of endometrial immune cells from women with no gynecological conditions and in natural menstrual cycles. In blue are cell types/subtypes that were from the
“Macrophage” cluster and in black were from the “Lymphocyte” cluster in the original analysis. (B) Top uniquely expressed genes for identified cell types/subtypes in
(A). In magenta are classical cell-type markers. (C) Score distribution of selected immune signatures compiled from 6 data sources in each identified immune cell
type/subtype. NK, natural killer cells; pDC, plasmacytoid dendritic cells; cDC, classical dendritic cells; CD4*, CD4 was uniquely but sparsely expressed in the cell
subtype [(Figure S8B) and hence was not identified as a top uniquely expressed gene in (B)].
January 2022 | Volume 12 | Article 788315
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closely related cell types. However, we observed 1) notable
variations in deconvolution output in relation to which of the
64 signatures we selected as input, likely due to the use of a
compensation matrix derived from in silico mixtures, and 2)
signatures that appeared off-target in endometrial cells compared
to their nominal cell type. We therefore disabled this step to
ensure independence of outputs of 64 signatures. Confirming
xCell’s utility, this analysis resulted in an overall positive
correlation between the input ratio and output enrichment
scores (Figure 2C). Yet also confirming the necessity of the
aforementioned signature assessment metrics, it also revealed an
interdependence of MSC and fibroblast signatures in that
enrichment scores for these signatures appeared reliant on
combined input amounts of both cell types, especially with low
input abundance of eMSC and eSF (Figure 2D). We also confirm
that removing the compensation step does not affect the overall
trend in the deconvolution output for these signatures (Figure 2C).
2.3 Menstrual Cycle Phase and
Endometriosis-Associated Changes
in Cellular Composition of
Human Endometrium
With metrics built for evaluating the applicability of xCell’s 64
signatures to the human endometrium, we deconvoluted 105
human endometrium bulk transcriptomic profiles into the 64 cell
types using the adapted xCell approach (Figure 1A). Signatures that
passed the permutation test were retained for downstream analysis.
The data were obtained in proliferative, early secretory, and mid-
secretory phases of the menstrual cycle from women with stage I–II
or more severe (stage III-IV) endometriosis, as well as those without
disease (control) (Table 1). The overall clustering of the
deconvoluted dataset was largely explained by disease versus
control, followed by the menstrual cycle phase (Figure 1B, right).
Cellular compositions that contributed to the changes in phase and
disease were then assessed via stratified differential enrichment
analysis (FDR < 0.05, no FC cutoff, Figure 4, Table 2) and
interpreted alongside signature specificity metrics.

2.3.1 Deconvolution Results for Non-Immune xCell
Signatures With Confirmed Specificity to Cell Types
in Human Endometrium
Epithelial cells, eSF, and endothelial cells are the major non-
immune cell types in the human endometrium. The specificity of
their associated xCell signatures to the human endometrium was
confirmed by our signature analysis (Figure 2B), with the
exception for eSF whose signature failed the permutation test.
For epithelial and endothelial cells, deconvolution analysis
revealed both phase and endometriosis-associated changes.
Epithelial cell enrichment scores in disease were notably
elevated compared to control and also varied significantly
across the menstrual cycle (Figures 4B, 5A). Endothelial cells
were enriched in disease in comparison to control (Figure 4B),
with a slight increase in MSE versus ESE in control (Figure 5A).
For both cell types, among all phases, a more significant rise in
PE, compared to other phases, was observed in disease versus
Frontiers in Immunology | www.frontiersin.org 7
control (Figures 4B, 5A). Disease-associated changes were also
prominent in mv endothelial and ly endothelial signatures
(Figures 5A, 4B), both of which demonstrated high specificity
to endometrial endothelial cells in our signature analysis
(Figure 2B). While the ly endothelial signature had elevated
PE scores compared to other phases in both disease and control,
the PE-associated rise in the mv endothelial signature was higher
in disease versus control (Figure 4C, 5A).

2.3.2 Deconvolution Results for Immune xCell
Signatures With Confirmed Specificity to Cell
Types in Human Endometrium
pDC, monocytes, macrophages, and NK cells were identified in
our heterogeneity analysis of single-cell data from healthy
endometrium (Figure 3), with confirmed specificity of their
associated xCell signatures (Figure 3C) for deconvolution
analysis. pDC enrichment scores were higher in disease over
control across all cycle phases, reaching the highest enrichment
score and statistically significant difference versus control in MSE
(Figures 5B, 4B, C). Similar patterns were observed for
macrophage and monocyte scores, both signatures being
enriched in disease across the cycle (Figures 5B, 4B, C). In
control, monocyte and macrophage enrichment scores were
elevated in MSE (Figure 4B, C), whereas a more statistically
significant rise in MSE was observed in disease for both
(Figures 5B, 4B, C). In both control and disease, NK cell
enrichment scores increased notably in MSE compared to
preceding phases (Figures 5B, 4C). NK scores showed a slight
yet statistically significant increase in stage III–IV endometriosis
compared to control (Figures 4C, 5B).

2.3.3 Deconvolution Results for Immune xCell
Signatures With Functional Applicability to Cell
Types in Human Endometrium
As mentioned earlier, xCell’s comprehensive immune signatures
include those that are function-specifying. Our signature-based
annotation of the single-cell dataset revealed that some of these
signatures were uniquely enriched in cell types/subtypes that
we annotated by lineage and classical markers in healthy
endometrium. For example, both macrophage M1 and M2
signatures are uniquely enriched in monocytes and macrophages
in healthy endometrium (Figure 5C). Deconvolution results
revealed an across-cycle increase in disease versus control for
both signatures (Figure 4B), with an elevation in MSE compared
to ESE in both disease and control (Figure 4B) with higher
statistical significance in disease (Figure 5C). Both xCell’s DC
and activated DC (aDC) signatures were enriched in monocytes,
macrophages, and cDC cells at a single cell level, whereas
immature DC (iDC) signature was elevated additionally in pDC
and B cells (Figure S7A). Deconvolution results revealed overall
increases in DC and aDC in disease versus control, with a dip in
score dynamics (significantly lower DC score in ESE vs. PE; lower
aDC score in ESE vs. MSE although not statistically significant)
observed in disease (Figures 4B, S7A). Enrichment scores for iDC
were elevated in PE compared to ESE andMSE in both disease and
control (Figure S7A).
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For some signatures, the lineage identity of cell types/subtypes
where the signatures were uniquely enriched differed from the
lineage identity of the signature. For example, Th1 signature was
uniquely enriched in NCAM1+ and FCGR3A+ NK cells in healthy
Frontiers in Immunology | www.frontiersin.org 8
endometrium, Tgd signature was elevated in all NK cell types, and
CD8+ Tem signature was elevated in all NK cell types and CD8+ T
cells (Figure 5C). Deconvolution results showed across-phase
decreases in both Th1 and Tgd signatures in control but deviating
A

