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Chagas’ disease is a zoonotic parasitic ailment now affecting more than 6 million people,
mainly in Latin America. Its agent, the protozoan Trypanosoma cruzi, is primarily
transmitted by endemic hematophagous triatomine insects. Transplacental
transmission is also important and a main source for the emerging global expansion of
this disease. In the host, the parasite undergoes intra (amastigotes) and extracellular
infective (trypomastigotes) stages, both eliciting complex immune responses that, in about
70% of the cases, culminate in permanent immunity, concomitant with the asymptomatic
presence of the parasite. The remaining 30% of those infected individuals will develop a
syndrome, with variable pathological effects on the circulatory, nervous, and digestive
systems. Herein, we review an important number of T. cruzi molecules, mainly located on
its surface, that have been characterized as immunogenic and protective in various
experimental setups. We also discuss a variety of parasite strategies to evade the
complement system - mediated immune responses. Within this context, we also
discuss the capacity of the T. cruzi infective trypomastigote to translocate the ER-
resident chaperone calreticulin to its surface as a key evasive strategy. Herein, it is
described that T. cruzi calreticulin inhibits the initial stages of activation of the host
complement system, with obvious benefits for the parasite. Finally, we speculate on the
possibility to experimentally intervene in the interaction of calreticulin and other T. cruzi
molecules that interact with the complement system; thus resulting in significant inhibition
of T. cruzi infectivity.

Keywords: Trypanosoma cruzi, host-parasite interaction, complement system, complement regulatory proteins,
host-immune evasion
org December 2021 | Volume 12 | Article 7891451

https://www.frontiersin.org/articles/10.3389/fimmu.2021.789145/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789145/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789145/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789145/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:aferreir@med.uchile.cl
mailto:galiaram@uchile.cl
mailto:viviana.ferreira@utoledo.edu
https://doi.org/10.3389/fimmu.2021.789145
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.789145
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.789145&domain=pdf&date_stamp=2021-12-16


Ramı́rez-Toloza et al. Trypanosoma cruzi Evades Complement
INTRODUCTION

Chagas disease, or American trypanosomiasis, is a multisystemic
disorder that affects the cardiovascular, digestive, and central
nervous systems (1). Chagas disease is one of the 20 most
“neglected tropical diseases”, as defined by The World Health
Organization (WHO) (2). About 6-7 million people are infected
worldwide, with almost 100 million at risk, indicating that this
disease is a serious public health issue (3, 4). In endemic countries,
Chagas disease is primarily transmitted by triatomine vectors,
predominantly in rural areas. However, human migration and
other forms of transmission have changed the epidemiology/
epizootiology of Chagas disease, which is currently affecting
peri-urban and urban areas (5, 6). Other important mechanisms
of transmission include blood transfusion, organ transplants, oral
ingestion, laboratory accidents, vertical transmission from mother
to child, or needle sharing (2, 7).

Chagas disease is caused by Trypanosoma cruzi (T. cruzi), a
hemoflagellate parasite transmitted through various species of
hematophagous reduviid insects (‘kissing bugs’) mainly in
endemic areas such as Latin America (8). Trypomastigotes, the
infective form, circulate in the blood of mammals and infect
nucleated cells, where they transform into amastigotes, the
replicative form. T. cruzi needs to evade the host immune
system, especially during the acute phase of the infection, and
various mechanisms have been described for the parasite to
control the innate and adaptive host immune responses. In the
regulation of adaptive immune responses, inhibition of
polyclonal activation of B and T cells may be relevant in
infected people (9) and in mice (10, 11). Additionally, a
decrease in the proliferative response of lymphocytes, as well
as in the production of interleukin-2 (IL-2) in chronic Chagas
disease patients has also been reported (12). Moreover, the
parasites induce immunomodulatory molecules, such as IL-10
and transforming growth factor-b (TGF-b), which lead to failure
in the maturation of antigen-presenting cells and poor antigenic
presentation (12).

