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Background: The recent emergence of COVID-19, rapid worldwide spread, and
incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection
have limited development of therapeutic strategies. Our objective was to systematically
investigate molecular regulatory mechanisms of COVID-19, using a combination of high
throughput RNA-sequencing-based transcriptomics and systems biology approaches.

Methods: RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy
persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene
expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to
identify co-expression modules in healthy samples as a reference set. For differential co-
expression network analysis, module preservation and module-trait relationships
approaches were used to identify key modules. Then, protein-protein interaction (PPI)
networks, based on co-expressed hub genes, were constructed to identify hub genes/
TFs with the highest information transfer (hub-high traffic genes) within candidate
modules.

Results: Based on differential co-expression network analysis, connectivity patterns and
network density, 72% (15 of 21) of modules identified in healthy samples were altered by
SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host
biological gene networks. In functional enrichment analysis, among 15 non-preserved
modules and two significant highly-correlated modules (identified by MTRs), 9 modules
were directly related to the host immune response and COVID-19 immunopathogenesis.
Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways
org December 2021 | Volume 12 | Article 7893171

https://www.frontiersin.org/articles/10.3389/fimmu.2021.789317/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789317/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789317/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789317/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.789317/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:A.hasankhani74@ut.ac.ir
mailto:A.Bahrami@ut.ac.ir
https://doi.org/10.3389/fimmu.2021.789317
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.789317
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.789317&domain=pdf&date_stamp=2021-12-15


bbreviations: AKI, acute kidney injury;
spiratory distress syndrome; BC, betwe
rus disease 2019; CVD, cardiovascular d
ne ontology; KEGG, Kyoto encyclopedi
iddle east respiratory syndrome coronavi
ulti organ failure; PBMC, peripheral b
rotein interaction; RA, rheumatoid arthrit
oV-2, severe acute respiratory syndrome c
OM, topological overlap matrix; WG
etwork analysis.

Hasankhani et al. Differential Co-expression Network Analysis on COVID-19

Frontiers in Immunology | www.frontiersin.
and key genes/proteins associated with COVID-19’s main hallmarks, e.g., cytokine storm,
respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation
disorders, thrombosis, and pregnancy complications, as well as comorbidities associated
with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs),
liver disorders and acute kidney injury (AKI). Topological analysis with betweenness
centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and
PPI networks. We also identified several transcriptional regulatory factors, including
NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-
2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF,
SOCS1, SOCS3, ICAM1, PTEN, RHOA,GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2,
PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and
TNFRSF1A had the highest rates of information transfer in 9 candidate modules and
central roles in COVID-19 immunopathogenesis.

Conclusion: This study provides comprehensive information on molecular mechanisms
of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as
promising therapeutic targets for the COVID-19 pandemic.
Keywords: systems biology, systems immunology, WGCNA, hub-high traffic genes, immunopathogenesis,
therapeutic targets in infectious diseases, COVID-19 pandemic
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious disease
that was first reported in Wuhan, China in December 2019 (1).
This viral pneumonia spread rapidly, with the World Health
Organization (WHO) declaring a global pandemic on March 11,
2020 (2). COVID-19, caused by a single-stranded RNA beta
coronavirus called severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), affects the lower respiratory tract
in humans (3). As of 1 October 2021, SARS-CoV-2 has infected
233,503,524 people and caused 4,777,503 deaths worldwide
(https://covid19.who.int/table). Primary symptoms of SARS-
CoV-2 infection include fever, cough, shortness of breath, and
pneumonia (4, 5). The recent emergence of COVID-19 and
inadequate knowledge of infection progress, molecular
mechanisms involved in the disease, interactions between SARS-
CoV-2 and the host, and their relationship to disease outcomes
limit our ability to develop effective treatments for infected
patients. Therefore, understanding molecular/immunological
mechanisms underlying the various clinical symptoms of
COVID-19 are deemed critical in development of potential
therapeutic strategies (6, 7).
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Detecting changes in gene expression in relevant tissues during
SARS-CoV-2 infection through various functional genomic
methods (e.g., microarrays and RNA-sequencing-based
transcriptomics) can increase understanding of molecular
mechanisms involved in COVID-19, plus host-pathogen
interactions (8–10). Transcriptomic studies in COVID-19
patients used lung epithelial cells, nasopharyngeal swabs,
bronchoalveolar lavage fluid (9, 11–14), or peripheral blood
mononuclear cells (PBMCs) (6, 8, 15). However, differential
gene expression analysis focuses more on individual effects of
genes (16), whereas genes interact in complex biological gene
networks (17). Therefore, investigation of gene or protein
interactions at the systems level should elucidate dynamics of
SARS-CoV-2 infection and molecular mechanisms responsible
for COVID-19.

Recent computational methods of systems biology, including
network analysis and machine learning, are suitable for analyzing
omics techniques such as high throughput RNA-sequencing
(RNA-seq) at the systemic level (18). Weighted gene co-
expression network analysis (WGCNA) is a systems biology
method to identify clusters (modules) of highly correlated
genes, candidate biomarkers, and therapeutic targets (19); it
has been used in various human infectious diseases, e.g.,
Influenza (20), Tuberculosis (21, 22), Hepatitis B,C (23–25),
HIV (26), and various cancers (27–30). Additionally, in some
studies using the module-trait relationships approach of
WGCNA, modules related to clinical traits of COVID-19 were
identified at various stages (31–33). WGCNA has a unique
network-based approach called module preservation analysis
(34), based on topological changes across conditions, e.g.,
comparison of samples from healthy versus diseased persons.
Simply stated, differences in connectivity patterns and network
December 2021 | Volume 12 | Article 789317
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density between healthy and disease samples as reference and test
sets, respectively, indicate a disease-induced perturbation of the
network (34). Therefore, non-preserved modules between
healthy and disease samples are important candidates for
biological investigation of a disease such as COVID-19. The
module preservation approach of WGCNA is valuable for
differential network analysis (17, 34) and has been successfully
used for several human (35–37) and animal (16, 38) diseases.

Combin ing h igh- throughput t e chno log i e s wi th
computational systems biology methods such as WGCNA
provides new opportunities to better understand molecular
mechanisms responsible for diseases such as COVID-19 (39).
To the best of our knowledge, this is the first differential co-
expression network analysis on COVID-19, with the following
purposes (1): Combining RNA-seq data andWGCNA to identify
co-expression modules in healthy samples as the reference set
(2); Module preservation analysis to detect non-preserved
modules between healthy and COVID-19 (as test set) samples
(3); Module-trait relationships analysis to identify significant
highly-correlated modules with disease severity (4); Functional
enrichment analysis of non-preserved modules for biological
assessment and understanding molecular regulatory
mechanisms behind COVID-19 (5); Identification of hub genes
and potential transcription factors (TFs) in non-preserved
modules; and (6) Extraction of protein-protein interaction
(PPI) networks, based on hub genes of candidate modules for
topological analysis, using betweenness centrality (BC) to
identify hub genes with the highest BC score (hub-high traffic
genes) as vital bridges for information transfer inside modules.
MATERIALS AND METHODS

Gene Expression Datasets
RNA-sequencing (RNA-seq) raw reads of COVID-19 patients
and healthy persons were obtained from the Gene Expression
Omnibus (GEO) database at the National Center for
Biotechnology Information (NCBI; accession number
GSE152418) and the European Genome-phenome Archive
(EGA; accession number EGAS00001004571). These datasets
included 87 samples of PBMCs from healthy (n=17), mild
(n=33) and severe (n=37) groups. An Illumina NovaSeq 6000
platform was used to generate 101-bp single-end reads, as
detailed in the original reports (6, 7).

RNA-Seq Data Analysis
FastQCsoftware version 0.11.9 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used for quality control
of raw reads. Next, adapter sequences, low-quality reads, and
bases were trimmed by Trimmomatic software (Version 0.39)
(40) using the fol lowing criteria : ILLUMINACLIP:
Adapter.fa:2:30:10, LEADING:20, SLIDINGWINDOW:6:20,
TRAILING:20, and MINLEN:50. After obtaining clean reads,
their quality was verified with FastQC software to confirm
improvements. Then, clean reads were aligned to the latest
human reference genome (GRCh38) using Hisat2 software
Frontiers in Immunology | www.frontiersin.org 3
version 2.2.1 with default parameters (41). Python script
HTSeq-count (42) version 0.13.5 was used to count uniquely
mapped reads to annotated genes, based on the ENSEMBL
human GTF file (release 104). Finally, all count files were
merged into a table and a raw expression matrix created and
normalized to log-counts per million (log-CPM) using the voom
function of the limma R package (Version 3.46.0) (43, 44). To
prevent sampling noise caused by low-expressed or low-variance
genes, only genes with expression ≥ 1 count per million reads
(CPM) in at least 5 samples and standard deviation > 0.25 were
selected for downstream analyses.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
Based on the assumption that non-preserved modules between
healthy controls and COVID-19 patients may explain biological
behavior of COVID-19 and increase understanding of molecular
mechanisms responsible for SARS-CoV-2 infection, healthy
samples were selected as a reference set for construction of a
weighted gene co-expression network and modules detection. In
this study, a signed weighted gene co-expression network was
constructed according to the standard procedure of WGCNA R
package Version 1.70 (19). In general, signed networks provide a
better understanding of molecular regulatory mechanisms at the
systemic level, facilitating better separation of modules in terms
of biological performance (19, 45). Initially, as WGCNA is very
sensitive to outliers, the adjacency function of the WGCNA R
package was used to construct distance-based adjacency metrics
of samples; those with a standardized connectivity score < −2.5
were considered an outlier and removed. To ensure a scale-free
network, pickSoftThreshold function of the WGCNA R package
was used to identify the soft thresholding power b value.
Moreover, since a Pearson correlation is susceptible to outliers,
bi-weight mid-correlation were used to calculate pairwise
correlations between genes, as it is more robust to outliers (46,
47). Therefore, a weighted adjacency matrix was constructed
using the bi-weight mid-correlation coefficient at b = 12 as a soft
thresholding power and subsequently transformed into a
topological overlap matrix (TOM). Next, an average linkage
hierarchical clustering analysis was performed based on the
TOM dissimilarity (1-TOM) and modules were detected
through a dynamic hybrid tree cutting algorithm. Finally,
modules with very similar expression profiles or highly
correlated eigengenes were merged. All of the above steps
were performed by the 1-step network construction and
module detection blockwiseModules function of the
WGCNA R package with the following options: power = 12,
networkType = “signed”, TOMType = “signed”, maxBlockSize =
15000, corType = “bicor” , reass ignThreshold = 0,
mergeCutHeight = 0.25, and minModuleSize = 30.