B C

FIGURE 4 | Differential analysis of cell-type enrichment. (A) Heatmap showing, for all samples, relative (compared to the max per cell type) enrichment scores, of all
cells determined to be differentially enriched, for any stratification analyzed. (B, C) Cell-type enrichment analysis was performed based on FDR-corrected, two-sided,
Mann–Whitney U tests between (B) disease versus control for either all samples (Unstratified) or stratifications to just specific phases (PE Samples, ESE Samples,
MSE Samples) or between Stages I–II (labeled as such) or Stages III–IV (labeled as such) versus control among samples from all phases or (C) between phases
among case and control samples separately. Shown are heatmaps of log2 fold changes for enrichment scores where only cell types with at least one significant
comparison are shown. Numbers = log2FC with black color for statistically significant enrichments and gray color for nonstatistically significant enrichments.
January 2022 | Volume 12 | Article 788315

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bunis et al. Eutopic Endometrium Deconvolution in Endometriosis
behaviors in disease (Figure 5C). CD8+ Tem signature had higher
scores across all phases in disease compared to control and
increased in MSE compared to the preceding phases in both
disease and control (Figures 5C, 4B, C).

2.3.4 Deconvolution Results for Immune xCell
Signatures With Low Specificity to Cell Types in
the Healthy Human Endometrium Dataset
Based on classical marker expression, we identified CD4 expressing
T cell, CD8+ T cell, Treg, and B cell in the healthy endometrial
single-cell dataset. xCell’s CD4+ or CD8+ cell-type signatures that
passed the permutation test did not show unique enrichment in the
respective cell subtypes (Figure S7B). Most of xCell’s CD4+ T-cell
signatures had overall elevation in lymphocytes, which explained
themoderate ratioNext scores received in our signature analysis and
suggests that their deconvolution outcome likely reflects the
collective abundance of lymphocytes.

Although xCell’s Treg and cDC signatures show moderate
enrichment in Treg and cDC identified in the single-cell dataset,
deconvolution results of these signatures did not pass our
permutation test (Figures 2B, S5, S6, S7A, B).
Frontiers in Immunology | www.frontiersin.org 9
Intriguingly, xCell signatures for B-cell types generally scored
higher in “Macrophage” cell types/subtypes than in “Lymphocyte”
cell types/subtypes (Figure S7C). This may be due to lower numbers
of B cells as well as the shared antigen-presenting functions between B
cells and macrophages leading to joint clustering of these cell types.
However, only naïve B-cell signatures showed moderate elevation
specific to B cells identified in the single-cell dataset, yet this signature
did not pass the permutation test. Enrichment scores for all B-cell
types were low and relatively constant in control, except for class-
switched B cells, which displayed a slight increase across cycle, and for
pro B-cell scores, which were elevated in PE and ESE. In disease, all B-
cell scores were elevated in all phases compared to control, although
with a higher extent in PE compared to other phases (Figures 4B,
C, S7C).

2.3.5 Deconvolution Results for xCell Signatures
Lacking Representation in the Healthy Human
Endometrium Dataset (Enriched in Disease)
For several xCell signatures that passed the permutation test, there
were no associated cell types in the healthy single cell dataset.
Thus, we have less certainty about how applicable these signatures
TABLE 2 | Enrichment of cell types in each condition and menstrual phase and their fluctuation throughout the menstrual cycle.

Population (Signif. Stages Strat.When not both) Disease vs Control Variation across the cycle

Enriched in Signif. Control Endo
Phase
Strat. PE ESE MSE PE ESE MSE

gdTcells Control (n = 34) PE +++◊ ++~ +◊~ ++ ++ ++
CD4+ memory T cells PE +++ +++ +++ +◊ +++ ++◊

Th2 cells PE, ESE +++◊ +++~ +◊~ ++◊ ++ +◊

DC Endo (n = 71) All + + ++ +++◊ ++◊ +++
iDC (stages III-IV) PE +++*◊ ++* ++◊ +++*◊ ++* ++◊

aDC All + + ++ +++ ++ +++
pDC PE, MSE +◊ + ++◊ ++◊ ++~ +++◊~

Monocytes PE, MSE + + + ++◊ +~ ++◊~

Macrophages PE, MSE +◊ +~ ++◊~ ++◊ ++~ +++◊~

Macrophages M1 All + +~ ++~ +++ ++~ +++~

Macrophages M2 All +◊ +~ ++◊~ +++* ++*~ +++*~
NK cells (Stages III-IV) None +◊ + ++◊ +◊ ++~ +++◊~

Neutrophils PE + + + + + +
Eosinophils All +◊ + ++◊ ++* +* ++
Basophils PE, MSE +◊ ++ +++◊ +++ ++~ +++~

CD8+ Tem All +◊ +~ ++◊~ ++◊ ++~ +++◊~

CD4+ naïve PE, ESE +◊ +~ +++◊~ ++◊ ++~ +++◊~

CD4+ Tcm PE, ESE +◊ +~ +++◊~ ++ ++~ +++~

CD4+ Tem All +◊ +~ ++◊~ +++* ++*~ +++~

Th1 (stages I-II) PE, MSE +++◊ ++ +◊ +++*◊ ++* ++◊

Endothelial cells PE ++ ++ ++ +++ ++ +++
mv Endothelial All + +~ ++~ +++* ++*~ +++~

ly Endothelial All ++* +* + +++* ++* +++
Epithelial cells PE, MSE +◊ ++ +++◊ +◊ ++~ +++◊~

Keratinocytes All +◊ ++ +++◊ +++ ++ +++
Skeletal muscle cells PE, MSE + + + ++ ++ ++
Neurons (phase strats only) PE, MSE +++◊* ++* +◊ ++*◊ +* +◊

Astrocytes (phase strats only) MSE +++◊ ++ +◊ +++*◊ ++* ++◊

Erythrocytes (phase strats) MSE +++◊ ++~ +◊~ ++◊ ++ +◊

MPP All +◊ +~ ++◊~ ++ +~ ++~

HSC PE, ESE +*◊ ++* +++◊ +++ +++ +++
January 202
2 | Volume 1
2 | Article 7
Significant differences between: * = PE and ESE; ~ = ESE and MSE; ◊ = PE and MSE.
Abundance of the cell type = +/++/+++.
Unstrat., Unstratified.
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are for potential endometrial versions of their cognate cell types.
These signatures include NKT cells, neutrophils, eosinophils,
basophils (Figure 5D), common myeloid progenitors (CMPs),
and multipotent progenitors (MPPs) (Figure S7D), which all
Frontiers in Immunology | www.frontiersin.org 10
have relatively low enrichment scores in control (Figures S5, S6)
and consistently higher enrichment scores, across the cycle, in
disease. The increase is at least twofold higher in PE for all of
these cell types (Figures 4B, 5D, S7D). For NKT, eosinophils,
A

B

D

C

FIGURE 5 | Deconvolution results and signature score distribution in single-cell data of select xCell signatures (A) with confirmed specificity to major endometrial
non-immune cell types, (B) with confirmed specificity to endometrial immune cell types, (C) that are function specifying, and (D) lack representation in healthy
endometrium but show endometriosis-associated statistically significant abundance increase. Significant p-values are marked on the figure. Signatures in panel
(D) are colored in white. For violin plots in (C, D), each violin represents an immune cell type/subtype identified via immune-only scRNAseq analysis on healthy
endometrium (Figure 3). Signature score was calculated as the ratio between transcripts (UMI) that encode genes in the xCell signature to all transcripts (UMI)
detected in each single cell (Materials and Methods).
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basophils, and MPPs, a statistically significant increase was also
observed in control MSE compared to a proceeding phase,
although xCell’s basophil signature was enriched in two NK
subtypes (Figure 5D).