To evade the innate immune response, one of the most
important mechanisms adopted by T. cruzi is to modulate
complement system (C) activity (Figure 1). Thus, infective
trypomastigotes, are resistant to C, while non-infective
epimastigotes, present in the reduviid insect vector, are
extremely sensitive (13, 14). However, this C resistance varies
among T. cruzi strains (15), being mediated by (a) surface
expression of molecules such as glycoprotein 58/68 (gp 58/68)
(16), T. cruzi complement regulatory protein (TcCRP) (17–19),
T. cruzi trypomastigote-decay accelerating factor (T-DAF) (20,
21), T. cruzi calreticulin (TcCalr) (22), C2 receptor inhibitor
trispanning (CRIT) (Table 1) and/or (b) secretion or acquisition
of molecules from host blood stream, such as Factor H (FH) (36),
and T. cruzi induced host extracellular vesicles (EV) (37). These
molecules inhibit C at the initial steps of the cascade or inhibit C3
and/or C5 convertases of the classical (CP), lectin (LP) and/or
alternative (AP) pathways (37) (Figure 1). However, studies on
their therapeutic or prophylactic values are still limited. Herein,
we will focus on the interactions of these molecules with C, and
in their potential therapeutic/prophylactic roles.
Frontiers in Immunology | www.frontiersin.org 2
T. CRUZI MOLECULES INHIBITING C
AT THE INITIAL STEPS

T. cruzi complement C2 receptor inhibitor trispanning protein
(CRIT), a 32 kDa protein containing a 27 amino acid
extracellular domain (38–40), is a C2 receptor, present on T.
cruzi, that inhibits C2 cleavage by C1s (38). First described in the
Y strain, CRIT expressed on trypomastigotes binds to, and
inactivates C2, inhibiting the CP and LP (23). The same group
then showed that in the LP, the extracellular domain 1 of CRIT
inhibits MBL-Associated Serine Protease-2 (MASP-2) mediated
C2 cleavage, thus impairing formation of the C3 convertase (24).
Thus, parasites overexpressing CRIT are highly resistant to C-
mediated lysis (24). CRIT is expressed in different T. cruzi strains
and clones, such as CL Brenner, Colombiana and Dm28c, with
high sequence identity (88 - 98%) (23), but apparently its gene is
only functional in some T. cruzi lineages. A recent study
evaluating the resistance of C in different TcI strains with high
(Qro) and low (Ninoa) virulence, demonstrated that the mRNA
of CRIT is three – fold lower in the low virulence strain (41).

T. cruzi calreticulin (TcCalr) (formerly known as TcCRT), is a
highly pleiotropic protein, with inhibitory effects in C activation
and infectivity. In addition to these roles, TcCalr, also reduces
angiogenesis and tumor growth, however, these roles have been
described and reviewed elsewhere (25, 42–46). Infective
trypomastigotes carrying a monoallelic deletion of the TcCalr
gene, are significantly susceptible to C-mediated lysis. On the
contrary, parasites overexpressing TcCalr are significantly more
resistant to CP and LP-mediated lysis (26, 47). TcCalr binds to
the collagenous tails of C1q, inhibiting the CP (22). Its central
TcCalr S-domain (aa 159-281) competes with the (C1r-C1s)2
tetrameric complex to bind C1q, thus decreasing C4b generation
and in turn decreasing the levels of the generated CP C3 and C5
convertases (22). Furthermore, both CP serine-proteases, C1s
and C1r, bind TcCalr in vitro, but TcCalr does not inhibit the
C4-activating function of solid phase-bound C1s. Perhaps, C1s
inactivation occurs only when the serine protease is part of C1
complex (C1q, (C1r, C1s)2) (27). Additionally, TcCalr competes
with the capacity of the serine proteases to bind C1q, but does
not displace them from the preformed C1 complex (27). In
Chagas disease, this role may be also important in other steps of
the parasite cycle, since Triatoma infestans calreticulin (TiCalr),
present in the insect’s saliva, also binds C1, inhibiting the CP.
Perhaps, TiCalr prevents mammal C-mediated damage to the
vector’s digestive mucosa (48). TcCalr and its S-domain (aa 159-
281) also binds mannan-binding lectin (MBL) and Ficolins,
inhibiting the LP (22, 28). Although TcCalr binds to the
collagenous tails of MBL and reduces the binding of MBL to
mannose, it does not inhibit C4 activation (22). On the other
hand, L-Ficolin (but not H-Ficolin) binds to TcCalr, interfering
with its activation via Lipoteichoic-acid. Moreover, because
trypomastigotes translocate significantly higher amounts of
TcCalr to their surfaces, L-Ficolin binds preferentially to this
infectious stage of the parasite (28). Thus, TcCalr inhibits both
CP and LP (22, 27, 28).

