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COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has threatened public health worldwide. Host antiviral immune responses
are essential for viral clearance and disease control, however, remarkably decreased
immune cell numbers and exhaustion of host cellular immune responses are commonly
observed in patients with COVID-19. This is of concern as it is closely associated with
disease severity and poor outcomes. Human leukocyte antigen-G (HLA-G) is a ligand for
multiple immune inhibitory receptors, whose expression can be upregulated by viral
infections. HLA-G/receptor signalling, such as engagement with immunoglobulin-like
transcript 2 (ILT-2) or ILT-4, not only inhibit T and natural killer (NK) cell immune
responses, dendritic cell (DC) maturation, and B cell antibody production. It also
induces regulatory cells such as myeloid-derived suppressive cells (MDSCs), or M2
type macrophages. Moreover, HLA-G interaction with CD8 and killer inhibitory receptor
(KIR) 2DL4 can provoke T cell apoptosis and NK cell senescence. In this context, HLA-G
can induce profound immune suppression, which favours the escape of SARS-CoV-2
from immune attack. Although detailed knowledge on the clinical relevance of HLA-G in
SARS-CoV-2 infection is limited, we herein review the immunopathological aspects of
HLA-G/receptor signalling in SARS-CoV-2 infection, which could provide a better
understanding of COVID-19 disease progression and ident i fy potent ia l
immunointerventions to counteract SARS-CoV-2 infection.
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INTRODUCTION

COVID-19, the disease caused by the highly contagious virus “severe acute respiratory syndrome
coronavirus 2” (SARS-CoV-2), has become a serious global public health concern (1). Although
unprecedented comprehensive virus transmission prevention measures have been strictly
implemented, such as travel restrictions, public social distancing, personal hygiene, and patient
quarantine requirements, the virus has spread widely and caused more than 5,054,267 deaths
worldwide since its outbreak in December 2019 (2–4).
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The clinical manifestation of COVID-19 can be
asymptomatic, mild to moderate, or severe, or critical
pneumonia with symptoms of acute respiratory distress
syndrome, multi-organ failure, and/or shock (5). Among
patients with COVID-19, risk factors such as advanced age and
pre-existing conditions are associated with increased disease
severity (6). From an immunological perspective, a host’s
innate and adaptive immune responses are indispensable in
controlling viral infection and disease progression. However,
abnormal host immune responses are common in patients
with severe COVID-19, including cytokine storm resulting
from hyper-inflammatory immunological humoral reactions, as
well as impairment of cellular antiviral immune responses (7, 8).
Our previous studies revealed that total lymphocytes, CD3+,
CD4+, and CD8+ T cells were dramatically lower among patients
with severe COVID-19 than among non-severe patients at
admission. These cells returned to normal levels by the second
week after discharge, however, lower CD8+ T cell count is an
independent risk factor for longer viral positivity duration and is
related to an increased risk for discharged patients with SARS-
CoV-2 re-positivity (9–11). Pro-inflammatory cytokines and
chemokines, such as interleukin (IL)-1b, IL-6, IL-8, tumour
necrosis factor (TNF)-a, macrophage inflammatory protein
(MIP) 1a/CCL3, interferon (IFN)-g-induced protein 10 (IP10),
monocyte chemoattractant protein 1 (MCP1), granulocyte
colony-stimulating factor (G-CSF), and granulocyte-
macrophage colony-stimulating factor (GM-CSF), were
substantially increased (12, 13). Moreover, antiviral cellular
immune responses were compromised because of the
following: (a) the dramatically decreased absolute number of
CD3+ lymphocytes, subpopulations of CD4+ and CD8+ T cells,
CD3+CD56+ NKT cells, B cells, and natural killer (NK) cells (14,
15); (b) various functions were impaired and/or exhausted, such
as the cytotoxicity of these immune effectors (16–18); and (c)
immune regulatory cells, including myeloid-derived suppressor
cells, were notably expanded in severe cases (19).