Module Preservation Analysis
To investigate whether the topological structure of modules
changed between healthy (reference set) and COVID-19 (test
set) samples, the modulePreservation function of the WGCNA R
package was used for preservation analysis. In this step,
December 2021 | Volume 12 | Article 789317
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2 composite preservation statistics, Zsummary and medianRank,
were investigated based on 200 random permutations. Modules
with a higher value of Zsummary represent high preservation
across conditions. However, Zsummary is highly dependent on
module size, and as it increases, Zsummary also increases,
whereas medianRank is independent of module size and unlike
Zsummary, modules with low medianRank values indicate
strong preservation across various conditions (34). Modules
with values Zsummary > 10 and medianRank < 8 indicates
high preservation between groups (34). Therefore, in this study,
modules with values of Zsummary ≤ 10 or medianRank ≥ 8 were
considered non-preserved modules.

Module-Trait Relationships Analysis
To identify significant highly-correlated modules with disease
severity of COVID-19, 25 mild and 29 severe COVID-19 patients
were used for module-trait relationships (MTRs) analysis.
Because the gene co-expression analysis is very sensitive to
outliers, the distance-based adjacency metrics of samples was
calculated and samples with a standardized connectivity < −2.5
were removed, considered as an outlier. In addition, samples and
genes with > 50% missing entries and genes with zero variance
were identified and excluded from WGCNA analysis (35).
Briefly, a correlation matrix of expression values was
constructed using pairwise bi-weight mid-correlation
coefficients between all pairs of genes across the selected
samples. In other words, the genes in a module share strong
interconnectedness (36). Finally, average linkage hierarchical
clustering analysis was performed by the topological overlap-
based dissimilarity matrix (1-TOM) as input, and modules were
identified by dynamic hybrid tree cutting algorithm. Then,
the modules with the highly correlated eigengenes were
merged. The above steps were performed using automatic,
one-step network construction and module detection function
“blockwiseModules” of theWGCNA R package. Next, in order to
identify the COVID-19-related modules, the correlation between
the disease severity of COVID-19 and module eigengenes was
taken using Pearson correlation coefficient.

Functional Enrichment Analysis of the
Non-Preserved Modules
Enrichr online web tool (48) was used to analyze Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways for non-preserved modules. Thus, all genes in each
non-preserved module were investigated for functional
characterization; only terms with a threshold of adj p value <
0.05 were deemed significant (p values corrected by the
Benjamini-Hochberg method).

Hub Genes and TFs Detection in Non-
Preserved and Correlated Modules
In complex biological networks, intramodular genes with the
highest degree of connections (hub genes) have more biological
relevance in association with a disease (49–52). Module
memberships (MM) or eigengene-based connectivity kME, a
criterion indicating the relationship of a gene with the relevant
Frontiers in Immunology | www.frontiersin.org 4
module, is calculated as the correlation between gene expression
profile and module eigengenes (the first principal component of
the expression profile for a module) by the WGCNA R package.
Genes with higher MM values have a more significant
relationship with biological performance of the respective
module and act as central genes in that module (19, 53, 54).
Therefore, genes with kME ≥ 0.7 were selected as intramodular
hub genes in modules. Next, for construction of protein-protein
interaction (PPI) networks, identified hub genes in each module
were subjected to the search tool for retrieval of interacting genes
(STRING) database (55). Additionally, transcriptional regulatory
factors within modules were identified using a set of human
transcription factors extracted from the HumanTFDB
database (56).

Identification of Hub-High Traffic Genes
and Network Visualization
PPI networks derived from hub genes of non-preserved modules
from the previous step were used for topological analyses with
the betweenness centrality (BC) measure. In connected networks,
BC is a general measure of centrality, based on the number of
shortest paths between every 2 other genes that pass through a
certain gene, indicating influence over information transfer
between genes in modules (57–61). Genes with the highest BC
scores, termed high traffic genes, have a central role in
association with the biological behavior of the respective
module (36, 62). In this study, we used 2 methods to calculate
BC scores in the hub gene-base PPI networks from modules. The
first method was to calculate BC scores through cytoHubba (a
cytoscape plugin) Version 0.1, using the Betweenness algorithm
(63), whereas the second method was to calculate BC scores
through Igraph (Version 1.2.6) R package (https://cran.r-project.
org/web/packages/igraph/). Finally, overlapped genes with the
highest BC score between these 2 methods were selected and the
top 50 hub genes in modules with a size of ≥ 450 and the top 10
hub genes in modules with a size of ≤ 180 in terms of BC score
were considered hub high-traffic genes. Additionally, COVID-19
biologically related modules were visualized using Cytoscape
Version 3.8.2 (64).
RESULTS

RNA-Seq Data Analysis
The stringent step-by-step workflow of the differential co-
expression network analysis used in this study is shown
(Figure 1). Briefly, RNA-seq data contained 87 samples (17
healthy and 70 COVID-19 patients) of PBMCs, with an average
of 23 million reads per sample. Details regarding RNA-seq data
analysis and preprocessing are in Supplementary Table 1. After
normalization and filtering of low expressed and low variance
genes, 11663 genes remained for weighted gene co-expression
network construction. The normalized and filtered gene
expression matrix of healthy controls and COVID-19 patients
is in Supplementary Table 2.
December 2021 | Volume 12 | Article 789317
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Weighted Gene Co-Expression Network
Construction
Before co-expression network construction and module
detection, distance-based adjacency metrics of samples were
constructed to identify outliers and prevent their negative
influence on network analysis. All samples had a standardized
connectivity score > −2.5, with no outliers (Figure 2A).
Weighted gene co-expression network was constructed at
b = 12, representing a scale free topology fitting index (R2) ≥
0.80. In total, 21 co-expression modules (average of 525 genes)
and 647 background genes (grey module) were identified in
healthy samples (reference set) through hierarchical clustering
analysis and dynamic hybrid tree cutting algorithm. Moreover,
each module as a branch of the hierarchical clustering
dendrogram was labeled with a specific color by the WGCNA
R package (Figure 2B). The turquoise module with a size of 1818
and the darkred module with 93 genes were the largest and
smallest modules, respectively. Complete module information is
provided in Supplementary Table 3.

Module Preservation Analysis
Based on module preservation analysis, among identified
modules, the topological structure of 6 modules including
salmon (medianRank = 1; Zsummary = 24) , cyan
(medianRank = 3; Zsummary = 16), green (medianRank = 3;
Zsummary = 43), tan (medianRank = 5; Zsummary = 15),
lightcyan (medianRank = 6; Zsummary = 13), and magenta
(medianRank = 6; Zsummary = 25) was highly-preserved
Frontiers in Immunology | www.frontiersin.org 5
between healthy and COVID-19 samples (Figure 3).
Moreover, according to our assumption, connectivity patterns
and network densities of the other 15 modules were changed
under COVID-19 conditions (Figure 3). Among the 15 non-
preserved modules, the turquoise module (medianRank = 22;
Zsummary = 7.4) had the highest degree of change in the
topological structure affected by SARS-CoV-2 infection. More
information regarding preservation status of all modules is
available in Supplementary Table 4.