As with our specificity analysis, keratinocyte and sebocyte
enrichment scores correlated closely with epithelial cell scores
(Figures 4A, S9). HSC and endothelial signatures also correlated
in the single-cell dataset (Figure 2B), although their enrichment
score results deviated slightly in ESE (Figures 4A, 5A, S9).

In both disease and control, we report a steady across-cycle
decrease in erythrocyte, neuron (Figure S9), and megakaryocyte-
erythroid progenitor (MEP) signature enrichment scores and an
overall elevation in disease (Figure S7D). Increased enrichment
scores were also observed for the common lymphoid progenitor
(CLP) (Figure S7D) signature in control and mesangial cell
signature in disease (Figure S9).
3 DISCUSSION

In this work, we comprehensively examined the cellular
composition of the human endometrium across the menstrual
cycle in women with and without endometriosis, via integrated
bulk tissue deconvolution and scRNAseq analysis. Our approach
was uniquely designed such that we leveraged a large sample size of
bulk data, a comprehensive signature compendium for 64 classical
human cell types based on 6 human tissue consortia, a GSEA-based
deconvolution method, and a high resolution of single-cell RNAseq
data—mitigating limitations inherent in each factor. Importantly,
while benefitting from the comprehensiveness of the 64 signatures,
we designed statistical metrics to evaluate the applicability of each to
the human endometrium to ensure statistical significance and guide
interpretation. With this approach, we identified cell types with
altered enrichment in one or multiple menstrual cycle phases of
women with endometriosis versus controls without disease. Also,
novel transcriptomic-level signatures for 13 immune cell types/
subtypes in healthy endometrium, not heretofore reported in
endometriosis, including pDC and monocytes, were identified.
The positive enrichment of these transcriptomic signatures might
indicate the presence in the endometrium of previously unidentified
cell types, or even phenotypes among known cell types, that had not
been previously investigated (see discussion below for NK and T-
cell subtypes).

3.1 Contributions of Non-Immune Cells to
Endometriosis
Our signature evaluation confirmed the specificity of xCell’s
signatures to most major non-immune endometrial cell types,
including epithelial cells and endothelial cells, but not fibroblasts.
We observed increased enrichment scores in PE with endometriosis
for epithelial cells and endothelial cells. This is consistent with
observations of increased endothelial proliferation in women with
endometriosis and menorrhagia versus controls (36–38).

eMSC is an endometrial cell type that exhibits mesenchymal
stem cell characteristics in vivo (39) and in vitro (9, 30). Based on
different characterization metrics, this cell type has been referred
Frontiers in Immunology | www.frontiersin.org 11
to as mesenchymal stem cells (9, 30, 40), pericytes (35),
perivascular cells (41), or smooth muscle cells (27), each of
which is represented by a different xCell signature. Our
evaluation using both single-cell data and artificial mixtures
discovered the lack of specificity of xCell’s signatures (MSC,
pericyte, and smooth muscle cell) to eMSC, especially with low
eMSC abundance (Figure 2C), due to concurrent expression of
these signatures in eSF. This observation confirms the close
relationship between these two endometrial cell types and their
common association with progenitor MSC and pericytes. eMSCs
are implicated in endometriosis (9, 30), and future studies should
use unique markers identified for this cell type, such as RGS5,
GUCY1A2, and NOTCH3 (9, 27, 35).

xCell’s fibroblast signature did not pass the permutation test
despite receiving a moderate ratioNext score and “onTarget”
classification (Figure 2B). This discrepancy may be due to many
factors. Firstly, expression levels of fibroblast signature genes that
passed the thresholds for ratioNext calculations (i.e., adjusted
p-value and log2(fold change), Materials and Methods) often
showed only the borderline fold changes, and as Subramanian
et al. explain, signatures of this nature can be expected to score
poorly in a gene set enrichment-based method (42). Furthermore,
seemingly unrelated signatures such as chondrocytes, astrocytes,
smooth muscle, and MSC showed the highest enrichment for the
eSF cluster of the single-cell data (Figure 2B), and artificial
mixture analysis confirmed that one of these cognate cell types,
eMSC, could contribute to fibroblast-signature enrichment scores
(Figures 2C,D). Our signature evaluation method (Figure 1A)
thus considered output of this signature with low confidence. It is
known that eSF have their own unique phenotype that is distinct
from other fibroblasts of the body in many ways, and that
expression profile as well with hormonal changes in the
endometrium (9, 27, 35). Future studies should use a published
dataset (9, 27, 35) to identify signatures that are specific to
human eSF.

3.2 Contributions of Immune Cells to
Endometriosis
Our scRNAseq analysis identified 13 transcriptomically distinct
immune types/subtypes in healthy endometrium, which were
previously broadly categorized into lymphocytes and
macrophages (27). The use of a signature-based method (31)
and classical cell-type markers allowed us to confidently annotate
pDC and monocytes, which have not been confidently identified
at single-cell resolution or functionally examined in the
endometrium, but have been characterized collectively with
cDC1 by marker IRF-8 (43). With confirmed applicability of
xCell’s signature for both cell types in the endometrium, our
deconvolution results revealed relative increases in pDC and
monocytes during MSE in women with endometriosis
(Figures 4, 5), suggesting likely involvement in inflammation.
pDC have known involvement in the inflammatory response
normally and in pathologic settings through interaction with
vasculature and T cells (44). Increased monocytes are congruent
with the increased expression of monocyte chemoattractant
protein-1 (MCP-1) in the endometrium of women with
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endometriosis (45, 46). Moreover, we observed a greater increase
in monocytes in women with stage III–IV endometriosis, which
may contribute to a lower implantation rate and live birth rates
compared to women with stage I–II disease (47).

We have previously shown that endometrial macrophages (M1
and M2) in endometriosis are predominantly pro-inflammatory
(10). Phase- or disease-stratified abundance quantification of
endometrial myeloid cell types, including macrophages,
monocytes, and dendritic cells, however, is limited. Here we
report the unique markers that discriminate diverse endometrial
myeloid cell types/subtypes for future studies.