Although an increasing number of c l inical and
immunological findings on the immunopathological features of
COVID-19 are being reported, the molecular mechanisms
involved in the dysregulation of cellular immune responses
against SARS-CoV-2 infection are yet to be discovered (20).
During viral infection, various strategies to escape the host
antiviral immune attack and to favour replication and disease
progression have been developed by the virus particles (21, 22).
Alteration and intervention of human leukocyte antigen (HLA)
and/or its receptor expression is one of the strategies applied by
viruses (23). In patients with COVID-19, HLA-E receptor CD94/
NK group 2 member A (NKG2A), a member of the immune
inhibitory receptors, is remarkably increased in CD8+ T and
NKT cells, resulting in their functional exhaustion. Notably, high
levels of NKG2A expression are significantly reduced when
patients recover from the disease (18).

HLA-G is a non-classical HLA class I antigen, which is a
strong immune inhibitory mediator via receptor signalling.
Because of the alternative splicing its primary transcript, at
least seven HLA-G isoforms have been identified, which
Frontiers in Immunology | www.frontiersin.org 2
include four membrane-bound (HLA-G1, HLA-G2, HLA-G3,
and HLA-G4) and three soluble (HLA-G5, HLA-G6, and HLA-
G7) isoforms (24). HLA-G can be upregulated by various viral
infections, including SARS-CoV-2, which can render
comprehensive immunosuppressive roles in favouring virus
immune evasion and subsequent disease progression (25, 26).
Several immune cell surface-expressed receptors have been
identified that bind to HLA-G, including immunoglobulin-like
transcripts-2 (ILT-2)/CD85j/LIR1, ILT-4/CD85d/LIR2, killer
inhibitory receptor (KIR) 2DL4/CD158d, CD8, and CD160
(24). The glycosylphosphatidylinositol-anchored transmembrane
glycoprotein receptor CD160 is closely related to the KIR2DL4,
although their homology is rather weak only with 29% identity
and 44% similarity (27). In this scenario, HLA-G/receptor
signalling among various immune cells is important in
COVID-19 pathogenesis and progression (Figure 1).

Herein, we focus on the implication of HLA-G/receptor
signalling on immune response impairment during SARS-
CoV-2 infection.
IMMUNE MODULATION OF
HLA-G MOLECULE

The HLA-G gene was identified by Geraghty et al. in 1987, and
HLA-G protein expression was first found in extravillous
cytotrophoblasts in 1990 (28, 29). A number of studies have
focused on the basic and clinical significance of HLA-G in foetal-
maternal immune tolerance. Since then, immune receptors,
including KIR2DL4, ILT-2, ILT-4, CD8, and CD160, have been
discovered (30–34). HLA-G induced immune suppression has
been extensively documented (including direct and/or indirect as
well as long- and short-term), and the immunosuppressive
functions of HLA-G have been well established (29, 35). The
signalling between HLA-G and receptors KIR2DL4, ILT-2, ILT-
4, CD8, and CD160 expressed on different types of immune cells
is a fundamental prerequisite for the aforementioned immune
suppressive functions of HLA-G (36). Recently, the immune
inhibitory NKG2A/CD94 receptor, a well-known receptor for
HLA-E, has been reported to be a new HLA-G allele-dependent
receptor (37).

By directly binding to immune cell surface receptors ILT-2 or/
and ILT-4, HLA-G can inhibit T cells, NK cells, and B cell
proliferation, cytotoxicity, anti-inflammatory cytokines such as
interferon-chemotaxis, immunoglobulin production, or MICA/
NKG2D activation or cell senescence (22). HLA-G can also
induce the generation of anergic and regulatory T cells (Treg),
tolerogenic DCs, polarisation of M1 to M2, and Th2-type
cytokine secretion (24). Moreover, HLA-G can suppress
neutrophil reactive oxygen species production and the capacity
for phagocytosis (38). Indirect immune suppression induced by
HLA-G could be caused by multiple intracellular transfers of
HLA-G from HLA-G-bearing cells to HLA-G-negative
neighbouring cells or distant cells. Both allogeneic and
autologous cell membranes containing HLA-G between/among
cells through the process of trogocytosis have been observed,
December 2021 | Volume 12 | Article 788769
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resulting in the activation of immune effector cells (T cells, NK
cells, monocytes) into suppressor cells. In addition, HLA-G can
be transferred by exosomes to long-distance cells, impairing the
functions of immune-competent cells (39). Furthermore, indirect
immune modulation induced by HLA-G could increase HLA-E
expression, thus influencing the HLA-E/CD94/NKG2 receptor
signalling pathway. Cell surface HLA-E expression is dependent
on the binding of TAP-associated peptides derived from other
HLA class I signal sequences (40). Among the different HLA
class I signal peptides, the HLA-E/G-nonameric complex has a
significantly higher affinity (41). However, different HLA-G
isoforms may have different effects on the enhancement of
HLA-E cell surface localization (42).
INDUCTION OF HLA-G EXPRESSION IN
INFECTIOUS DISEASES