Functional Enrichment Analysis of the
Non-Preserved Modules
To identify biological processes associated with non-preserved
modules, GO analysis was performed and a total of 320 biological
processes were significantly enriched in the 13 non-preserved
modules including blue, brown, grey60, l ightgreen,
midnightblue, pink, purple, turquoise, black, darkred,
greenyellow, red, and yellow. In the other 2 non-preserved
modules, including lightyellow and royalblue, no biological
process was significantly enriched. Conversely, KEGG
pathways analysis identified 97 significant terms in 10 non-
preserved modules (blue, brown, grey60, lightgreen,
lightyellow, pink, purple, greenyellow, red, and yellow) as well
as no enriched term in the other 5 non-preserved modules
(midnightblue, turquoise, black, darkred, and royalblue).
Additionally, among the non-preserved modules, the blue
module had the most significant enriched terms with 148 and
47 biological processes and KEGG pathways, respectively.
Complete information regarding functional enrichment
analysis is provided in Supplementary Table 5. Based on
functional enrichment analysis, 9 non-preserved modules
including blue, brown, grey60, lightgreen, lightyellow,
midnightblue, pink, purple, and turquoise were related to the
host immune response and SARS-CoV-2 infection. Among these
9 candidate non-preserved modules, the blue module had the
most biological associations with the immunopathogenesis of
COVID-19. The top biological processes of non-preserved
modules are shown in Figure 4.

TFs, Hub TFs, Hub Genes, and Hub-High
Traffic Genes Identification in Non-
Preserved Modules
Here, the differential co-expression network approach and
functional enrichment analysis revealed 9 candidate non-
preserved modules with a: 1) change in topological structure
due to COVID-19; and 2) biological relation to SARS-CoV-2
infection. Using the MM criterion to assess these modules, a
total of 881, 369, 85, 62, 59, 64, 251, 253, and 555 intramodular
hub genes were identified in the blue, brown, grey60, lightgreen,
lightyellow, midnightblue, pink, purple, and turquoise modules,
respectively. The complete list of the hub genes of the non-
preserved modules is provided in Supplementary Table 6. In
addition, based on co-expressed hub genes, the PPI network of
the blue module is shown in Figure 5. Additionally, based on
human transcriptional regulatory factors extracted from the
HumanTFDB database, a total of 183, 33, 12, 14, 5, 10, 34, 18,
FIGURE 1 | The stringent step-by-step pipeline of the RNA-seq data analysis
and differential co-expression network approach in this study.
December 2021 | Volume 12 | Article 789317
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and 131 TFs were detected in the blue, brown, grey60,
lightgreen, lightyellow, midnightblue, pink, purple, and
turquoise modules, respectively. Complete information of TFs
detected in non-preserved modules are in Supplementary
Table 7. Furthermore, among detected hub genes, we
identified 110, 5, 8, 8, 2, 5, 16, 11, and 49 TFs (hub TFs) in
the blue, brown, grey60, lightgreen, lightyellow, midnightblue,
pink, purple , and turquoise modules , respect ive ly
(Supplementary Table 8). Moreover, the identified hub-high
traffic genes in the 9 candidate non-preserved modules along
with their BC scores obtained by both cytoHubba and Igraph
methods are presented in Table 1 and Supplementary Table 9.
These genes were highly connected intramodular hubs in the 9
candidate co-expression modules and they were also central
genes for information transfer within the hub-gene based PPI
networks of their respective modules. Therefore, hub-high
traffic genes are considered important candidates for prognostic
and therapeutic targets for COVID-19. Additionally, PPI
Frontiers in Immunology | www.frontiersin.org 6
networks of the 9 candidate non-preserved modules are in
Supplementary Figure 1.

MTRs Analysis
The weighted adjacency matrix was constructed at b = 10 whose
scale-free topology fitting index (R2) was ≥ 0.80. After network
construction, 12 co-expression modules (excluding grey module
with 690 uncorrelated genes) were identified through
hierarchical clustering and dynamic hybrid tree cutting with an
average size of 784 genes. Disease severity related to COVID-19
that were used in MTRs included clinical signs measurements of
COVID-19 such as flu-like illness (FLI), mild COVID-19, severe
COVID-19. Among the significant modules: purple (R = −0.63,
P = 1e−05), blue (R = −0.71, P = 2e−07), brown (R = −0.55, P =
2e−04), and turquoise (R = 0.7, P = 3e−07) modules were
significant highly-correlated and yellow (R = −0.41, P = 0.008),
tan (R = −0.32, P = 0.04), greenyellow (R = 0.37, P = 0.02), and
pink (R = −0.38, P = 0.01) modules were significant moderately-
FIGURE 2 | Preprocessing of weighted gene co-expression network analysis. (A) Sample clustering to detect outliers in healthy samples as reference set. All
samples had a standardized connectivity score > −2.5. (B) Gene hierarchical clustering dendrogram of 21 detected modules based on a dissimilarity (1-TOM)
measure. Branches represent modules that are marked with a specific color. The y-axis represents the co-expression distance, the x-axis represents genes and the
grey module represents background genes.
December 2021 | Volume 12 | Article 789317
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correlated with severe COVID-19, respectively (Figure 6A).
Also, purple (R = −0.64, P = 8e−06), blue (R = −0.75, P = 1e
−08), brown (R = −0.55, P = 2e−04), and turquoise (R = 0.72,
P = 1e−07) modules were significant highly-correlated and
Frontiers in Immunology | www.frontiersin.org 7
yellow (R = −0.42, P = 0.006), tan (R = −0.31, P = 0.04), black
(R = 0.33, P = 0.04), and pink (R = −0.34, P = 0.03) modules were
significant moderately-correlated with mild COVID-19,
respectively (Figure 6B). Then, the significant highly-
correlated modules were selected for downstream analysis.
Briefly, the turquoise, blue, brown, and purple modules with
module sizes of 2592, 1691, 1214 and 141 genes, respectively,
were identified as significant highly-correlated modules with
disease severity (Figure 6A). All of the detected modules were
also identified with MP method. It is noteworthy that both
WGCNA methods showed a similar ability to identify
candidate modules during COVID-19, confirming each
other results.

Functional Enrichment Analysis of Highly-
Correlated Modules
In order to understand the biological performance of significant
highly-correlated modules with disease severity of COVID-19,
functional enrichment analysis was performed and a total of 342
biological process and 93 KEGG pathways were significantly
enriched in the respective modules. The turquoise module had
the highest number of enriched terms and pathways, including
295 biological processes and 82 KEGG pathways. The most
significant GO term and KEGG pathway in the turquoise
module were “mitochondrial translational elongation
(GO:0070125)”, “translational termination (GO:0006415)”, and
“negative regulation of type I interferon-mediated signaling
pathway (GO:0060339)”. On the other hand, 13 biological
processes and 8 KEGG pathways were significantly enriched in
the purple module. The most significant GO term and KEGG
FIGURE 3 | The preservation status of the respective modules. (A) MedianRank preservation results. The y axis represents medianRank values and x axis represent
module size. Each point with a specific color represents the corresponding module. (B) Zsummary preservation results. The y axis represents Zsummary values and
x axis represents the module size. Each point with a specific color represents the corresponding module. Modules with medianRank ≥ 8 (the blue dashed line) or
Zsummary ≤ 10 (the red dashed line) were considered non-preserved between healthy controls and COVID-19 samples.
FIGURE 4 | The top GO biological processes of the non-preserved modules.
The y axis and the x axis represent significant enriched GO terms and module
name, respectively. Color and size of each point represent adjusted p value
and number of genes for each term, respectively.
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pathway in the purple module were “Fc gamma R-mediated
phagocytosis” (GO:0006968, Adjusted P value = 2.27E-09) and
“Autophagy” (Adjusted P value = 2.09E-06), respectively. Based
on the functional enrichment analysis, among the significant
highly-correlated modules with disease severity of COVID-19,
blue, brown, lightgreen, grey60, lightyellow, pink, midnightblue,
purple, and turquoise were associated with COVID-19
mechanisms. The identified modules in the COVID-19
samples with different colors as a heatmap and the relationship
between them are shown presented in Figure 6B. Figure 7 was
constructed by ClueGO plugin and shows GO (describes our
knowledge of the biological domain with respect to three aspects:
Molecular Function, Cellular Component, and Biological Process
(Supplementary Table 10).
DISCUSSION

COVID-19, a global pandemic caused by SARS-CoV-2, has
caused severe pulmonary conditions and many deaths (65–67).
The prevalence of SARS-CoV-2 infection is rapidly increasing,
and despite several vaccines, no cure is available (68–70).
Development of potential therapies requires an understanding
of molecular mechanisms of the disease and patient-pathogen
interactions (6, 7). In this study, bioinformatics and systems
biology approaches were used to elucidate molecular regulatory
mechanisms responsible for COVID-19. Since the main aim of
the study were to find key and hub high-traffic genes affecting the
disease at the systems level, we used the Module Preservation
approach. As well, all the modules and genes identified by the
Frontiers in Immunology | www.frontiersin.org 8
Module-trait Relationships approach were covered by the main
study approach. Although the second approach requires a
sufficient number of samples for each attribute, it can also be
used as a validation of the MP method. It should also be noted
that more studies are needed to increase the accuracy of the MTR
analysis. As well, the main purpose of the study is to
systematically study the COVID-19 in terms of the static
aspect of biological processes. Based on differential co-
expression network analyses, among the 21 modules identified
in healthy controls, network connectivity patterns of 15 modules
(72%) changed due to SARS-CoV-2 infection. That 15 of 21
modules were affected indicated the ability of SARS-CoV-2 to
cause systemic disturbances in gene networks of healthy
individuals. Investigating the function of these non-preserved
modules should provide insights into molecular mechanisms and
host-pathogen interactions, as well as identifying key genes,
representing an important step for development of effective
treatments. Moreover, in functional enrichment analyses,
among the 15 non-preserved modules between healthy and
COVID-19 samples, 9 modules including blue, brown, grey60,
lightgreen, lightyellow, midnightblue, pink, purple, and
turquoise had direct biological relationships with host immune
responses and COVID-19 development.