Our scRNAseq analysis of immune cells in healthy
endometrium has identified immune cell types/subtypes that are
beyond the definition of xCell’s 64 signatures, such as four NK cell
subtypes, one CD8+ T-cell subtype, one CD4 expressing T-cell
subtype, and a KIT+ lymphocyte cell type. Intriguingly, xCell’s
Th1, Th2, Tgd, and CD8+ Tem signatures were more enriched in
NK cell subtypes rather than the T-cell subtypes in the single-cell
dataset (Figures 5, S7). Therefore, the xCell outputs of these
signatures across the cycle and in endometriosis likely reflect the
changes of endometrial NK cell abundance or phenotypes more
than the changes in the nominal cell types. However, these results
do not conclusively suggest that these cell types are not present in
the endometrium with or without disease, especially considering
Th1 involvement in cytokine secretion and Tgd intraepithelial
presence. Rather they are likely low in abundance, and their
transcriptomic signals may be interfered by those of the more
abundant NK cells. Lastly, although Tregs and cDC were
identified in the scRNAseq dataset of healthy endometrium and
demonstrated moderate enrichment of associated xCell signatures
(Figures 3, S7A, B), their xCell signatures did not pass our
permutation test. Previous studies have identified both cell types
in eutopic endometrium (43, 48–51) and have shown that Tregs
increased in abundance during the secretory phase in women
with endometriosis compared to controls in both the eutopic
endometrium (52, 53) and peritoneal fluid (54) with potential
interplay with eSF (55). Enriching for aforementioned cell
types/subtypes with classical markers and single-cell level
identification and analysis is warranted in future studies.

Notable for some xCell signatures that passed our
permutation analysis are the elevated abundance scores of
eosinophils, neutrophils, basophils, NKT, and immune
progenitors in the endometrium of women with endometriosis
and their absence in women without disease and in the
annotations of the scRNAseq dataset of healthy endometrium.
Eosinophils, initiators of inflammatory responses, were enriched
in all phases of the cycle, compared to the control endometrium
wherein they appear mainly during menses, confirmed herein
and by others (56). Thus, eosinophils likely contribute to the pro-
inflammatory phenotype observed in bulk-tissue analysis of the
endometrium from women with endometriosis. Our finding of
neutrophils, key participants in the innate immune response to
foreign pathogens and enriched in the endometrium of women
with endometriosis and independent of the cycle phase,
compared to controls, is consistent with other reports,
although others found cycle dependence of this cell population
Frontiers in Immunology | www.frontiersin.org 12
in women with versus without disease (57, 58). Basophils also
initiate inflammatory responses and were found herein to be
enriched in the endometrium of women with disease in PE and
were significantly increased throughout the cycle. We are
unaware of other reports on this cell type in the endometrium
of women with endometriosis, and this finding warrants
further study.

3.3 Comparison to Prior Work
Our results generally agree with a prior deconvolution study on
the endometrium from women with and without endometriosis
(59), although fewer xCell signatures with disease-associated
changes (9 in total) were identified compared to our study.
Differences may be due to our adapted usage of the
deconvolution method. Additionally, this study (59) did not
design or apply metrics for statistical significance evaluation
and result interpretation or develop de novo identification of
normal endometrial immune cell signatures to enrich the xCell
data interpretation in the endometrial context.

3.4 Strengths and Limitations of
This Study
There are several limitations in this study. One is the limited
sample size, especially in the ESE phase. Another limitation of our
current approach is its limited capacity in inferring cell-type-
specific phenotypic state. Although such insights can still be
inferred for phenotype-specifying signatures, such as several
immune cell subtypes mentioned above, for signatures without
tissue-matching phenotype specifications, such as fibroblasts, such
insights cannot be obtained directly from the deconvolution
results. This is remarkable as the eSF changes transcriptomically
across the cycle and displays marked abnormalities in
endometriosis (9, 60) and is a key regulator of successful
embryo implantation. Other cell-type deconvolution tools such
as Cibersortx (15) provide the possibility to infer cell-type-specific
gene expression profiles through additive combinations of input
cell-type signatures. Successful application of this approach
requires that highly specific cell-type signatures be used and that
all potential cell-type signatures be included (61).

Further studies leveraging single-cell technologies as well as
integrating different types of omics measurements including
proteomics, epigenetics, and others will enable further
corroboration of our findings and linking transcriptional
phenotypes with endometriosis-associated cell types, especially
considering the decreasing cost of single-cell analysis through
strategies such as multiplexing. Functional studies will help
elucidate the roles these cell types play in disease.

Through integrated whole-tissue deconvolution and single-cell
analysis, we identified endometrial cellular compositions that are
dynamic across menstrual cycle phases and altered in women with
endometriosis. Guided by our signature evaluation metrics, we
report cell-type candidates—immune cell types/subtypes of
myeloid lineage, as well as non-immune cells, including epithelial
and endothelial cell types—that most likely contribute to the pro-
inflammatory endometrial phenotype previously observed in
women with endometriosis (4, 7). Our results can help guide the
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selection of cell types for functional evaluation of cellular
mechanisms that contribute to or result from endometriosis.
Moreover, our analytical framework can be used in studies of
other tissue types.
4 MATERIALS AND METHODS

An overview of all methods is shown in Figure 1.

4.1 Code and Experimental Data
4.1.1 Whole Tissue Microarray
Microarray data for this study were obtained from GSE51981 (4),
and all analysis was carried out in R. Sample metadata for disease
severity were used to classify all samples into groups of stages I–II
and stages III–IV, with ambiguously mapping samples (n=1) being
subsequently removed in further analyses. Sample metadata for
pathology were used to classify samples as endometriosis, no
pathology [which included labels NUP (no uterine pathology)
and NUPP (no uterine or pelvic pathology)], or “other,” with all
“other” samples being left out, as such samples represent imperfect
controls, for subsequent analyses. Additional samples were
removed, which had ambiguous lab source annotation (n=1) or
cycle-phase annotation outside of proliferative endometrium (PE),
early secretory endometrium (ESE), or mid-secretory endometrium
(MSE) (n=1). In the end, this led to a total of 105 samples, 71 from
women with endometriosis and 34 from women with no uterine or
pelvic pathology (controls) (Table 1).

4.1.2 Sorted Cell Microarray
Microarray data from purified human endometrial cell
populations (stromal fibroblasts, endothelial, epithelial, and
mesenchymal stem cells) isolated by fluorescence-activated cell
sorting (FACS) were from previous studies: GSE73622,
GSE31152, GSE48301, and GSE97163 (9, 33–35). These were
used in artificial mixes of pure cell types in determining the
signature specificity of the xCell signatures (see below).