HLA antigens are critical for both the innate and adaptive
immune systems as they bind to T cell receptors to present
HLA-restricted peptides to T cells and interact with NK cell
receptors to modulate the functions of innate immune
components, such as NK cells (43). Downregulation of the
expression of the classical HLA class I antigens (HLA-A, -B,
and -C) and HLA class II antigens (DP, DQ, and DR) is one of
the most effective strategies for perpetuating viral infections, as it
allows virus-infected cells to escape from the host immune attack
led by virus-specific CD8+ T cells and blunt CD4+ T cells, which
Frontiers in Immunology | www.frontiersin.org 3
help B cells to produce virus-specific antibodies (44). The
aberrant upregulation of the immune tolerant HLA-G
expression is more common than the downregulation of the
HLA-I and -II antigens during many infections, providing virus-
infected cells a strategy to protect themselves from NK cell
cytolysis (45, 46).

Mechanisms underlying the regulation of HLA-G protein
expression is quite complex. HLA-G protein expression can be
driven by specific HLA-G genetic polymorphisms, and
extracellular and intracellular signals. HLA-G polymorphisms
such as a rs66554220, a 14-bp insertion/deletion in the HLA-G
exon 8 involved in the stability of HLA-G mRNA, where HLA-G
mRNA is more stable with the 14-bp deleted allele and related to
HLA-G protein expression (47–49). MicroRNAs miR-148a,miR-
148b, miR-152, miR-133a, miR-628-5p, and miR-548q have been
reported to regulate HLA-G expression (50). Among them,
position +3142 (C>G, rs1063320) has high binding affinity to
microRNAs miR-148a,miR-148b, andmiR-152, which is related
to the suppression of HLA-G production (51). In addition to the
microRNAs, specific RNA binding proteins, such as the
heterogeneous nuclear ribonucleoprotein R (HNRNPR), which
can bind HLA-G in 3’ untranslated regions (UTR) and stablize
the HLA-G transcripts, and increase HLA-G expression (52).
HLA-G promoter region includes several specific regulatory
elements. HLA-G promoter heat shock element can response
to heat shock proteins, and dexamethasone and progesterone can
interact with a unique progesterone response element to regulate
HLA-G protein expression (53, 54). Also, extracellular
FIGURE 1 | Immune suppression mediated by up-regulated HLA-G expression in virus infected cells and its interaction with immune receptors expressed on
different types of immune cells during SARS-CoV-2 infection.
December 2021 | Volume 12 | Article 788769
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environmental factors such as cytokine IL-10, IFNs, indolamine
2, 3-dioxygenase (IDO), granulocyte-macrophage colony-
stimulating factor (GM-CSF), hypoxia and demethylation
condition affects HLA-G protein expression (48, 55–58).
However, peripheral sHLA-G levels are not significantly
different between male and female individuals (49, 59). Virus
itself or viral gene products such as U94 viral gene of human
herpesvirus 6 (HHV-6) can induce HLA-G activation by
recognizing an HLA-G promoter consensus sequence (60).
Through no specific mechanism for HLA-G up-regulation has
been outlined during the SARS-CoV-2 infection, COVID-19
patients peripheral circulation highly increased cytokines such
as IL-10, GM-CSF and IDO could be factors involved in the
HLA-G expression modification (61, 62).

Upregulation of both virus-infected cell surface membrane-
bound HLA-G and peripheral soluble HLA-G expression has
been observed in various viral infectious diseases, such as human
immunodeficiency virus type 1 (HIV-1), herpes simplex virus-1,
rhabdovirus, human cytomegalovirus, hepatitis B and C virus,
and influenza A virus (63). HLA-G expression in monocytes and
T cells of HIV-1 infected individuals was much higher than that
in healthy controls (64). Recent studies have shown that
increased HLA-G expression on monocytes could be induced
by highly active antiretroviral therapy (HAART), and that cell
surface HLA-G expression is more stable than that of the other
HLA molecules owing to its resistance to HIV-1 derived protein
Nef degradation (65, 66). Moreover, soluble HLA-G could
inhibit myeloid dendritic cell function, and higher peripheral
circulating sHLA-G levels were shown to be linked to the rapid
progression of HIV-1 infection (67, 68).