TcCalr is an ER-resident protein that translocates to the
parasite external microenvironment. Although TcCalr is located
December 2021 | Volume 12 | Article 789145
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mainly in the ER, it is also found in the Golgi, reservosomes,
flagellar pocket, cell surface, cytosol, nucleus and kinetoplast (22,
49, 50). Thus, C1q and TcCalr colocalize on the parasite surface,
mainly on the area of flagellar emergence (16). It is well known
that CALR (the human TcCalr counterpart), participates as an
“eat me” signal in apoptotic cancer cells, promoting their
phagocytosis (51). This process is mediated by the CALR/C1q
interaction on the apoptotic cells, which is recognized, in turn, by a
C1q receptor (also identified as membrane bound CALR) on the
phagocytic cell (52). Therefore, the TcCalr – C1q interaction
underlies a molecular mimicry strategy to enhance parasite
internalization. In agreement with these findings, tissue-culture
trypomastigotes bind C1q, increasing internalization into
monocytes and macrophages (51). However, recombinant
TcCalr (rTcCalr) and DNA-based immunization induces
specific antibody production and promotes higher parasitemias
Frontiers in Immunology | www.frontiersin.org 3
in mice (29). This apparent paradox is resolved when anti-TcCalr
F(ab’)2 antibodies are used to inhibit the TcCalr/C1q interaction in
vivo, demonstrating that Fc-antibody regions recruit C1q thus
promoting higher infectivity (29, 53). Unlike the infective forms,
epimastigotes are highly sensitive to C activation, most likely due,
at least in part, to the marginal levels of TcCalr expressed on their
surfaces (22, 44). However, when TcCalr is exogenously added to
non-infective epimastigotes, the parasites are internalized by
fibroblasts in a C1q-dependent manner (54). Additionally, mice
inoculated with genetically modified trypomastigotes, under-
expressing TcCalr, did not generate detectable parasitemia nor
anti-T. cruzi IgG antibodies. Accordingly, parasites under-
expressing TcCalr showed a reduced capacity to evade the C
and to infect cells (26).

TcCalr-C1q interaction is also relevant in human placenta
which expresses high CALR levels (55–57). In an ex vivo model,
FIGURE 1 | Trypanosoma cruzi expresses, secretes, or recruits complement regulatory proteins and intervening in the interaction of these T. cruzi-derived regulatory
proteins with complement can affect host-parasite interactions. The complement system (C) is activated by three different pathways: classical (CP), lectin (LP) and
alternative (AP). (1) In the initiation steps, these pathways are activated by the identification of different pathogen-associated molecular patterns (PAMPs) present on
microorganisms such as T. cruzi. Thus, the CP is activated when C1 complex (C1qr2s2) recognizes antibodies bound to T. cruzi or acute phase proteins. The LP is
activated when MBL and ficolins form complexes with serine proteases (MASPs) in the presence of carbohydrates. The AP is activated by spontaneous hydrolysis of
C3, near a variety of non-self cell surfaces. (2) In the early steps, all activated pathways converge in the generation of C3 convertases, that continuously cleave C3
into C3a and C3b continuing with the enzymatic cascade that also generates C5 convertases that produce the split products C5a and C5b. (3) Finally, in the late
step, C5b anchored to the pathogen surfaces, in conjunction with C6-C9, form the membrane attack complex (MAC) and lyse the pathogen. Thus, C activation
induces opsonization (by C3b and C4b), inflammation (by C3a and C5a) and lysis of microorganisms such as T. cruzi. However, C activation is stringently controlled
by C regulatory proteins. The membrane bound regulatory proteins are: Decay-accelerating factor (DAF), membrane co-factor protein (MCP), C receptor 1 (CR-1)
CD59 and complement receptor of immunoglobulin family (CRIg) (in green). Regulatory proteins found in plasma are: Factor I, Factor H, C4 binding protein (C4BP),
C1-inhibitor (C1-Inh), S-protein and Clusterin (in blue). These proteins limit amplification of the downstream cascade. To evade C activation, Trypanosoma cruzi
expresses and secretes complement regulatory proteins with homologous function with their human counterparts (in red). Thus, CRIT and TcCalr inhibit C in early
stages of activation, and T-DAF, TcCRP and gp58/68 participate in intermediate stages of activation.
December 2021 | Volume 12 | Article 789145
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TcCalr is shown to bind C1q (58) and possibly recognized by
cC1qR (a membrane-bound CARL form) present on the
placental syncytiotrophoblast. This interaction is also inhibited
by polyclonal F(ab’)2 anti-TcCalr antibodies, a fact reflected in
lower parasite infectivity in an ex vivo experimental model. An
in vivo infectivity inhibitory capacity for anti-TcCalr antibody
fragments can be envisaged, considering that, in humans,
congenital transmission ranges from 2% to 13.8% in different
studies (59).