4.1.3 Single-Cell Transcriptomics
Endometrial single-cell RNAseq data used to evaluate xCell
signatures were collected as endometrial biopsies from women
without endometriosis or uterine or pelvic pathology, as previously
described (27) (GSE111976 and SRP135922). For this study, 10x
data published in (27) were used. The definition of endometrial cell
types and subtypes is described in Extended Data Figure S1 in (27).
Annotations of each cell with regard to participant, cycle phase,
and cell type or subtype are available in a Supplementary File
“GSE111976_summary_10x_day_donor_ctype.csv.gz”
under GSE111976.

4.1.4 Code and Processed Data Availability
The code for reproducing these analyses is available on Github
(https://github.com/dtm2451/EndometrialDeconvolution), and
processed data are available on figshare (https://figshare.com/
projects/Whole-tissue_deconvolution_and_scRNAseq_
analysis_identify_altered_endometrial_cellular_compositions_
and_functionality_associated_with_endometriosis/127208).
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4.2 Microarray Normalization and
Batch Correction
Background correction and quantile normalization were
performed with the justRMA function of the affy package (62).
Then batch correction was performed with ComBat (63) to
reduce signals coming from the lab of origin, while protecting
signals associated with the disease stage and the cycle phase.
Direct principal component analysis (PCA) and the pvca
package (64), which combines PCA with variance component
analysis to estimate the proportion of variation in data that are
associated with a set of potential sources, were used to assess the
success of batch correction (Figure S1).

4.3 Differential Expression
Differential expression (DE) analysis was carried out via linear
modeling using the Limma package (65) and the log-
transformed and batch-corrected expression matrix as input.
Simple, ~ single variable, formulas were used for linear model
designs. When cutoffs for significant differential expression
were used, they were FDR < 0.05, and abs log2 fold change >
1. Such analysis was run on various stratifications of the data
(Figures 1, S2, S3). For unstratified (all samples) analysis, DE
was run 1) between disease versus control, 2) between stages I–
II or stages III–IV versus control, and 3–5) between all
combinations of pairwise cycle phase comparisons (PE vs
ESE, PE vs MSE, ESE vs MSE). DE was also run between
stages I–II versus stages III–IV, but zero genes met DE cutoffs.
For stage-stratified analysis, DE was run separately on control
samples only, stages I–II samples only, and stages III–IV
samples only between all combinations of pairwise cycle
phase comparisons. Lastly, for phase-stratified analysis, DE
was run separately for PE samples only, ESE samples only, or
MSE samples only, 1) between disease versus control and 2)
between stages I–II or stages III–IV versus control.

4.4 Gene Pathway Enrichment Analysis
Pathway enrichment analysis was performed on the Broad’s
hallmark gene sets (obtained via https://www.gsea-msigdb.org/
gsea/msigdb/collections.jsp#H) by gene set enrichment analysis.
This was carried out with the fgsea function of the fgsea package
(66) on log2 fold changes of all genes (both significant and
nonsignificant), for all stratifications and differential expression
comparisons, with additional parameters: minSize = 15, eps = 0,
and maxSize = 1500. Pathways with FDR corrected p-values
below 0.05 were considered differentially enriched (Figure S4).

4.5 Cell-Type Enrichment
Of the numerous deconvolution and enrichment methods, those
that attempt to deconvolve a sample into additive mixtures of
reference cell-type signatures have a strong reliance on both
concordance between reference signatures and cell-type profiles
of the target tissue, as well as on the presence of reference
signatures for all cell types that might exist in the target sample.
Given that we could not be certain that we would include
signatures for all cell types that might exist in the endometrium,
and that many immune cells profiled from the endometrium have
shown noncanonical transcriptional profiles, we chose to use
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xCell’s enrichment-based approach, which is more robust to
signature absence and inconsistencies, and includes signatures
for 64 human immune and stromal cell types (including adaptive
and innate immune cells, hematopoietic progenitors, epithelial
cells, and extracellular matrix cells derived from thousands of
expression profiles) (26). xCell was run on the log-transformed
and batch-corrected expression data of human endometrial tissue
described above. Due to uncertainty in the applicability of xCell
signatures to endometrial tissue, only the rawEnrichmentAnalysis
and transformScores steps were utilized for the calculation of
enrichment scores. The spillOver adjustment step was not utilized
due to notable deviations between xCell signatures versus nominal
endometrial cell profiles, which would have been carried over into
the compensation matrix derived from in silico mixtures of
reference cells.

4.6 Filtration of Cell-Type Signatures
Based on Permutation Analysis
As discussed by its authors, xCell often produces nonzero scores,
which may result in false-positive interpretation for nonexistent
cell types or unsuitable signatures. xCell signatures that might not
apply well to endometrial samples were first identified based on
comparison to a permuted background distribution (Figures S5,
S6). A background distribution of enrichment scores was
generated for every cell-type signature, and for each cycle
phase, by running xCell with 1,000 permutations of our
expression matrix where rownames (gene symbols) were
shuffled. Significance testing was then performed for each cycle
phase among control or disease samples individually. Median
enrichment scores of all iterations, among the current stratification
samples, formed the background distribution for each cell type.
For a given stratification, a cell-type signature was then considered
as expressed if the “true” median enrichment score, from the
nonpermuted data, was greater than the 90th quantile of its
background distribution. To ensure that cells present in only
certain conditions might still be accurately assessed, this filtering
procedure was run on a per-disease status and per-phase basis, and
cell-type signatures were retained for future analyses as long as the
median enrichment score was above the background cutoff for at
least one stratification.

4.7 Evaluation of xCell Signatures Using
Single-Cell Measurements of Endometrial
Tissue From Women Without
Endometriosis
Meanwhile, even when an xCell score is statistically significant,
its contributing xCell cell-type signature may not be specific to its
nominal cell-type target in the tissue of interest due to intertissue
variability of the same cell type or ambiguity in cell-type naming.

To test sensitivity, for each of the 64 xCell signatures, a
signature score was calculated with respect to each endometrial
cell type identified in the scRNAseq dataset (27). To identify
differentially expressed genes, Wilcoxon’s rank sum test (two-
sided) was performed, and fold change (FC, dummy variable =
10-2) was calculated between cells from an endometrial cell type
and the remaining cells. P-values obtained from Wilcoxon’s
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rank-sum test were adjusted for multiple comparison by the
Benjamini– Hochberg’s procedure to obtain p.adj. A signature
score was quantified as the percentage of genes in the given xCell
signature that were differentially expressed between cells in an
endometrial cell type compared to the remaining cells (p.adj <
0.05, log2(FC) > 1). For each of the xCell signatures, the resulting
score was normalized by the median of scores of all eight
endometrial cell types identified in the single-cell dataset
(normalized si, j = si, j/Med(si,1, si,2, … si,8), where i is an xCell
signature and j an endometrial cell type identified in the single-
cell dataset).