In the context of SARS-CoV-2 infection, there is currently
limited information on the biological and clinical significance of
HLA-G. In a previous study using global transcriptomic analysis,
Josset et al. (26) found that SARS-CoV-2 and Middle East
respiratory syndrome coronavirus (MERS-CoV) differentially
activated HLA-G transcription in the human lung epithelial
cell line Calu-3 in vitro. This study revealed that HLA-G
transcripts could be specifically downregulated by MERS-CoV,
whereas HLA-G was upregulated by SARS-CoV-2 infection.
With a larger case/control cohort (2244/10220), a recent
genome-wide association study (GWAS) by Pairo-Castineira
et al. (69) showed that HLA-G (rs9380142) is a novel genetic
locus, which is strongly associated with the severity of COVID-
19. Association between HLA-G polymorphism and viral
infection has been documented in a number of studies. HLA-
G*01:01:08 was reported to be a risk factor for HIV-1 infection in
Zimbabwean while 3’UTR 14-bp In/14-bp In was a risk factor for
HIV infection in South Africans of African ancestry women (70,
71). 14-bp del/14-bp del and HLA-G*01:04:01/14-bp del
genotypes, and UTR-2 and UTR-3 haplotypes were found to
be the risk factors for hepatitis C virus (72, 73).

In a patient recovered from COVID-19 for four weeks,
induced HLA-G expression was observed in the intestinal
mucosa epithelial cells and lymphocytes at the sites
corresponding to SARS-CoV-2 positivity (74). In our case
report, the dynamics of HLA-G and expression of its receptors
Frontiers in Immunology | www.frontiersin.org 4
ILT-2, ILT4, and KIR2DL4 on peripheral immune cell
subpopulations in a critical COVID-19 case to convalescence
were analysed. Our data showed that HLA-G expression in
peripheral immune cells fluctuates along with the status of the
disease that the percentage of HLA-G-positive T cells, B cells and
monocytes presented a high-low-high pattern, while the
percentage of receptors ILT2-, ILT4- and KIR2DL4-expressing
immune cells remained relatively stable (75). Moreover, sHLA-G
has been found to be significantly elevated in patients with
COVID-19 and is related to disease severity (76). Notably, a
very recent study by Bortolotti et al. (77) reported that an
increased peripheral blood sHLA-G level was associated with
an improved outcome in patients with COVID-19, which might
be a result of reduced neutrophil adhesion to activated endothelia
by sHLA-G as well as interaction with the receptor CD160 (Table 1).

However, the clinical significance of HLA-G and its receptor
expression on immune cells among patients with COVID-19
remains largely unknown.
IMPLICATION OF HLA-G/RECEPTOR-
MEDIATED IMMUNE SUPPRESSION
IN COVID-19

The marked manifestations of immunopathology during SARS-
CoV-2 infection, particularly in patients with severe COVID-19,
is a salient reduction in immune-competent cells and an
overregulated production of pro-inflammatory cytokines and
chemokines (78). Dramatically impaired antiviral cellular
immune responses and uncontrolled pro-inflammatory
humoral immunity lead to SARS-CoV-2 immune evasion and
collateral local or systemic tissue damage (79). In severe COVID-
19 cases, cellular immune functions are not compromised by
dramatically decreased CD3+ lymphocytes, CD4+, CD8+ T,
CD3+CD56+ NK T, B, and NK cells, but by the impaired and/
or exhausted functions of these immune cells, which is
accompanied by the expansion of myeloid-derived suppressor
cells (80–82).