Blue Module
Based on GO and KEGG pathway analyses, the blue module was
clearly closely related to SARS-CoV-2 pathogenesis. Co-
expressed genes of this module were significantly enriched in
KEGG pathways related to host inflammatory responses,
including: Toll-like receptor signaling pathway; C-type lectin
receptor signaling pathway; MAPK signaling pathway; NF-kappa
B signaling pathway; and IL-17 signaling pathway.

Toll-like receptors (TLRs) are the most important pattern
recognition receptors (PRRs); they recognize pathogen-associated
molecular patterns (PAMPs), activate the innate immune system
and regulate secretion of proinflammatory cytokines and the host
inflammatory response (71, 72). Activation of the Toll-like receptor
signaling pathway during SARS-CoV-2 infection leads to activation
of a cascade of downstream pathways, thereby activating the
MAPK and NF-kappa B signaling pathways, increasing
production of type I interferons and proinflammatory cytokines
such as IL-1b, IL6, and TNF-a (73–77). C-type lectin receptors,
another type of PRRs, are involved in the proinflammatory
response; their role has been investigated during Middle East
respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-
2 infections (78, 79). Moreover, SARS-CoV-2 ORF8 increased the
expression level of proinflammatory cytokines by activating the IL-
17 signaling pathway (80). Additionally, in the blue module, the
biological processes associated with the cytokines included: positive
regulation of cytokine production (GO:0001819); cellular response
to cytokine stimulus (GO:0071345); cytokine-mediated signaling
pathway (GO:0019221); inflammatory response (GO:0006954);
and positive regulation of T cell cytokine production
(GO:0002726). The vast cytokine release from the immune
system in response to SARS-CoV-2 infection often exacerbates
the proinflammatory response, with a cytokine storm in the lung
that causes acute respiratory distress syndrome (ARDS), acute lung
FIGURE 5 | PPI network based on the co-expressed hub genes of the
blue module. This module had the most biological associations with the
immunopathogenesis of COVID-19. Large circles and orange octagons
represent hub-high traffic genes and TFs, respectively.
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injury (ALI), decreased lung function, and host death (81, 82).
Therefore, development of effective strategies for controlling or
preventing excessive inflammation through these key pathways in
the blue module, which regulate cytokine production, could
enhance survival of COVID-19 patients (80, 83–85).

In the blue module, other important KEGG pathways and
biological processes associated with the immune system
included: TNF signaling pathway; Apoptosis; p53 signaling
Frontiers in Immunology | www.frontiersin.org 9
pathway; Influenza A; HIF-1 signaling pathway; Viral protein
interaction with cytokine and cytokine receptor; and positive
regulation of programmed cell death (GO:0043068).

The TNF signaling pathway is another key pathway
responsible for the cytokine storm and lung injury during
SARS-CoV-2 infection. Blocking the NFkB1 inhibitory protein
(IkB) induces the NFkB1 transcription factor, which increases
transcription of cytokine genes (86–88). This pathway has been
TABLE 1 | List of the identified hub-high traffic genes in the 9 candidate non-preserved modules.

Module

Blue Grey60 Brown Lightgreen Pink Lightyellow Purple Midnightblue Turquoise

EP300 CD19 RBX1 GLUL HSP90A ERBB2 MAPK1 CDKN2A TP53
UBB IGLL5 PSMB2 TRIB1 A1 ADRB2 CLTC OASL UTP14A
CDK1 CD79B PSMA3 HSPA5 RPS27A NCAM1 CUL2 CCL5 PXN
VEGFA CD79A PSMA6 VIM EZH2 GZMB CMTM6 MYO3B RUVBL2
TNF BLK PTEN ARF4 CEP290 PRF1 VPS26A MYO6 MRTO4
CTNNB1 PNOC VPS29 PLEK NPM1 TBX21 ATP6V1D KIF19 PCBP1
IL6 SPIB NDUFAB1 ACSL1 HNRNPA1 GZMA PJA2 PPP2R2B POLR2H
SIRT1 CD22 SNRPE TUBA1B PPP2CA NKG7 TXNRD1 KIF2C BYSL
NFKB1 POU2AF PSMA4 IRAK3 POLR2K KLRD1 RAB1A CD8A PRKCD
TFRC 1 TXN AHR TPT1 B3GAT1 TMED7 ATL1 KEAP1
RANBP2 TCF3 PTGES3 EEF1A1 DICER1 IMP3
HSP90A RHOA RPL5 RAB5A CEBPA
B1 ATP5C1 EEF1B2 TRIP12 ICT1
UBXN7 CANX HSPD1 HSP90B1 RPL26L1
IL10 VAMP7 DDX5 SNRPG ARHGAP30
CYCS B2M HSPE1 DNAJC10 PTPN6
IL1B GDI2 ISCU MAGT1 WDR18
EZR SNRPD1 RPS3A LYPLA1 DDX28
RPLP0 UBE2L3 IFNG HNRNPH2 RFC2
HIF1A TXNL1 CD59 CYB5R4 HGH1
CDKN1A CCT8 RRM1 ADAM10 PPARA
HSPA9 SUMO1 RPL21 CREB1 MRPS18B
EIF4A3 UBE2D1 RPGR TXNDC16 COASY
CCNT1 MCTS1 CCDC14 VBP1 MCM3
ATF4 NDUFC2 PTPRC SNX2 TNFRSF1A
PIK3CA PSMC2 LDHA STX12 PFDN6
PIK3R1 RAB11A MAD2L1 DPM1 PPP1R18
ATF3 REEP5 EIF4B BLZF1 IKBKB
NR4A1 CHMP5 RPL9 OLA1 GID4
SOCS3 SPCS1 SF3B1 SERINC1 MROH1
HNRNPL VAMP3 NOP58 GMFB POLR2I
BRWD3 DECR1 HNRNPDL CUL5 FERMT3
LDLR IDH1 NCL SEL1L TFEB
H2AFX RAN RPS25 CAPZA2 RPS6KA1
SOCS1 CASP1 CALM1 LAMTOR3 MKKS
TNFAIP3 UQCRQ MAGOH SH3BGRL SLC35C1
GOLGB1 RAB10 EIF4A2 AGPS ING1
AP4B1 MMADHC RPS12 GNG2 ARHGAP1
OGT COMMD8 RPS6 KIAA1033 PSMD4
DDX3X LAMP2 TAF9B NRAS PHC2
POLR1C PSMD14 HINT1 SPTLC1 S1PR4
KLHL11 PRDX3 BTAF1 SH3GLB1 MRPL15
BCL6 ACTR2 RPL7 DUSP3 ERAL1
ANAPC1 TNFSF13B RPA3 TIMM10B TMEM101
SF1 ARPC3 SOS1 C9orf72 LSM2
CXCR4 CTSS RPL26 MAP3K1 MRPL40
RBMX TGOLN2 BCL10 GFM1 ZNHIT2
ICAM1 MRPL13 RPS20 RHEB RNF8
DDX24 SEC61G RPL24 WRB DOLK
MATR3 CETN2 MRPL32 EFR3A SHMT2
RLIM CSNK1G3
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considered an attractive therapeutic target for COVID-19-
induced lung injury (86, 89).

The SARS-CoV-2 and MERS-Cov infections reduce
percentages of peripheral blood mononuclear cells (PBMCs),
e.g., T cells, by inducing apoptosis and contributing to disease
pathogenesis (90, 91). In addition, induction of apoptosis in
PBMCs during COVID-19 is more marked in severe clinical
cases (90, 92). Moreover, severe COVID-19 is associated with
numerous changes in PBMCs, e.g., lymphopenia (93) and
lymphocyte apoptosis (especially T cells), with lymphopenia
associated with severe COVID-19 (94, 95). The SARS-CoV-2-
induced cytokine storm can exacerbate apoptosis in T cells,
reducing their numbers in COVID-19 patients (96). More
research is needed to mitigate lymphocyte apoptosis and
lymphopenia in COVID-19 patients (94). Furthermore, in
agreement with our research, in a transcriptomic study, in
Frontiers in Immunology | www.frontiersin.org 10
addition to apoptosis, the p53 signaling pathway was highly
enriched in PBMCs of the COVID-19 group and may be
associated with lymphopenia in COVID-19 patients (97).

The exacerbated inflammatory response due to severe/critical
COVID-19 leads to ARDS, which can lead to multi-organ failure
(MOF) and death (98). This imbalanced inflammatory response
(cytokine storm) increases disease severity and is associated with
high concentrations of circulating proinflammatory cytokines,
e.g., IL6, TNF, and IL1B in lung tissue (93, 99–102). Interestingly,
in this study, IL6, TNF, and IL1B were key hub-high traffic genes
in the blue module. Interleukin-6 (IL6), a proinflammatory
cytokine that enables virus to enter host cells and proliferate, is
an important prognostic biomarker and a powerful predictor of
COVID-19 mortality (103, 104); it is significantly increased in
ICU patients, and was highly significantly correlated with
COVID-19 mortality (105–107). Additionally, in an extensive
proteomic study, IL6 was an important candidate associated with
disease severity (108). Given the key role of IL6 in SARS-CoV-2
pathogenes is , b locking IL6 s ignal ing may prevent
hyperinflammation and increase survival in COVID-19
patients (109–111). For example, tocilizumab (a monoclonal
antibody against IL6) and convalescent plasma therapy (CPT)
reduced IL6 concentrations, controlled and relieved
inflammation, and managed the cytokine storm in COVID-19
patients (112–115). Moreover, clinical trials are underway to
investigate effects of IL6 receptor and IL1B signaling blockade on
COVID-19 treatment (100).