Each xCell signature was categorized as either “reference” or
“no-reference,” based on whether there is an endometrial cell
type or subtype in the single-cell dataset that the signature is
potentially targeting. A map between each xCell signature and
each endometrial cell type was constructed to describe this
relationship (Figure 2B, boxes). As shown in Figure 1, we
kept this relationship relatively broad such that a signature is
considered targeting a single cell type/subtype if it targets directly
the identified endometrial cell type, or a subcategory of the
identified cell type, or a related category of the identified cell type,
to account for ambiguity in naming cell types and for potential
existence of subtypes within the annotated cell populations.

Two specificity score metrics were then established. Given the
target map, for the first specificity metric, “onTarget,” an xCell
signature was tagged as “on-target” if the highest-ranking
endometrial cell type from the single-cell expression data
matches the cell type targeted by the xCell signature and
“off-target” otherwise. Signatures without a clear reference cell
type within the single-cell dataset were given an “NA”
label (Figure 2B).

Separately, to evaluate how specific an xCell signature is to the
endometrial cell type it represents, we calculated a “ratioNext”
score representing the ratio between the highest and the second
highest-ranking signature scores. Importantly, to avoid
overpenalizing, if subtypes exist for the highest-ranking cell
type (e.g., epithelial cells), scores in the subtypes were ignored
in determining the second highest signature score (Figure 2B).

4.8 Identification and Annotation of 13
Immune Cell Types/Subtypes From
Healthy Human Endometrium
Dimensional reduction was performed on cells from the two
clusters annotated as “Lymphocytes” and “Macrophages” in the
original analysis (27) using Seurat’s (v3.2.0) (67) implementation
of uniform manifold approximation and projection (UMAP).
Specifically, top 2,000 variable genes among the immune cells
were identified via FindVariableFeatures(). Principal component
analysis was performed via RunPCA() on the top variable genes.
Dimension reduction was performed on the top 20 principal
components (PCs) via RunUMAP() based on the distribution of
variances explained by the top PCs. Cell types/subtypes were
identified using Seurat’s FindNeighbors(dims = 1:20) and
FindClusters(resolution = 0.6). For each identified cell type/
subtype, FindNeighbors() and FindClusters() were iterated one
additional round to identify further heterogeneity. A cluster is
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classified as a candidate immune cell type/subtype if it can be
defined by statistically significant uniquely expressing markers.
pDC and B cells were present in 4 samples, macrophages were
present in 7 women, and the rest of identified immune types/
subtypes were in all 10 women.

For each identified cell type/subtype, uniquely expressing
genes were found via FindAllMarkers(only.pos = TRUE,
min.pct = 0.25, logfc.threshold = 0.25, test.use = “wilcox”,
slot = “data”) and ordered based on log2FC.

As elaborated in the text, annotation of each immune cell
type/subtype was performed through iterative evaluation of
classical marker expression, signature level scoring of xCell’s
immune cell signatures, and RNA expression pattern of uniquely
expressing genes identified above reported by the Human
Protein Atlas (32). For signature scoring, we used the method
reported in (31). Briefly, for each xCell’s immune signature, the
score was quantified as the ratio between transcripts (UMI) that
encode genes in the signature to all transcripts (UMI) detected in
each single cell. We further examined the distribution of each
signature in each identified immune cell type/subtype.

4.9 Validation of xCell Approach Using
Artificial Mixtures From Sorted Cells
Microarray expression data from four cell types of FACS-purified
endometrial cells (from participants with and without
endometriosis) were used to generate 20 different artificial
mixtures with varying proportions of each cell type. The
microarray expression data from endothelial cells (n=11 samples),
epithelial cells (n=7), mesenchymal stem cells (n=28), and stromal
fibroblasts (n=31) were first summarized by their median
expression for all probes. These median cell profiles were then
additively combined into 20 different mixtures in which one cell
type made up 10, 30, 50, 70, or 90% of the mixture, and the
remaining cell types made up the remaining 90, 70, 50, 30, or 10%,
respectively. xCell was then run on these mixtures both with and
without the spillOver step (Figures 2C, D).

4.10 Differential Cell Type
Enrichment Analysis
Log2 enrichment ratios (log2ER), between groups, were
calculated for each cell type signature. P-values were generated
by performing two-sided Mann–Whitney U tests between
enrichment scores of all samples, between groups. These were
then corrected for multiple hypothesis testing via the FDR
method based on the number of signatures assessed. FDR <
0.05 was the sole cutoff used for differential cell-type enrichment.
Such analysis was run on the same stratifications of the
samples and for the same comparisons for each of those
stratifications, as for differential gene expression analysis,
described previously (Figure 1).
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31. Pont F, Tosolini M, Fournié JJ. Single-Cell Signature Explorer for
Comprehensive Visualization of Single Cell Signatures Across scRNA-Seq
Datasets. Nucleic Acids Res (2019) 47:e133. doi: 10.1093/nar/gkz601

32. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al.
Towards a Knowledge-Based Human Protein Atlas. Nat Biotechnol (2010)
28:1248–50. doi: 10.1038/nbt1210-1248

33. Erikson DW, Barragan F, Piltonen TT, Chen JC, Balayan S, Irwin JC, et al.
Stromal Fibroblasts From Perimenopausal Endometrium Exhibit a Different
Transcriptome Than Those From the Premenopausal Endometrium. Biol
Reprod (2017) 97:387–99. doi: 10.1093/biolre/iox092

34. Piltonen TT, Chen J, Erikson DW, Spitzer TLB, Barragan F, Rabban JT, et al.
Mesenchymal Stem/Progenitors and Other Endometrial Cell Types From
Women With Polycystic Ovary Syndrome (PCOS) Display Inflammatory and
Oncogenic Potential. J Clin Endocrinol Metab (2013) 98:3765–75.
doi: 10.1210/jc.2013-1923

35. Spitzer TLB, Rojas A, Zelenko Z, Aghajanova L, Erikson DW, Barragan F,
et al. Perivascular Human Endometrial Mesenchymal Stem Cells Express
Pathways Relevant to Self-Renewal, Lineage Specification, and Functional
Phenotype. Biol Reprod (2012) 86:58. doi: 10.1095/biolreprod.111.095885

36. Delbandi A-A, Mahmoudi M, Shervin A, Heidari S, Kolahdouz-Mohammadi
R, Zarnani A-H. Evaluation of Apoptosis and Angiogenesis in Ectopic and
Eutopic Stromal Cells of Patients With Endometriosis Compared to Non-
Endometriotic Controls. BMC Womens Health (2020) 20:3. doi: 10.1186/
s12905-019-0865-4

37. Smith S. Angiogenesis, Vascular Endothelial Growth Factor and the
Endometrium. Hum Reprod Update (1998) 4:509–19. doi: 10.1093/
humupd/4.5.509

38. Wingfield M, Macpherson A, Healy DL, Rogers PA. Cell Proliferation Is
Increased in the Endometrium of Women With Endometriosis. Fertil Steril
(1995) 64:340–6. doi: 10.1016/s0015-0282(16)57733-4

39. Chan RWS, Gargett CE. Identification of Label-Retaining Cells in Mouse
Endometrium. Stem Cells (2006) 24:1529–38. doi: 10.1634/stemcells.2005-
0411