Cytotoxic lymphocytes, such as NK cells and CD8+ T
lymphocytes, can directly target virus-infected cells, and virus-
specific antibody-producing B cells are essential for viral
clearance and infectious disease control. In severe COVID-19
cases, not only the absolute number but also the cytotoxicity of
both NK cells and CD8+ T lymphocytes are remarkably reduced.
Mazzoni et al. (16) found that peripheral circulating NK cell
intracellular granzyme and perforin levels were dramatically
lower in patients with severe COVID-19 than in healthy
controls. At the same time, there are much higher frequencies
of senescent phenotype TEMRA+ CD57+ CD8+ T cells but
reduced antiviral cytokine production and cytotoxicity of CD4+,
CD8+ T, and NK cells in patients with COVID-19. NK cell
immune function impairment could be due to the significantly
increased expression of the inhibitory receptor NKG2A, as
reported by Zheng et al. (18). In that study, the functions of
NK and CD8+ T cells were exhausted and exhibited lower
December 2021 | Volume 12 | Article 788769
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CD107a, IFN-g, IL-2, granzyme B, and TNF-a production,
which were accompanied by highly increased expression of the
inhibitory receptor NKG2A on both cells during SARS-CoV-2
infection. Importantly, in most patients with COVID-19, the
reduced number of NK and CD8+ T cells was restored and the
initially high level of NKG2A expression was reduced during
the convalescent period after antiviral therapy.

Although detailed information on the significance of HLA-G/
receptor signalling in SARS-CoV-2 infection is lacking, the
multifaceted immune suppression induced by HLA-G
engagement with the aforementioned receptors has provided
accumulating evidence that HLA-G/receptor signalling induces
immune impairment and exhaustion, and cytokine release could
be of critical importance in COVID-19. Previous studies have
described the profound immune suppression mediated by HLA-
G interaction with ILT-2/4 in a wide range of contexts (83). The
interaction and signalling could inhibit the cytotoxicity of NK
and CD8+ T cells, allo-proliferation of CD4+ T cells, maturation
of DCs, differentiation, proliferation, and immunoglobulin (IgA,
IgG, and IgM) production by B cells (84–88). In line with this,
the activation of DCs and B cells was hampered in patients with
severe COVID-19, as indicated by Wang et al. (89). Moreover,
HLA-G/CD8 interaction could induce the apoptosis of CD8+ T
cells through the Fas/FasL pathway, which may also occur in
subsets of CD8+ NK T cells (90, 91). In contrast, HLA-G/ILT-2/4
engagement could also induce the generation of CD8+CD28+ or
CD4+CD25+CTLA-4+ regulatory T cells (Tregs), expansion of
MDSCs, tolerogenic DC-10 induced adaptive type 1 regulatory T
cells, and M2 type macrophages (92–95). A study by Tomić et al.
(96) revealed that the expansion of PD-L1, ILT-3, and IDO-1-
expressing monocytic MDSCs was related to the accumulation of
regulatory B and T cells and poor T cell immune responses in
Frontiers in Immunology | www.frontiersin.org 5
patients with severe COVID-19. Other studies have shown that
CD4+CD25+CD127low Treg cells were significantly increased in
patients with both mild or severe COVID-19, regardless of
recovery, and that the proportion of IL-10 producing Treg was
significantly increased in patients with severe COVID-19 (97,
98). However, the expression status of HLA-G and its receptors
on these immune cells remains to be investigated.

Moreover, HLA-G expression in swine endothelial cells can
protect them from human macrophage-mediated cytotoxicity
(99, 100). Based on our preliminary study on HLA-G receptor
expression in circulating immune subpopulations in a critical
patient with COVID-19, the data showed that T cells can be
phenotyped as ILT-2highILT-4 midKIR2DL4dim, B cells as ILT-2
midILT-4highKIR2DL4dim, and monocytes as ILT-2highILT-
4highKIR2DL4dim. However, the cell surface expression levels of
these receptors remained relatively stable from the critical stage
to convalescent stage and irrespective of the viral load in SARS-
COV-2 infection (75). The marginal KIR2DL4 expression
observed in T cells, B cells, and monocytes in our study is in
agreement with previous reports and is mainly located
intracellularly but detectable upon IL-2 activation of NK cells
(101). The activation signal resulting from HLA-G/KIR2DL4
interaction not only initiates the production of robust pro-
inflammatory cytokines and chemokines, such as IFN-g, TNF-
a, IL-1b, IL-6, IL-8, MIP-3a, MIP-1d, MIP-1a, and MIP-2b, but
also leads to cell senescence and cell cycle arrest in NK cells
(102, 103).

HLA-G allelic products also affect the interaction with its
receptors, caused by different amino acid residues, and
consequently alter its biological functions. Celik et al. (104)
indicated that a single amino acid difference in the a two
domains of HLA-G could affect the lysis of target cells by NK
TABLE 1 | Current available studies on HLA-G expression in patients with COVID-19.