Tumor necrosis factor (TNF) is another key proinflammatory
cytokine involved in COVID-19 hyperinflammation, as COVID-19
patients have increased TNF concentrations (116). TNF has a
special nature and biological features that make it a promising
FIGURE 6 | Module-trait relationships analysis. (A) Module-trait relationships
(MTRs) between detected modules and disease severity of COVID-19.
Module-trait relationships MTRs are obtained by calculating the correlation
between the traits and the module eigengenes. The red and blue colors
indicate strong positive correlation and strong negative correlation,
respectively. Rows represent module eigengene (ME) and columns indicate
disease severity of COVID-19. Asterisks corresponds significant highly-
correlated values. (B) Eigengene adjacency heatmap indicate relationship
among all the modules.
FIGURE 7 | The Gene, Gene Ontology and pathway, related modules
involved in the disease severity of COVID-19.
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target for treatment of COVID-19 (117). Anti-TNF therapies can
manage inflammation in many human inflammatory diseases, e.g.,
chronic kidney disease (CKD), rheumatoid arthritis (RA) (118,
119), Crohn’s disease (120), psoriasis, psoriatic arthritis (121), and
sepsis (122). There is ample evidence that anti-TNF therapies, in
addition to reducing TNF concentrations and preventing
inflammation, have additional therapeutic effects, including:
suppressing formation of new blood vessels by modulating
angiogenic vascular endothelial growth factor (VEGF) in patients
with RA (123); reducing synovial expression of chemokines such as
interleukin-8 (IL8) and monocyte chemotactic protein-1 (MCP-1)
in RA patients (124); downregulating production of interleukin-18
(IL18) in RA patients (125); and reducing expression of adhesion
molecules (126). Anti-TNF therapies reduce secretion of
proinflammatory cytokines to normal (IL1b) or sub-normal (IL6
and IFN-g) in RA patients (127). Therefore, anti-TNF therapies
may reduce many pathogenic proinflammatory cytokines during
SARS-CoV-2 infection and be an effective immunomodulatory
approach for treatment of COVID-19 patients (128, 129). In
agreement with this study, these findings indicated the
importance of IL6, TNF and IL1B hub-high traffic genes,
considered potential targets (individually or in combination) for
development of effective therapeutic immunomodulation strategies
to manage COVID-19 hyperinflammation.

Identified hub-high traffic genes in the blue module included
several important transcriptional regulatory factors, i.e.,
NFKB1and HIF1A. The nuclear factor-kappa b subunit-1
(NFKB1), an important transcription factor belonging to the
NF-kB family, stimulates transcription of proinflammatory
cytokines such as IL6, TNF‐a, and IL1 as well as chemokines
such as IL8 (CXCL8), all with major roles in causing a COVID-
19-induced cytokine storm (86, 87, 130, 131). The inflammation
regulator NFKB1 was significantly upregulated in response to
SARS-CoV-2 infection; transcriptomic studies revealed its key
role in regulation of differentially expressed genes (DEGs)
between healthy individuals and patients with mild or severe
COVID-19 (7, 10, 132–136). Furthermore, by targeting NFKB1,
miR-9 regulates inflammatory pathways related to COVID-19
pathogenesis (137). Moreover, by binding to NFKB1, miR-27a-
3p suppressed NF-kB activation and reduced acute lung injury in
an animal model (138). These results demonstrated the vital role
of the NFKB1 hub-high traffic TF in the inflammatory response
during COVID-19, consistent with targeting NFKB1 as a
potential treatment strategy for severe COVID-19 cases (85,
139). Fluoxetine, tiotropium, and andrographolide targeted
NFKB1, suppressed inflammation, and reduced the cytokine
storm in COVID-19 patients (86, 140, 141). Additionally,
vitamin D blocked the TNF-induced NFkB1 signaling pathway
and blocked the cytokine storm in severe COVID-19 infections.

In severe cases of COVID-19, a hypoxic microenvironment
activates Hypoxia Inducible Factor 1 Alpha (HIF1A), a master
regulator that activates, recruits, and stabilizes immune cells such
as macrophages and neutrophils at the site of inflammation;
furthermore, these cells secrete inflammatory cytokines, causing
a cytokine storm (142). Activation of HIF1A upregulates VEGF,
which increases vascular leakage and destroys alveolar-
Frontiers in Immunology | www.frontiersin.org 11
interstitial-endothelial epithelial complex barriers (142).
Conversely, activation of HIF1A, induces autophagy, a pathway
through which SARS-CoV-2 increases its proliferation and
progression in host cells (142, 143). Moreover, in agreement
with our results, in a transcriptomic study, HIF1A had the
highest connections in the GO, KEGG, and PPI networks of
various clinical stages of COVID-19 (33). Thus, HIF1A
inhibitors may interfere with processes that promote COVID-
19 pathogenesis (144, 145).

Other critical hub-high traffic genes in the blue module
included EP300 (146, 147), CDK1 (4, 148), VEGFA (149–151),
CTNNB1 (151, 152), IL10 (9, 153–155), SOCS1, SOCS3 (156),
SIRT1 (157, 158), TFRC (159–161), HSP90AB1 (162), CYCS
(163), EZR (164), TNFAIP3, ICAM1 (10), and PIK3R1 (139) as
well as TFs such as ATF4 (165), ATF3 (166, 167), and BCL6 (152)
which have important roles in pathogenesis of SARS-CoV-2, and
some of which are potential therapeutic targets. For instance,
SOCS1/3 antagonists may be prophylactic or therapeutic against
the COVID-19 pandemic (156). Moreover, a significant increase
in expression of endothelial cell adhesion molecules e.g.,
intercellular adhesion molecule 1 (ICAM1) in patients with
severe COVID-19, is associated with COVID-19 severity and
may cause coagulation disorders (168). Additionally, increased
expression of ICAM1 in COVID-19 patients contributes to
replication of SARS-CoV-2 and provides a favorable
environment for its survival in humans (135). Therefore,
ICAM1 protein can be considered a key target for treatment of
COVID-19 patients (169, 170).

Brown Module
The brown module was significantly enriched in immune-related
pathways, including “NOD-like receptor signaling pathway”,
“Necroptosis”, “tumor necrosis factor-mediated signaling
pathway (GO:0033209)” , “interferon-gamma-mediated
signaling pathway (GO:0060333)”, “T cell receptor signaling
pathway (GO:0050852)”, “neutrophil mediated immunity
(GO:0002446)”, and “neutrophil activation involved in
immune response (GO:0002283)”.

NOD-like receptors (NLRs) are a specialized group of
cytoplasmic PRRs with an important role in pathogenesis of a
variety of inflammatory human diseases by regulating nuclear
factor–kappa B (NF-kB) signaling, proinflammatory cytokines
such as IL1B, and cell death (171). Moreover, in recent COVID-
19 studies, the NOD-like receptor signaling pathway was among
active pathways in response to the SARS-CoV-2 infection,
implying this pathway may be a central mediator of severe
COVID-19 (172, 173). Interestingly, this pathway and some of
its members were reported to be important targets for reducing
the cytokine storm in patients with severe COVID-19 (174–176).

Necroptosis or inflammatory cell death is immunogenic cell
death in response to viral infection; it involves various processes,
including clearance of virus-infected cells, inflammation,
metabolic abnormalities, and embryonic development (177,
178). SARS-CoV-2 induces necroptosis through some of its
viral proteins (179). Despite the immunological role of
necroptosis, this pathway also contributes to pathogenesis of
December 2021 | Volume 12 | Article 789317
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COVID-19. For example, synergism of interferon-gamma and
tumor necrosis factor-mediated signaling can perpetuate a
COVID-19-induced cytokine storm by st imulat ing
programmed cell death (apoptosis and necroptosis) and
increasing mortality (180). Moreover, increased secretion of
mature IL1B through the necroptosis pathway can exacerbate
the inflammatory response during SARS-CoV-2 infection (181).
In addition, SARS-CoV-2 internalization by platelets induced
them to undergo necroptosis and apoptosis, which can
contribute to thrombosis (182). Furthermore, there is a major
role of necroptosis in lung damage of COVID-19 patients (181).
Therefore, blocking inflammatory cell death such as necroptosis
may benefit COVID-19 patients by limiting tissue inflammation/
injury (180). In this regard, Necrostatin-1 (Nec-1), an inhibitor
of necroptosis, protected against complications of COVID-
19 (183).