As mentioned, TcCalr also binds to MBL and L-Ficolin (22,
27). However, the potential role of TcCalr-MBL or TcCalr-
Ficolin interactions, in the infectivity process, requires
additional research. One study comparing two T. cruzi strains,
susceptible and resistant to C, suggested that MBL also
participates in the infectivity process while the parasite
deactivates the LP (60). Nevertheless, the complete inactivation
of the LP does not confer higher susceptibility to the infection
since, mice deficient in MASP-2 show similar parasitemia and
survival compared to wild-type (61). This fact may indicate that
the LP is not essential to control parasitemia and infectivity.
However, low levels of L-Ficolin and FCN2 (gene codifying for L-
Ficolin) polymorphism are associated with chronic Chagas
disease (62).

Based on in silico structural TcCalr models, an interesting
peptide (VC-TcCalr), at the TcCalr N-domain, has been
delimited and chemically synthesized. VC-TcCalr is a strong
dipole, spatially stable (more than its CALR counterpart), that
interacts with collagen-like tails and scavenger receptors. This
peptide binds to C1q and was anti-angiogenic in a Gallus gallus
chorioallantoic membrane assays (63). This crystallographic
Frontiers in Immunology | www.frontiersin.org 4
structural study defines CALR conformational rearrangements
that could be informative in future therapeutic investigations of
parasite CALR (64), mainly in its anti-complement and anti-
neoplastic effects.
T. CRUZI MOLECULES THAT INHIBIT C3
AND C5 CONVERTASES

Metacyclic, bloodstream and tissue culture-derived T. cruzi
trypomastigotes express an 87-93 kDa glycoprotein (T-DAF),
with decay accelerating activity on the CP and AP C3 and C5
convertases (20, 21). This activity was previously found in human
decay-accelerating factor (DAF), a 70 kDa glycophospholipid-
anchored membrane protein. DAF is present on erythrocytes,
neutrophils, lymphocytes, monocytes, platelets, and endothelial
cells (65). T-DAF is functionally, but not structurally analogous to
human DAF (21). T-DAF mRNA levels are lower in C-susceptible
T. cruzi strains (41). A partial T-DAF cDNA clone and its deduced
protein sequence showed 40% homology with a portion of the
coding region for DAF (21). T-DAF is immunogenic in
experimental animals, inducing antibodies with parasitic lysis
capacity (21). Additionally, antibodies against T-DAF were
identified in patients chronically infected with T. cruzi (21, 66,
67); thus, T-DAF is highly immunogenic in both humans and
mice, suggesting a serodiagnosis value (30).

T. cruzi C regulatory protein (TcCRP), also named gp160, is a
160 kDa GPI-anchored glycoprotein (17) that can be
spontaneously released by the trypomastigotes. This protein
can inhibit both the CP and AP and stable TcCRP-transfected
TABLE 1 | Complement regulatory proteins expressed and/or secreted by Trypanosoma cruzi, their roles in the host-parasite interaction and as potential therapeutic or
prophylactic tools.