Study method, subjects and size Results and Implication for HLA-G expression Reference

A 50s male patient had a positive for SARS-CoV-2 4
days after the start of symptoms. After 4-week-
negative, he was admitted due to stomach pain, and
a histologic examination was performed after
colonoscopy.

HLA-G expression was found in intestinal mucosa epithelial cells and in some lymphocytes, in
correspondence with SARS-CoV-2–positive sites. In submucosa, HLA-G expression was
detectable only in few lymphocytes. Induction of HLA-G expression at the site of SARS-CoV-2
infection might be a cause of the COVID-19-dependent bleeding.

(72)

A 55-year-old female patient with critical COVID-19
admitted seven days after the onset of symptoms.
Dynamics of HLA-G and its receptors ILT2, ILT4 and
KIR2DL4 expression in peripheral immune cells with
flow cytometry, and the outcomes of the patient
during the 23-day ICU treatment.

The percentage of HLA-G+ T cells (median: 6.29%; range: 1.18-11.2%), B cells (median: 5.93%;
range: 2.38-10.50%) and monocytes (median: 9.73%; range: 5.51-12.20%) is of a high (at
admission)–low (during hospitalization)–high ( convalescence) pattern, while the percentage of
receptors ILT2-, ILT4- and KIR2DL4-expressing cells remained more stable.

(73)

103 COVID-19 patients and 105 healthy controls were
included in the case-control study.

sHLA-G were significantly increased in COVID-19 patients compared to controls (19.3 vs. 12.7 ng/
mL; p <0.001). No statistical difference was observed between sHLA-G and gender, BMI, chronic
disease, or ABO and Rh blood groups. Patients in the quartiles >50–75% and >75% of sHLA-G
level were more likely to have COVID-19.

(74)

An investigator-initiated, prospective, single-center
study. Fifty-four COVID-19 (moderate-to-severe)
patients, 11 control patients that presented respiratory
failure without SARS-CoV-2 infection), and 100
healthy control subjects. Serum sHLA-G were
analyzed after enrollment (T1; Baseline), and every 7 ±
2 days for an additional 2 consecutive visits (T2 and
T3). Correlation between sHLA-G and clinical
outcomes was evaluated.

Higher sHLA-G in COVID-19 patients compared to controls with respiratory failure (165.87 vs.
49.54ng/mL; p < 0.01) and healthy controls ( 165.8 vs. 20.51ng/mL; p < 0.001) at T1. sHLA-G at
T1 did not differ between COVID-19survivors and non survivors, but significantly decreased over
time in non-survivors (p = 0.036 at T2; p = 0.04 at T3). In control patients, sHLA-G levels
decreased in both survivors and non-survivors over time with no statistical differences. Increased
severity of COVID-19 from T1 to T2 (but not T2 to T3) was associated with a significantly
decreased sHLA-G (p = 0.012). Improved clinical conditions were associated with an increased
sHLA-G between T1 and T2 (p = 0.01). Increased sHLA-G reduced neutrophil adhesion to the
endothelial cells.

(75)
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cells. The data showed that a much stronger immune suppressive
function was observed for the HLA-G*01:04 allele than for the
HLA-G*01:01 and HLA-G*01:03 alleles. It seems reasonable with
a recent finding that the binding of the HLA-G*01:04 product to
NKG2A/CD94 has a higher affinity than that of HLA-G*01:01
and HLA-G*01:03 products (37). As NKG2A expression is
highly associated with the severity of COVID-19, these
findings indicate that the genetic variation of HLA-G could be
linked to susceptibility to disease and host immune response
regulation during SARS-CoV-2 infection (105).
CONCLUSIONS

Since the outbreak of the worldwide COVID-19 pandemic in
December 2019, it has claimed more than 5,054,267 lives (4).
More insights into the ever-increasing clinical characteristics and
laboratory findings on COVID-19 are being reported, which
show that immune-competent cell function impairment and/or
exhaustion is one of the major features of COVID-19
pathogenesis (7). However, the mechanisms underlying
Frontiers in Immunology | www.frontiersin.org 6
immunological abnormalities remain largely unknown. As
reported in previous studies, viruses have developed effective
strategies to hide from host antiviral immune responses and
survive during infection (106). One strategy successfully
deployed by viruses for immune evasion is the impairment of
the classical HLA class I and II antigens to hide infected cells
from T cell recognition, and the induction of non-classical HLA
class I antigen HLA-G, a ligand for immune inhibitory receptors
differentially expressed on almost all subsets of immune cells.
Consequently, differential alteration in HLA antigen expression
by viral infection makes the host antiviral immune system
vulnerable (22, 107).