T-cells, lymphocytes in the cell-mediated adaptive immune
response, are involved in viral clearance and long-term antiviral
immunity (184). However, SARS-CoV-2 counteracts T-cell
activity through specific immune escape mechanisms, e.g., T-
cell apoptosis (90) or direct interactions with T-cell activator
molecules (185). Moreover, severe COVID-19 is associated with
dysregulation of T-cells, causing lymphopenia and exhaustion of
CD4+ and CD8+ T cells (186–188). Conversely, activation of the
T cell receptor signaling pathway in response to candidate drug
treatment in COVID-19 patients indicates a key role of T-cells
for limiting of SARS-CoV-2 infection during recovery (189).
Despite their critical immunological role, T-cells may contribute
to the pathogenesis of SARS-CoV-2. For instance, the
inflammatory response and activation of T cells (especially T-
helper 17 cells) can synergistically exacerbate the disease and
prolong SARS-CoV-2 infection (15). Treatment strategies to
activate/block T-cells in COVID-19 patients have been
reviewed (190).

A major contributor of SARS-CoV-2 pathogenesis in the
lungs of COVID-19 patients is excessive activation of
neutrophils (191). Formation of neutrophil extracellular traps
(NETs) by SARS-CoV-2-activated neutrophils can exacerbate
inflammation-associated lung damage and cause severe
pulmonary fibrosis in COVID-19 patients (192, 193).
Moreover, high levels of NETs caused lung epithelial cell death
in vitro, implying increased risk of mortality in COVID-19
patients (194). Conversely, formation of NETs by neutrophils
in response to SARS-CoV-2 infection caused rapid vascular
occlusion, altered microcirculation (195), and induced
thrombosis (196). Therefore, NET-targeting approaches such
as the use of NET-inhibitory factor (nNIF), could be a novel
strategy to reduce lung damage and thrombotic responses during
COVID-19 disease (197).

We also identified several significant terms related to
mitochondrial activity in the brown module. These terms
included “Oxidative phosphorylation”, “mitochondrial
translational elongation (GO:0070125)”, “mitochondrial
translational termination (GO:0070126)”, “mitochondrial ATP
synthesis coupled electron transport (GO:0042775)” and
“mitochondrial respiratory chain complex I assembly
Frontiers in Immunology | www.frontiersin.org 12
(GO:0032981)”. Mitochondria have a major role in maintaining
cellular immunity, homeostasis and cell survival (198).
Interestingly, there is emerging evidence that SARS-CoV-2
highjacks mitochondria in immune cells, manipulates
mitochondrial activity to its advantage, and provides favorable
conditions for viral replication within the mitochondrial structure
(199). After entering the cell through the angiotensin-converting
enzyme-2 (ACE-2) host receptor, the SARS-CoV-2 sends its
genomic RNAs toward the mitochondria and, after manipulating
it, affects various processes, including stimulation of cytokine
production, mitophagy, iron storage, and platelet coagulation
(200). Furthermore, SARS-CoV-2 may use mitochondrial-derived
bilayer vesicles to hide within the cell (201). Additionally, host
mitochondrial manipulation by SARS-CoV-2 ORF-9b released
mitochondrial DNA (mt-DNA) into the cytoplasm, which
activated an mtDNA-induced inflammasome, thereby
suppressing innate and adaptive immune responses (201).
Moreover, SARS-CoV-2 targets the oxidative phosphorylation
pathway, causing a massive increase in reactive oxygen species
(ROS) which increases TNF and IL1B , followed by
hyperinflammation (202–205). Another mechanism of
mitochondrial dysfunction by SARS-CoV-2 is excessive ferritin
(hyperferritinemia) in mitochondria, causing oxidative stress (206).
Furthermore, mitochondrial oxidative stress can impair glucose
tolerance of cells and cause complications in diabetic patients (200).
Given the importance of mitochondria in the pathogenesis of
COVID-19, a clear understanding of biological interactions
between mitochondria and the virus would be important to
develop anti-SARS-CoV-2 strategies.

Previous COVID-19 studies reported that hub-high traffic
genes in the brown module, such as RBX1 (207–210), PSMA3
(211), PSMA6 (212), PTEN (213), VPS29 (214, 215), SNRPE
(216), PSMA4 (217), TXN (218), PTGES3 (219, 220), RHOA (57,
221, 222), CANX (209), B2M (223), GDI2 (57, 224, 225), TXNL1
(226), SUMO1 (147, 227, 228), PSMC2 (229), REEP5 (230),
DECR1 (108), RAB10 (224), PRDX3 (231, 232), ACTR2 (215),
TNFSF13B (192, 233, 234), and ARPC3 (215), have a central role
in host-SARS-COV-2 interactions. For example, ARDS and ALI
in patients with severe COVID-19 were directly associated with
increased expression of the PTEN and RHOA hub-high traffic
genes, respectively (213, 222). Additionally, a recent multi-omics
study suggested the GDI2 hub-high traffic gene as a potential
biomarker for segregating COVID-19 positive cases (225).
Moreover, SARS-CoV-2 disrupts PPAR-g activity by
suppressing SUMO1, resulting in a hyperinflammatory
response in severe COVID-19 patients (147).

We identified the caspase-1 (CASP1) hub-high traffic gene in
the brown module; it has a key role in the pathogenesis of SARS-
CoV-2 and is associated with the severity of COVID-19 (235).
Significant increases in the CASP1 expression in patients with
acute COVID-19 were reported in previous transcriptomic
studies (236, 237). Indeed, activation of CASP1 by activating
inflammasomes in response to the SARS-CoV-2 infection
activates IL1B and IL18 and contributes to hypercytokinemia
in COVID-19 patients (238–240). Besides, activation of CASP1
promotes pyroptosis (a highly inflammatory and Caspase-1-
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dependent form of programmed cell death), which can lead to
secretion of a wide range of inflammatory mediators (241, 242).
Melatonin suppressed the lung cytokine storm in COVID-19
patients by reducing CASP1 expression (243).

Grey60 Module
Significant functional terms such as “B cell receptor signaling
pathway”, “B cell activation (GO:0042113)”, and “regulation of
B cell proliferation (GO:0030888)” demonstrated that the
grey60 module was closely related to the humoral adaptive
immunity . In agreement with our resul ts , s imi lar
transcriptomic and systemic studies of COVID-19 reported
enrichment of B cell receptor signaling pathway, B cell
activation, and B cell proliferation pathways during SARS-
CoV-2 infection (7, 244–246). Furthermore, B cell depleted
patients infected with SARS-CoV-2 had prolonged disease
(247). Remarkably, in 1 study, IgM memory B cells were
commonly depleted in COVID-19 patients, which increased
mortality (248). Moreover, given the relationship between B cell
subset frequencies and clinical/laboratory parameters, these
cells may be potential biomarkers for predicting the clinical
outcome of COVID-19 (249). These findings supported the
special importance of B cells and cell pathways during the
humoral immune response in COVID-19 pat ients .
Interestingly, we identified several hub-high traffic genes
involved in regulating activity/development of B cells such as
CD19 (250), IGLL5 (251, 252), CD79B (253), CD79A (254),
CD22 (255), PNOC (256), and POU2AF1 (257), with a central
role in information transfer within the grey60 module during
humoral immunity in response to SARS-CoV-2 infection.

Lightgreen Module
Investigation of KEGG pathways and biological processes of the
lightgreen module revealed that co-regulated genes of this
module were highly enriched in pathways such as “Th17 cell
differentiation” and “Antigen processing and presentation”, as
well as biological process such as “regulation of macrophage
cytokine production (GO:0010935)”. As discussed in the “brown
module” section, T cells can have dual actions; despite a key role
in the immune response, they may also contribute to disease
pathogenesis. Release of a wide range of cytokines (especially
IL6) in response to SARS-CoV-2 infection enhanced
differentiation of naive T cells into the T-helper 17 (TH17)
phenotype (258–261). TH17 cells have a major role in inducing
the proinflammatory effects of cytokines (G-CSF, IL1B, IL6, and
TNF) and chemokines (KC, MIP2A, IL8, IP10, MIP3A) through
secretion of inerleukin-17 (IL17), thus contributing to the
cytokine storm and subsequent ARDS in COVID-19 patients
(262–264). Moreover, an increase in the percentage of TH17 cells
in response to the SARS-CoV-2 infection caused pregnancy
complications, e.g. , miscarriage, preterm labor, and
preeclampsia in pregnant women with COVID-19 (265).
Conversely, aberrant Th17 cell differentiation in COVID-19
patients increased the risk of autoimmune disorders, e.g.,
Guillain-Barré syndrome, multiple sclerosis, and rheumatoid
arthritis (173, 266). Modulating compounds aimed at reducing
Frontiers in Immunology | www.frontiersin.org 13
the percentage of TH17 cells may suppress inflammation in
COVID-19 patients (267).