Complement
regulatory protein

Functions in Complement system evasion Other roles in the host-parasite
interaction

Therapeutic or prophylactic
potential

Reference

Trypanosoma cruzi
Complement C2
Receptor Inhibitor
Trispanning Protein
(CRIT)

CRIT is a 32 kDa protein that inhibits the C2
cleavage by C1s and MASP2 and impairs C3
convertase formation in CP and LP.

Undetermined Undetermined (23, 24)

Trypanosoma cruzi
calreticulin (TcCalr)

TcCalr is a 45 kDa protein expressed on the parasite
surface and secreted that inhibits the CP and LP in
initial step of activation. TcCalr binds to C1, MBL
and L-Ficolin.

TcCalr is highly immunogenic in
humans and mice and binds C1q,
promoting infectivity. Additionally,
TcCalr inhibits angiogenesis and
tumor growth.

Recombinant TcCalr and DNA-based
immunization promote higher
parasitemias. Anti - TcCalr F(ab’)2
antibody fragments reduce parasitemia
and increase survival in mice.

(22,
25–29)

Trypomastigote
Decay-Accelerating
Factor (T-DAF)

T-DAF is an 87-93 kDa glycoprotein expressed on
the parasite surface that interferes with assembly of
the C3 and C5 convertase of both CP, LP (probably)
and AP.

Highly immunogenic in humans
and mice.

Recombinant T-DAF immunization
promotes antibody production in
different animal species, leading to
parasite lysis in vitro.

(20, 21,
30)

Trypanosoma cruzi
Complement
Regulatory Protein
(TcCRP)

TcCRP is a glycoprotein, also named gp160,
expressed on the parasite surface that binds C3b
and C4b, inhibiting the CP and AP C3 convertase.
TcCRP inhibits the CP, LP (probably) and AP.

TcCRP is highly immunogenic
and induces lytic antibodies in
humans and mice.

TcCRP DNA-based immunization
protects against T. cruzi infection
in mice.

(17–19,
31–34)

Glycoprotein 58/68
(Gp58/68)

Gp58/68 is a 58-68 kDa protein expressed on the
parasite surface that interferes with the C3
convertase formation by binding Factor B, thus
specifically inhibiting the AP.

Gp58/68, first described as a
receptor to fibronectin, has a likely
role in infectivity.

Undetermined (16, 35)
December 2021 | Volume 12 | Art
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epimastigotes were found to be protected from C-mediated lysis
(31). There are multiple copies of TcCRPs in the T. cruzi genome,
highlighting the importance of this protein for T. cruzi. The
encoded proteins are not only structurally and functionally
similar to DAF (17, 18, 31), but are also similar to members of
the T. cruzi-Trans-Sialidase (TS) superfamily (68). Proteins from
this superfamily have enzymatic capacity to transfer
monosaccharides from host sialyl-glycoconjugates to terminal
b-galactoses of acceptor molecules located on the parasite
surface, thus contributing to the parasite survival. However,
this superfamily is classified in eight groups, where only group-
I has enzymatic activity, and groups II-VIII are considered
inactive (68). TcCRP promotes evasion of immune response, in
a TS-independent manner (69–71). As expected, positive
correlations between the virulence of T. cruzi strains and
TcCRP expression levels (72) or mRNA levels (41) have been
described. Moreover, TcCRP is immunogenic and induces lytic
antibodies in humans and mice (32) and a DNA-based
immunization confers protection against T. cruzi infection in
mice (33). The levels of lytic antibodies induced by TcCRP in
mice infected with different T. cruzi strains suggested that higher
levels of parasitemia resulted in an increased exposition of
TcCRP and other proteins, which bind to lytic antibodies
present in the host’s blood (34). Thus, humoral immune
responses, including lytic antibody secretion, could play a role
in the later replication cycle, promoting phagocytosis and cellular
cytotoxicity to control the infection (34). Additionally, TcCRP is
phylogenetically similar to FL-160, a TS-like protein located in
the T. cruzi flagellum and flagellar pocket, with still unexplored
functions (73). FL-160 derived peptides, presented by the MHC
class I pathway (74) (recognized by CD8+ T cells), may have a
pathogenic or protective role in chronic Chagas disease (75).