Synergistic suppression effects induced by HLA-G/receptor
signalling are well recognised. These effects include the inhibition
of cell proliferation and differentiation and the induction of cell
apoptosis and senescence, which could be involved in significant
decrease or even exhaustion of immune-competent cells such as
T cells, NK cells, B cells, and macrophages in patients with
COVID-19. Other effects include the inhibition of T and NK cell
cytotoxicity, antibody production by B cells, and induction of
regulatory cells and expansion of MDSCs, which might be linked
FIGURE 2 | More evidence can be expected on the relationship between up-regulation of HLA-G and HLA-E expression and their immune receptors on immune
cells during SARS-CoV-2 infection. ↑up-regulation. ↓down-regulation.
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to the functional impairment of effector cells, such as T, NK, and
B cells, during SARS-CoV-2 infection. However, more
information on HLA-G and its receptor status is necessary for
future clinical investigations and basic science studies.
PERSPECTIVES

More evidence can be accumulated to solidify the basic and
clinical aspects of HLA-G in COVID-19 progression and
outcome. Aspects expected to be explored include (a) HLA-G
expression is reported to be correlated with the progression of
various infectious diseases (108, 109). We hypothesise that cell
surface HLA-G and circulating soluble HLA-G levels are related
to the severity, outcome, or viral load in patients with COVID-
19. (b) The upregulation of HLA-G expression by cytokines, such
as IFN-g, IL-6, and IL-10, is dramatically increased in patients
with severe COVID-19 (110, 111). We hypothesise that HLA-G
expression is related to cytokines in patients with COVID-19. (c)
Recently identified HLA-G allelic product-dependent receptor
NKG2A has been observed to be dramatically increased in
patients with COVID-19 (18). What is the status of other
HLA-G receptors, such as ILT-2, ILT-4, and KIR2DL4, and
their relationship with disease progression? and (d) Given HLA-
E-CD94/NKG2A axis plays critical roles in COVID-19 and
HLA-E cell surface expression depends other leader sequence
peptides, particularly derived from HLA-G (112), what is the
relationship between HLA-G and HLA-E expression? (Figure 2).

In this context, the clinical trial “HLA-G Immuno-Inhibitor
Checkpoint Study in Patients With COVID-19 Infection:
Molecular and Cellular Assessment (HLA-G-COVID)
(NCT04613297)” has been started to evaluate the clinical
significance of HLA-G and receptors ILT-2 expression on CD4+

and CD8+ lymphocytes, and the levels of peripheral sHLA-G and
plasma HLA-G-bearing microvesicles among COVID-19
uninfected patients, non-hospitalized COVID-19 infected
patients and hospitalized COVID-19 infected patients. With
this clinical trial, further understanding of the significance of
HLA-G and its receptors in COVID-19 patients can be expected.
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The impaired immune functions of NK and T cells resulting
from ILTs and NKG2A expression have been reported to be
involved in virus immune evasion and related infectious disease
progression (113–116). Fortunately, ILTs, NKG2A, and HLA-G
targeted immunotherapy and signalling pathway blockades are
already in development in clinical trials for cancer
immunotherapy. In previous preclinical investigations,
blocking tumour cell-expressed HLA-G or immune cell surface
ILT2/4 with specific antibodies could restore the functions of NK
cells or T cells against target cells (36). Furthermore, blocking
NKG2A with monalizumab, an anti-NKG2A monoclonal
blocking antibody, can significantly restore the cytotoxic
function of NKG2A+ NK and T cells (117–119). Along with
these findings, the application of ILTs and NKG2A targeted
blocking antibodies could be an additional intervention to
mitigate the severity of COVID-19. Finally, a clinical phase I
trial with an HLA-G blockade antibody, TTX-80, was launched
in July 2020 for patients with advanced solid cancer (120), which
shed new light on the restoration of exhausted immune
responses induced by HLA-G in diseases such as cancers or
viral infections.

We hope that our review will provide a much better
understanding of the immune pathogenesis of COVID-19, and
thereby help in the development of immunointerventions to
counteract SARS-CoV-2 infection.
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