40. Masuda H, Anwar SS, Bühring H-J, Rao JR, Gargett CE. A Novel Marker of
Human Endometrial Mesenchymal Stem-Like Cells. Cell Transplant (2012)
21:2201–14. doi: 10.3727/096368911X637362

41. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M,
Meyer KB, et al. Single-Cell Reconstruction of the Early Maternal-Fetal
January 2022 | Volume 12 | Article 788315

https://doi.org/10.1210/en.2003-0043
https://doi.org/10.1210/en.2003-0043
https://doi.org/10.1210/en.2014-1490
https://doi.org/10.1210/en.2014-1490
https://doi.org/10.3892/br.2017.902
https://doi.org/10.1210/er.2018-00242
https://doi.org/10.1210/en.2006-1692
https://doi.org/10.3390/ijms22169033
https://doi.org/10.1095/biolreprod.115.136010
https://doi.org/10.1016/j.fertnstert.2019.08.060
https://doi.org/10.1371/journal.pone.0006098
https://doi.org/10.1371/journal.pone.0006098
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1371/journal.pone.0027156
https://doi.org/10.1093/bioinformatics/btt566
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1371/journal.pcbi.1002838
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1016/j.coi.2013.09.015
https://doi.org/10.1186/1471-2105-14-89
https://doi.org/10.1371/journal.pcbi.1003189
https://doi.org/10.1093/bib/bbz166
https://doi.org/10.1038/s41592-019-0355-5
https://doi.org/10.1371/journal.pcbi.1007510
https://doi.org/10.3390/cells8101161
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/s41591-020-1040-z
https://doi.org/10.1038/s41591-020-1040-z
https://doi.org/10.1038/s41598-018-29462-y
https://doi.org/10.1093/humupd/dmz018
https://doi.org/10.1093/humrep/dem265
https://doi.org/10.1093/nar/gkz601
https://doi.org/10.1038/nbt1210-1248
https://doi.org/10.1093/biolre/iox092
https://doi.org/10.1210/jc.2013-1923
https://doi.org/10.1095/biolreprod.111.095885
https://doi.org/10.1186/s12905-019-0865-4
https://doi.org/10.1186/s12905-019-0865-4
https://doi.org/10.1093/humupd/4.5.509
https://doi.org/10.1093/humupd/4.5.509
https://doi.org/10.1016/s0015-0282(16)57733-4
https://doi.org/10.1634/stemcells.2005-0411
https://doi.org/10.1634/stemcells.2005-0411
https://doi.org/10.3727/096368911X637362
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bunis et al. Eutopic Endometrium Deconvolution in Endometriosis
Interface in Humans. Nature (2018) 563:347–53. doi: 10.1038/s41586-018-
0698-6

42. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for
Interpreting Genome-Wide Expression Profiles. PNAS (2005) 102:15545–50.
doi: 10.1073/pnas.0506580102

43. Hey-Cunningham AJ, Wong C, Hsu J, Fromm PD, Clark GJ, Kupresanin F,
et al . Comprehensive Analysis Util izing Flow Cytometry and
Immunohistochemistry Reveals Inflammatory Changes in Local
Endometrial and Systemic Dendritic Cell Populations in Endometriosis.
Hum Reprod (2021) 36:415–28. doi: 10.1093/humrep/deaa318

44. Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid
Dendritic Cells: Development, Functions, and Role in Atherosclerotic
Inflammation. Front Physiol (2014) 5:279. doi: 10.3389/fphys.2014.00279

45. Tan X, Lang J, Liu D. Expression of Monocyte Chemotacticp Protein-1 in the
Eutopic Endometrium of Women With Endometriosis. Zhonghua Fu Chan
Ke Za Zhi (2001) 36:89–91.

46. Cheng Z, Lin Q, Shen Z. Study on Association of Vascular Endothelial Growth
Factor With the Pathogenesis of Pregnancy Induced Hypertension. Zhonghua
Fu Chan Ke Za Zhi (2001) 36:72–5. doi: 10.3892/etm.2019.7724

47. Kuivasaari P, Hippeläinen M, Anttila M, Heinonen S. Effect of Endometriosis
on IVF/ICSI Outcome: Stage III/IV Endometriosis Worsens Cumulative
Pregnancy and Live-Born Rates. Hum Reprod (2005) 20:3130–5.
doi: 10.1093/humrep/dei176

48. Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME, Kappes
JC, et al. Dendritic Cells From the Human Female Reproductive Tract Rapidly
Capture and Respond to HIV. Mucosal Immunol (2017) 10:531–44.
doi: 10.1038/mi.2016.72

49. Rodriguez-Garcia M, Fortier JM, Barr FD, Wira CR. Isolation of Dendritic
Cells From the Human Female Reproductive Tract for Phenotypical and
Functional Studies. J Vis Exp (2018) (133):e57100. doi: 10.3791/57100

50. Schulke L, Berbic M, Manconi F, Tokushige N, Markham R, Fraser IS.
Dendritic Cell Populations in the Eutopic and Ectopic Endometrium of
Women With Endometriosis. Hum Reprod (2009) 24:1695–703.
doi: 10.1093/humrep/dep071

51. Berbic M, Hey-Cunningham AJ, Ng C, Tokushige N, Ganewatta S, Markham
R, et al. The Role of Foxp3+ Regulatory T-Cells in Endometriosis: A Potential
Controlling Mechanism for a Complex, Chronic Immunological Condition.
Hum Reprod (2010) 25:900–7. doi: 10.1093/humrep/deq020

52. Berbic M, Fraser IS. Regulatory T Cells and Other Leukocytes in the
Pathogenesis of Endometriosis. J Reprod Immunol (2011) 88:149–55.
doi: 10.1016/j.jri.2010.11.004

53. Hey-Cunningham AJ, Riaz A, Fromm PD, Kupresanin F, Markham R,
McGuire HM. Circulating and Endometrial Regulatory T Cell and Related
Populations in Endometriosis and Infertility: Endometriosis Is AssociatedWith
Blunting of Endometrial Cyclical Effects and Reduced Proportions in
Moderate-Severe Disease. Reprod Sci (2021) 29(1):229–42. doi: 10.1007/
s43032-021-00658-4

54. Olkowska-Truchanowicz J, Sztokfisz-Ignasiak A, Zwierzchowska A, Janiuk I,
Dab̨rowski F, Korczak-Kowalska G, et al. Endometriotic Peritoneal Fluid
Stimulates Recruitment of CD4+CD25highFOXP3+ Treg Cells. J Clin Med
(2021) 10:3789. doi: 10.3390/jcm10173789