Trypomastigote glycoprotein 58/68 (gp 58/68) (58 or 68 kDa,
under non-reducing or reducing conditions, respectively) (35)
also inhibits C. In cell-bound and fluid-phase conditions, the
protein is shown to have a dose-dependent decay-accelerating
activity on the AP C3 convertase formation. However, it does not
enhance the decay-dissociation of preformed AP C3 convertases
and does not serve as a co-factor for Factor I (FI). Therefore, its
inhibitory effect may depend on its interaction with Factor B
rather than with C3b (16).
OTHER MOLECULES AND MECHANISMS
RELATED TO T. CRUZI C EVASION

Factor H (FH), a 155 kDa fluid-phase C negative regulatory
protein, composed of 20 short consensus repeats (SCR) (76, 77),
can accelerate the decay of the surface-bound AP C3 and C5-
convertases (78). In T. cruzi, FH binds with higher affinity to C3b
bound to metacyclic trypomastigotes than to epimastigotes (36).
FH uses 3 specific sites (79, 80) to interact with unique domains
on C3b (79, 81–83), participates as a cofactor for Factor I (FI)
and interacts with sialic acid and other related molecules (78, 84,
85). This property is important for T. cruzi, because the parasite
has TS to transfer the polyanion a (2, 3)-linked sialic acid from
Frontiers in Immunology | www.frontiersin.org 5
serum glycoconjugates to acceptor sites on the parasite surface
(86, 87). These glycoconjugates contribute to regulate C
activation on the parasite surface, thus behaving as a virulence
factor (88–91). As sialylated molecules downregulate AP
activation (92, 93), these polyanions transferred by TS on the
trypomastigote surface may also be critical for survival in the
circulation (94, 95). This is supported by other studies that
highlight the relationship between FH and sialic acid to control
C activity in parasites such as Toxoplasma gondii (96),
Plasmodium falciparum (97–99) and Echinococcus granulosus
cysts (100). Moreover, a positive correlation has been described
between FH plasma level and inflammation, cardiac involvement
and cardiometabolic parameters in chronic Chagas disease (101).

Extracellular vesicles (EVs) are described in several
infectious- and non-infectious diseases and stress (102–107).
Bloodstream and endothelial cells release EVs from their
cellular membranes (107–110). EVs participate in intercellular
communication, transferring glycoproteins, lipids, nucleic acids,
and other biomolecular cargos. EVs may play an important role
in the parasite-host cell dynamics and in the physiopathology of
Chagas disease (111). T. cruzi trypomastigotes are exposed to
host cell EVs and also induce EVs release from blood cells in a
Ca2+-dependent manner. These vesicles bind to C3 convertase,
inhibiting the catalytic activity of both the CP and LP (37). On
the other hand, EVs with a TGF-b cargo promote host cell
invasion via the lysosome-independent route. This phenomenon
is dose- and parasite- infective stage dependent and non-specific
for parasite strains or host cell types (37). In agreement with this,
higher levels of TGF-b are found circulating in chronically
infected patients (112). Thus, TGF-b-bearing EVs could
activate the TGF-b signaling pathway to promote parasite
infectivity (37). Simultaneously, T. cruzi produces exosomes
that stimulate different host cells to produce EVs and modulate
the immune response (37, 113). EVs contribute to C-resistance
and infectivity in trypomastigotes (114), but this response is
strain-dependent since EVs derived from a more C-resistant
strain can affect infectivity rate of another more susceptible
T. cruzi strain (115). On the other hand, infected mice in the
presence of T. cruzi-derived EVs present higher parasitemia
(37, 116), and mice pre-inoculated with EVs, before infection,
register higher mortality or severe pathology (117). The
composition of EVs has been evaluated by proteomic and
transcriptomic analysis. However, the size, amount and
composition may vary according to strain, origin and life cycle
stage, among others. Thus, EVs contain proteins related with
metabolism, signaling, and virulence, some of them related with
C evasion, such as TcCalr (115, 117–119).
FUTURE THERAPEUTIC PERSPECTIVE