Additionally, some lightgreen module hub-high traffic genes,
including GLUL (268), ACSL1 (269), TRIB1 (236), TUBA1B
(270), PLEK (271, 272), HSPA5 (273, 274), and IRAK3 (275)
may contribute to the pathogenesis of COVID-19. For example,
SARS-CoV-2 spikes can drive the infection process of host cells
by binding to cell-surface heat shock protein A5 (HSPA5)
receptor (273, 276). However, targeting this receptor using
natural compounds, e.g., phytoestrogens or estrogens, can
prevent SARS-CoV-2 from binding to stressed cells and thus
limit infection (277). Conversely, the IRAK3 hub-high traffic
gene is an important inflammatory mediator associated with
asthma susceptibility (278, 279) and SARS-CoV-2 increases risk
of asthma in COVID-19 patients by increasing expression of this
gene (275). Additionally, a network-based study recently
suggested the IRAK3 hub-high traffic gene as a potential
therapeutic target against COVID-19 (280). Moreover, we
identified aryl hydrocarbon receptor (AHR) hub-high traffic TF
among the central genes of the lightgreen module. Increased
expression of this transcriptional regulatory factor in response to
the SARS-CoV-2 infection interfered with antiviral immunity
in the host, as AHR suppressed production of type I interferons
in the COVID-19 patients and increased SARS-CoV-2
replication in host cells (281). Therefore, pharmacologic AHR
blockade approaches may be effective to enhance host antiviral
immunity and reduce viral replication in COVID-19
patients (281).

Lightyellow Module
Functional examination of the lightyellow module suggested that
this module was only enriched in the “Natural killer cell
mediated cytotoxicity” KEGG pathway. Additionally, some
important hub-high traffic genes involved in the cytotoxic
activity of natural killer cells during COVID-19 were NCAM1
(252, 282), GZMA, NKG7 (283, 284), KLRD1 (285, 286), GZMB
(150, 287, 288), and PRF1 (289–291). Natural killer (NK)
cells are key innate immune cells with a central role in killing
virus-infected cells (292). Decreased NK cells during SARS and
SARS-CoV-2 infections, followed by an increase during the
recovery period indicates an inverse relationship between
number of NK cells and disease severity (188, 293, 294), with a
decrease in their number early in the disease process promoting
progression of coronavirus infection (294).

Among the hub-high traffic genes in the lightyellow module,
GZMB and PRF1 had the most important role in NK cells
cytotoxicity. Perforin glycoprotein, expressed by the PRF1
gene, has an important role in the cytolytic activity of
cytotoxic T cells and NK cells and causes pores in the
membrane of target cells (295, 296). Granzyme B is a key
serine protease expressed in cytotoxic T cells and NK cells by
the GZMB gene; it enters the target cells through membrane
pores created by perforin and induces apoptosis, eliminating
infected cells (297, 298). Interestingly, decreased expression of
both PRF1 and GZMB hub-high traffic genes in severe COVID-
19 patients lead to dysfunction of NK cells cytotoxicity,
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indicating that both genes are essential for NK cells activity (155,
299). Conversely, genetic mutations in the PRF1 gene impaired
NK cells cytotoxicity, implicating this gene in the antiviral
activity of NK cells (300–302). Given the importance of NK
cells and their genes/proteins in antiviral activity, as well as their
reduction in COVID-19 patients, development of treatment
strategies to restore NK cells may control infection in the early
stages of COVID-19 (303). Moreover, other genes in the
lightyellow module, e.g., ERBB2 (151) and ADRB2 (275, 304),
as well as TBX21 (305–307) hub-high traffic TF, have critical
roles during SARS-CoV-2 infection. For instance, in addition to
the IRAK3 hub-high traffic gene (described in the lightgreen
module section), increased ADRB2 hub-high traffic gene
expression during SARS-CoV-2 infection also increased the
risk of asthma in COVID-19 patients (275).

Midnightblue Module
The only significant enriched term in midnightblue was
“regulation of immune response (GO:0050776)”. In this
module, we also identified several hub-high traffic genes that
were crucial in regulating the host immune response during
COVID-19. These hub-high traffic genes included CDKN2A
(308, 309), OASL (282, 310), CCL5 (311–316), KIF2C (4), and
CD8A (317). Among them, the CCL5 hub-high traffic gene has
the most important role in regulating the inflammatory response
and the host immune system; however, its excessive expression
can amplify inflammatory responses toward immunopathology
(e.g., cytokine storm) (311, 314). C-C motif ligand 5 (CCL5) also
known as RANTES, is a chemotactic molecule in the CC family
of inflammatory chemokines, expressed by virus-infected airway
epithelial cells and macrophages, which promotes trafficking of
proinflammatory leukocytes to the site of infection and
stimulates cytokine production (314, 318–320). A massive
increase in secretion of pro-inflammatory molecules, including
chemokines such as CCL5 and other cytokines in response to
SARS-CoV-2 infection, cause a cytokine storm (84, 321–323).
Multiple-fold increases in CCL5 expression in severe COVID-19
patients compared to healthy individuals are well documented
(311, 312, 315, 324). Additionally, there was a significant increase
in CCL5 expression in non-surviving COVID-19 patients
compared to severe, mild and healthy groups (313).
Furthermore, high levels of CCL5 cause liver disorders and
acute kidney injury (AKI) in COVID-19 patients (314, 318,
325). Therefore, early intervention to prevent overexpression of
CCL5 can restore immune balance in COVID-19 patients and
prevent disease progression (311, 314). Moreover, 2′–5′‐
oligoadenylate synthetase‐like (OASL), the other hub-high
traffic gene of midnightblue module, is an interferon-
stimulating gene with a key role in antiviral defense
mechanisms (326) and with potential as a diagnostic
biomarker for COVID-19 (327).

Pink Module
In the pink module, genes were observed in functional
enriched terms such as “Coronavirus disease”, “Ribosome”,
“ribosome assembly (GO:0042255)”, “mitochondrial transport
Frontiers in Immunology | www.frontiersin.org 14
(GO:0006839)”, and “translation (GO:0006412)”. Ribosomes are
complex molecular machines that synthesize proteins by
translating mRNA into polypeptides (328). Interestingly, in the
infection stage, nonstructural protein 1 (Nsp1) from SARS-CoV-
2 bound to the host ribosome and hijacked it to (1) disrupt the
mechanism of host cellular translation and protein production
(2), inhibiting all cellular antiviral defense mechanisms (3),
initiating translation of viral mRNAs and subsequently viral
protein production, and (4) increasing viral replication
efficiency (329–335). Therefore, inhibitory mechanisms to
target ribosome-SARS-CoV-2 interactions may be used to treat
COVID-19 (331). Additionally, some pink module hub-high
traffic genes, such as RPL9, RPS27A, RPL26, RPS12 (336), RPS6
(228), RPL5, RPL7 (337), RPGR (173), and RPS20 (338) were
highly enriched in the ribosome pathway and involved in SARS-
CoV-2-ribosome interactions. For example, the increase in
ribosomal protein L9 (RPL9) expression was attributed to
SARS-CoV-2 hijacking the host translation machine (339).

We identified the heat shock protein 90 alpha family class A
member 1 (HSP90AA1) hub-high traffic gene in the pink
module, which has an important role in development of SARS-
CoV-2 infection (340) and has a significant increase in
expression in severe COVID-19 patients compared to the non-
severe group (341, 342). Furthermore, this hub-high traffic gene
is also involved in comorbidities associated with COVID-19, e.g.,
cardiovascular diseases (CVDs) and has been suggested as a
potential therapeutic target for these complications (139, 343,
344). We also identified mitochondrial 60-kDa heat shock
protein (HSPD1) hub-high traffic gene in the pink module.
High concentrations of circulatory HSPD1 in severe COVID-
19 patients are associated with cardiac failure and are a potential
clinical biomarker for heart disorders in COVID-19
patients (345).

Other hub-high traffic genes in this module, such as BTAF1
(216), EZH2 (346), NPM1 (347), TPT1 (151, 269, 348), LDHA
(217, 268), PTPRC (189), SOS1 (349, 350), DDX5 (351, 352),
BCL10 (162, 353), EEF1B2 (354), CALM1 (344), EIF4A2, EIF4B
(336, 355, 356), EEF1A1 (269, 354), HNRNPA1 (228, 347), and
IFNG (8, 357, 358), have important roles in development/
inhibition of COVID-19. Overexpression of SARS-CoV-2
ORF6 caused HNRNPA1 nuclear accumulation, subverting the
host mRNA export system and reducing nucleus size (359).
Moreover, IFNG hub-high traffic gene neutralizers have been
predicted as antagonists of COVID-19 biology (8, 357).

Purple Module
The immune-related enriched pathways in the purple module
included “Fc gamma R-mediated phagocytosis” and
“Autophagy”; these 2 pathways were significantly enriched in
previous COVID-19 studies (189, 360, 361). Autophagy is an
evolutionarily conserved mechanism to selectively eliminate
damaged organelles, misfolded proteins, and intracellular
pathogens (362) . Components are enclosed in an
autophagosome, which fuses with a lysosome to form an
autolysosome that breaks down its contents (363). However,
there is growing evidence that coronaviruses, such as
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SARS-CoV-1, MERS-CoV, and SARS-CoV-2, manipulate/hijack
the autophagy pathway to accelerate their replication and
complete their life cycle (364–368). Accordingly, inhibitory
mechanisms and blockade of the autophagy pathway may be a
novel therapeutic strategy (369–373).