55. Li M-Q, Wang Y, Chang K-K, Meng Y-H, Liu L-B, Mei J, et al. CD4+Foxp3+
Regulatory T Cell Differentiation Mediated by Endometrial Stromal Cell-
Derived TECK Promotes the Growth and Invasion of Endometriotic Lesions.
Cell Death Dis (2014) 5:e1436. doi: 10.1038/cddis.2014.414
Frontiers in Immunology | www.frontiersin.org 17
56. Jeziorska M, Salamonsen LA, Woolley DE. Mast Cell and Eosinophil
Distribution and Activation in Human Endometrium Throughout the
Menstrual Cycle. Biol Reprod (1995) 53:312–20. doi: 10.1095/
biolreprod53.2.312

57. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular
Endothelial Growth Factor (VEGF) in Endometriosis. Hum Reprod (1998)
13:1686–90. doi: 10.1093/humrep/13.6.1686

58. Song JY, Russell P, Markham R, Manconi F, Fraser IS. Effects of High Dose
Progestogens on White Cells and Necrosis in Human Endometrium. Hum
Reprod (1996) 11:1713–8. doi: 10.1093/oxfordjournals.humrep.a019474

59. Poli-Neto OB, Meola J, Rosa-e-Silva JC, Tiezzi D. Transcriptome Meta-
Analysis Reveals Differences of Immune Profile Between Eutopic
Endometrium From Stage I-II and III-IV Endometriosis Independently of
Hormonal Milieu. Sci Rep (2020) 10:1–17. doi: 10.1038/s41598-019-57207-y

60. Aghajanova L, Tatsumi K, Horcajadas JA, Zamah AM, Esteban FJ, Herndon
CN, et al. Unique Transcriptome, Pathways, and Networks in the Human
Endometrial Fibroblast Response to Progesterone in Endometriosis. Biol
Reprod (2011) 84:801–15. doi: 10.1095/biolreprod.110.086181

61. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K.
Benchmarking of Cell Type Deconvolution Pipelines for Transcriptomics
Data. Nat Commun (2020) 11:5650. doi: 10.1038/s41467-020-19015-1

62. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—Analysis of Affymetrix
GeneChip Data at the Probe Level. Bioinformatics (2004) 20:307–15.
doi: 10.1093/bioinformatics/btg405

63. Johnson WE, Li C, Rabinovic A. Adjusting Batch Effects in Microarray
Expression Data Using Empirical Bayes Methods. Biostatistics (2007) 8:118–
27. doi: 10.1093/biostatistics/kxj037

64. Bushel P. Pvca: Principal Variance Component Analysis (PVCA). (2020).
65. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma Powers

Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

66. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A.
Fast Gene Set Enrichment Analysis. bioRxiv (2021) 060012. doi: 10.1101/
060012

67. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al.
Comprehensive Integration of Single-Cell Data. Cell (2019) 177:1888–902.e21.
doi: 10.1016/j.cell.2019.05.031
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bunis,Wang, Vallve-́Juanico, Houshdaran, Sen, Ben Soltane, Kosti,
Vo, Irwin, Giudice and Sirota. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
January 2022 | Volume 12 | Article 788315

https://doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/humrep/deaa318
https://doi.org/10.3389/fphys.2014.00279
https://doi.org/10.3892/etm.2019.7724
https://doi.org/10.1093/humrep/dei176
https://doi.org/10.1038/mi.2016.72
https://doi.org/10.3791/57100
https://doi.org/10.1093/humrep/dep071
https://doi.org/10.1093/humrep/deq020
https://doi.org/10.1016/j.jri.2010.11.004
https://doi.org/10.1007/s43032-021-00658-4
https://doi.org/10.1007/s43032-021-00658-4
https://doi.org/10.3390/jcm10173789
https://doi.org/10.1038/cddis.2014.414
https://doi.org/10.1095/biolreprod53.2.312
https://doi.org/10.1095/biolreprod53.2.312
https://doi.org/10.1093/humrep/13.6.1686
https://doi.org/10.1093/oxfordjournals.humrep.a019474
https://doi.org/10.1038/s41598-019-57207-y
https://doi.org/10.1095/biolreprod.110.086181
https://doi.org/10.1038/s41467-020-19015-1
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1101/060012
https://doi.org/10.1101/060012
https://doi.org/10.1016/j.cell.2019.05.031
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Whole-Tissue Deconvolution and scRNAseq Analysis Identify Altered Endometrial Cellular Compositions and Functionality Associated With Endometriosis
	1 Introduction
	2 Results
	2.1 Traditional Differential Expression Analysis Identifies Immune Pathways Associated With Endometriosis Across the Menstrual Cycle
	2.2 Evaluation of Applicability 64 Cell-Type Deconvolution Signatures to Endometrial Tissue
	2.2.1 Evaluation of Statistical Significance of xCell Output Using Permutation Analysis
	2.2.2 Evaluation of the Specificity of Cell-Type Deconvolution Signatures to Human Endometrial Cells Using Single-Cell RNAseq Data
	2.2.3 Annotation of Endometrial Immune Cell Types at Single-Cell Level Using xCell Signatures
	2.2.4 Validation of the xCell Approach Using Artificial Mixtures From Sorted Cells

	2.3 Menstrual Cycle Phase and Endometriosis-Associated Changes in Cellular Composition of Human Endometrium
	2.3.1 Deconvolution Results for Non-Immune xCell Signatures With Confirmed Specificity to Cell Types in Human Endometrium
	2.3.2 Deconvolution Results for Immune xCell Signatures With Confirmed Specificity to Cell Types in Human Endometrium
	2.3.3 Deconvolution Results for Immune xCell Signatures With Functional Applicability to Cell Types in Human Endometrium
	2.3.4 Deconvolution Results for Immune xCell Signatures With Low Specificity to Cell Types in the Healthy Human Endometrium Dataset
	2.3.5 Deconvolution Results for xCell Signatures Lacking Representation in the Healthy Human Endometrium Dataset (Enriched in Disease)


	3 Discussion
	3.1 Contributions of Non-Immune Cells to Endometriosis
	3.2 Contributions of Immune Cells to Endometriosis
	3.3 Comparison to Prior Work
	3.4 Strengths and Limitations of This Study

	4 Materials and Methods
	4.1 Code and Experimental Data
	4.1.1 Whole Tissue Microarray
	4.1.2 Sorted Cell Microarray
	4.1.3 Single-Cell Transcriptomics
	4.1.4 Code and Processed Data Availability

	4.2 Microarray Normalization and Batch Correction
	4.3 Differential Expression
	4.4 Gene Pathway Enrichment Analysis
	4.5 Cell-Type Enrichment
	4.6 Filtration of Cell-Type Signatures Based on Permutation Analysis
	4.7 Evaluation of xCell Signatures Using Single-Cell Measurements of Endometrial Tissue From Women Without Endometriosis
	4.8 Identification and Annotation of 13 Immune Cell Types/Subtypes From Healthy Human Endometrium
	4.9 Validation of xCell Approach Using Artificial Mixtures From Sorted Cells
	4.10 Differential Cell Type Enrichment Analysis

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