Efforts to control Chagas disease have been mainly focused on
programs aimed at the triatomine vectors. However, there is an
urgent need to design new therapeutic and/or preventive tools
since current treatments are not completely efficient and are
seriously complicated by deleterious side effects (120).
December 2021 | Volume 12 | Article 789145
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Cregulatory proteins released by T. cruzi may represent
therapeutic or immunogenic/antigenic targets. Given the
importance of the C role in innate and adaptive immune
response and that T. cruzi adopts various strategies to evade C,
it is unfortunate that majority of T. cruzi C regulatory proteins
have not been considered in vaccine designs or therapeutic
strategies (120). Some advantages of considering C regulatory
proteins expressed by T. cruzi as immunogens in vaccines are:
1) They intervene at different levels of the C cascade and several
C routes, simultaneously; 2) Some of them participate in other
mechanisms involved in the host-parasite interaction, such as
infectivity; 3) Most of them are highly immunogenic and,
4) Despite sharing functions with host C regulatory proteins,
they are not completely homologous to their human counterparts.
However, since some of these proteins share mechanisms of
action, inactivation of one molecule may cause inhibition at
different levels or pathways of C activation. Therefore, the site of
action of candidate molecules must be carefully experimentally
dissected out. Another unexplored possibility is to consider
targeting the interaction of C regulatory proteins that is being
hijacked by T. cruzi. The specific inhibition of catalytic sites of
proteins with enzymatic roles can be ascertained. This inhibition
Frontiers in Immunology | www.frontiersin.org 6
could be performed by antibodies, nanobodies, partially or
completely humanized monoclonal antibodies or natural or
synthetic competitor molecules.
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Ferreira. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
December 2021 | Volume 12 | Article 789145

https://doi.org/10.1128/iai.60.10.3986-3993.1992
https://doi.org/10.1128/iai.60.10.3986-3993.1992
https://doi.org/10.1128/iai.60.1.39-43.1992
https://doi.org/10.1128/iai.60.1.39-43.1992
https://doi.org/10.1016/j.vaccine.2008.11.023
https://doi.org/10.1038/nri2620
https://doi.org/10.1073/pnas.78.1.602
https://doi.org/10.1073/pnas.78.1.602
https://doi.org/10.3389/fimmu.2019.03105
https://doi.org/10.1111/cmi.12535
https://doi.org/10.1093/ofid/ofy166
https://doi.org/10.4049/jimmunol.1501581
https://doi.org/10.1111/pim.12537
https://doi.org/10.1111/pim.12537
https://doi.org/10.1038/ncb1725
https://doi.org/10.1038/leu.2009.76
https://doi.org/10.1038/leu.2009.76
https://doi.org/10.1016/s0002-9440(10)62253-5
https://doi.org/10.1172/jci4985
https://doi.org/10.1096/fj.09-135822
https://doi.org/10.1096/fj.09-135822
https://doi.org/10.4049/jimmunol.1001656
https://doi.org/10.4049/jimmunol.1001656
https://doi.org/10.1016/S0014-4827(03)00055-7
https://doi.org/10.1016/S0014-4827(03)00055-7
https://doi.org/10.1007/s00281-005-0004-1
https://doi.org/10.1007/s00281-005-0004-1
https://doi.org/10.1016/j.micinf.2006.04.006
https://doi.org/10.1007/978-1-4939-9148-8_7
https://doi.org/10.1086/345882
https://doi.org/10.1111/cmi.12259
https://doi.org/10.1111/cmi.12259
https://doi.org/10.1093/femspd/ftx077
https://doi.org/10.1080/20013078.2018.1463779
https://doi.org/10.1111/cmi.12672
https://doi.org/10.1016/j.micinf.2008.10.003
https://doi.org/10.1021/pr300947g
https://doi.org/10.7717/peerj.2693
https://doi.org/10.1586/erv.12.85
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Is It Possible to Intervene in the Capacity of Trypanosoma cruzi to Elicit and Evade the Complement System?
	Introduction
	T. cruzi Molecules Inhibiting C at the Initial Steps
	T. cruzi Molecules That Inhibit C3 and C5 Convertases
	Other Molecules and Mechanisms Related to T. cruzi C Evasion
	Future Therapeutic Perspective
	Authors Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