Additionally, some of the purple module hub-high traffic
genes, such as MAPK1 (189, 374), CUL2 (210), CMTM6 (162),
TXNRD1 (375), RAB1A (376), DICER1 (377), RAB5A (209),
HSP90B1 (343), MAGT1 (378), ADAM10 (379, 380), SNX2 (89),
OLA1 (381), SPTLC1 (382), SH3GLB1 (383), TIMM10B (384),
and CREB1 (385) hub-high traffic TF, which are central for
information exchange in this module, are potential targets for
development of COVID-19 therapeutic strategies. Among these,
the mitogen-activated protein kinase 1 (MAPK1) hub-high traffic
gene is a potential core target for many anti-COVID-19
therapeutic strategies (189, 374, 386–390). Perhaps targeting
the MAPK1 hub-high traffic gene with guanfacine or
desipramine may be effective for treating COVID-19 associated
comorbidities, such as diabetes, CVDs, and chronic kidney
diseases (CKDs) (139). Interestingly, the ras-related protein
Rab-5A (RAB5A) is involved in various autophagy processes
such as autophagosomal maturation and early autolysosome
formation, and the SARS-CoV-2 enhances autophagy by
increasing expression of this gene to accelerate viral replication
(391). Furthermore, RAB5A is a key host protein for interaction
with SARS-CoV-2 and may be an important target for inhibiting
COVID-19 progression (209).

Turquoise Module
Based on the functional terms of the turquoise module such as
“mitochondrial translational elongation (GO:0070125)”,
“translational termination (GO:0006415)”, and “negative
regulation of type I interferon-mediated signaling pathway
(GO:0060339)”, this module may have an important role in
pathogenesis and development of SARS-CoV-2. In agreement
with our results, COVID-19 suppressed type I interferon
signaling and impaired their responses (6, 392, 393).
Additionally, some SARS-CoV-1, MERS-CoV, and SARS-CoV-2
proteins decreased production and impaired type I interferon
signaling (394). Accordingly, disruption of the type I interferon
signaling, key antiviral mediators, contributed to the pathogenesis
of COVID-19 (395). Indeed, impaired type I interferon signaling
and exacerbation of the inflammatory response are hallmarks of
severe/critical COVID-19 (234, 396). Therefore, type I interferons
may be an intervention for SARS-CoV-2 infection (397).

Additionally, in terms of individual genes in the turquoise
module, we identified hub-high traffic genes such as UTP14A
(398), RUVBL2 (139), PRKCD (280, 399), KEAP1 (400–402),
CEBPA (TF) (403), RPL26L1 (404), PTPN6 (255), PPARA (TF)
(405), TNFRSF1A (406–408), IKBKB (275, 409), TFEB (TF) (410,
411), PSMD4 (412), and ARHGAP1 (413), important
components in immunopathogenesis of SARS-CoV-2. For
example, the TNF receptor superfamily member 1A
(TNFRSF1A) hub-high traffic gene may be a biomarker of
mortality in severe COVID-19 patients, as increased expression
of this gene was significantly correlated with mortalities (414).
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We also identified tumor protein p53 (TP53) hub-high traffic TF
in the turquoise module, with an important role in the
pathogenesis of COVID-19 (415). Moreover, in an animal
model of COVID-19, ALI in the infected group was associated
with an increase in TP53 expression (416). Besides, 1 study
reported that an increase in the expression of TP53 led to the
induction of apoptosis in PBMCs and thus reduced their
frequencies in COVID-19 patients (97). Furthermore, this TF is
associated with some human inflammatory diseases such as RA
(417). In agreement with us, this TF was identified as a hub gene
in several network-based COVID-19 studies (347, 418–421).
Therefore, this TF may have an immunoregulatory role during
SARS-CoV-2 infection and be a potential therapeutic target.

As well as, different proteomic databases were explored. More
data bases were related to SARS-CoV-2 structure and different
situations and tissues. Therefore COVID-19 Immune Atlas
(https://covid19cellatlas.com/#/) was selected. Hospitalized
COVID-19 patients and age-matched healthy controls were
recruited. No differences in age, sex, body mass index (BMI),
viremia, or time from symptom debut until hospital admission
were present between moderate and severe patients. Based on
different cells in the Atlas below results were achieved:

Both moderate and severe COVID-19 patients were
characterized by the progressive expansion of CD16
neutrophils, which also expressed lower levels of CD177,
CD11b, and CD62L and higher levels of CD66b and LOX-1, a
phenotype compatible with neutrophil immaturity. Intriguingly,
a positive correlation between type 1 inflammatory mediators
(e.g., IFNg and CXCL10) and eosinophil activation was observed,
suggesting that, particularly in moderately affected patients, part
of the granulocyte compartment could be actively participating
in the efficient viral clearance, similarly to what can occur upon
influenza infection.

CXCR4 is one of the most highly expressed basophil receptors
in COVID-19 patients and might be implicated in basophil
transendothelial migration. CD63 expression on basophils can
be induced by cross-linking of CD62L and CD11b, among other
stimuli. Therefore, the up-regulation of CD62L, CD63, CD11b,
and CXCR4 on basophils observed during the acute phase of
COVID-19 and their normalization after viral clearance might
imply a role of this phenotype in COVID-19 pathophysiology.

We found increased levels of CXCR4 in both moderate and
severe patients. Other recent studies have also observed increased
levels of CXCR4 with levels higher in severe than in non-severe
COVID-19 patients. We also observed a characteristic increase
in ASC expansion during acute COVID-19 in both severe and
moderate patients; however, no difference was observed between
the two patient groups. Expansion of ASCs during viral
infections has been shown to be a good predictor of the
development of neutralising antibodies and B cell memory.
Additionally, during viral infections, ASCs can produce large
amounts of antibodies as long as viral shedding occurs,
suggesting that ASCs play an active role in infection clearance.
We found that the majority of patients had neutralizing antibody
titres during the acute phase, perhaps originating from the
expanded ASC population. Taken together, the observed ASC
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expansion during acute COVID-19 may play an important role
in SARS-CoV-2 clearance and disease control. We highlight the
strength of analyzing secretion of multiple cytokines at once, as
this approach provides information on cytokine co-expression
patterns and identification of polyfunctional T cells, which
are superior in their cytokine secretion capacity and therefore
may be important in antiviral defence upon re-exposure to
SARS-CoV-2.

Innate lymphoid cells were largely depleted from the
circulation of COVID-19 patients compared with healthy
controls. Remaining circulating ILCs revealed decreased
frequencies of ILC2 in severe COVID-19, with a concomitant
decrease of ILC precursors (ILCp) in all patients, compared with
controls. ILC2 and ILCp showed an activated phenotype with
increased CD69 expression, whereas expression levels of the
chemokine receptors CXCR4 and CCR4 were significantly
altered in ILC2 and ILCp, and ILC1, respectively. The
activated ILC profile of COVID-19 patients was associated
with soluble inflammatory markers, while frequencies of ILC
subsets were correlated with laboratory parameters that reflect
the disease severity.

Unsupervised analysis of peripheral blood NK cells
furthermore identified distinct NK cell immunotypes that were
linked to disease severity. Hallmarks of these immunotypes were
high expression of perforin, NKG2C, and Ksp37, reflecting
increased presence of adaptive NK cells in circulation of
patients with severe disease. Last, arming of CD56 NK cells
was observed across COVID-19 disease states, driven by a
defined protein-protein interaction network of inflammatory.

We found that T cell activation, characterized by expression
of CD38, was a hallmark of acute COVID-19. Many of these T
cells also expressed HLA-DR, Ki-67, and PD-1, indicating a
combined activation/cycling phenotype, which correlated with
early SARS-CoV-2-specific IgG levels and, to a lesser extent,
plasma levels of various inflammatory markers. Our data also
showed that many activated/cycling T cells in the acute phase
were functionally replete and specific for SARS-CoV-2.

The present findings provided new knowledge regarding
molecular mechanisms responsible for COVID-19 as well as
host-virus interactions. The current study emphasized the ability
of SARS-CoV-2 to cause systemic perturbation in host biological-
immunologic gene networks and then manipulate them to
accelerate viral replication and progression of COVID-19.
Building on these findings, further research is needed to more
fully characterize molecular fingerprints underlying SARS-CoV-2
infection for development of drugs and vaccines against
COVID-19.
CONCLUSION

COVID-19 is a global pandemic that has affected many and
despite much effort, no effective treatment is yet available. A
systems biology approach was used to investigate molecular
regulatory mechanisms responsible for COVID-19 at the
systemic level. It is noteworthy that both WGCNA methods
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showed a similar ability to identify candidate modules during
COVID-19, confirming each other results. Differential co-
expression network analysis revealed that the topological
structure of 72% (15 of 21) of the modules were affected due
to the SARS-CoV-2 infection. Moreover, based on functional
enrichment analysis, among the 15 non-preserved modules
between healthy controls and COVID-19 patients, 9 modules
were directly involved in the host immune response and
COVID-19 immunopathogenesis. Integration of co-expression
networks based on the hub genes with PPI networks identified
290 hub-high traffic genes. Indeed, these genes have the highest
degree of connection in co-expression networks and the highest
BC score in co-expressed hub gene-based PPI networks and can
be considered promising therapeutic targets for development of
treatment strategies against COVID-19. Interestingly, most of
these hub-high traffic genes had a central role in
immunopathogenesis of COVID-19 and were directly related
to disease severity and mortality. Future research is needed to
validate hub-high traffic genes reported in this study, especially
those whose role in the pathogenesis of SARS-CoV-2 is
yet unclear.
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