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Introduction: Several studies have reported alterations in gut microbiota composition of
Alzheimer’s disease (AD) patients. However, the observed differences are not consistent
across studies. We aimed to investigate associations between gut microbiota
composition and AD biomarkers using machine learning models in patients with AD
dementia, mild cognitive impairment (MCI) and subjective cognitive decline (SCD).

Materials and Methods: We included 170 patients from the Amsterdam Dementia
Cohort, comprising 33 with AD dementia (66 ± 8 years, 46%F, mini-mental state
examination (MMSE) 21[19-24]), 21 with MCI (64 ± 8 years, 43%F, MMSE 27[25-29])
and 116 with SCD (62 ± 8 years, 44%F, MMSE 29[28-30]). Fecal samples were collected
and gut microbiome composition was determined using 16S rRNA sequencing.
Biomarkers of AD included cerebrospinal fluid (CSF) amyloid-beta 1-42 (amyloid) and
phosphorylated tau (p-tau), and MRI visual scores (medial temporal atrophy, global
cortical atrophy, white matter hyperintensities). Associations between gut microbiota
composition and dichotomized AD biomarkers were assessed with machine learning
classification models. The two models with the highest area under the curve (AUC) were
selected for logistic regression, to assess associations between the 20 best predicting
microbes and the outcome measures from these machine learning models while adjusting
for age, sex, BMI, diabetes, medication use, and MMSE.

Results: The machine learning prediction for amyloid and p-tau from microbiota
composition performed best with AUCs of 0.64 and 0.63. Highest ranked microbes
included several short chain fatty acid (SCFA)-producing species. Higher abundance of
[Clostridium] leptum and lower abundance of [Eubacterium] ventriosum group spp.,
Lachnospiraceae spp., Marvinbryantia spp., Monoglobus spp., [Ruminococcus]
org January 2022 | Volume 12 | Article 7945191
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torques group spp., Roseburia hominis, and Christensenellaceae R-7 spp., was
associated with higher odds of amyloid positivity. We found associations between
lower abundance of Lachnospiraceae spp., Lachnoclostridium spp., Roseburia hominis
and Bilophila wadsworthia and higher odds of positive p-tau status.

Conclusions: Gut microbiota composition was associated with amyloid and p-tau
status. We extend on recent studies that observed associations between SCFA levels
and AD CSF biomarkers by showing that lower abundances of SCFA-producing microbes
were associated with higher odds of positive amyloid and p-tau status.
Keywords: gut microbiota, microbiome, Alzheimer’s disease, amyloid beta, P-tau, MRI
INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia, and is characterized by the accumulation of amyloid
beta in plaques and the formation of neurofibrillary tangles
including hyperphosphorylated tau (p-tau). Another hallmark
is chronic neuroinflammation, which is reflected by activation of
microglia and increased cytokine production (1). The gut
microbiome has been shown to interact with the innate and
adaptive immune system, by release of bacterial toxins and
production of metabolites (2, 3). As has been shown in other
neurological conditions such as multiple sclerosis (4, 5), gut
microbiota could affect neuroinflammation.

The gut is populated with trillions of microbiota, including
bacteria, viruses, fungi, archaea and protozoa (6). Collectively,
the genomes of these cells are referred to as the gut microbiome.
The microbiota composition is affected by dietary factors, age,
sex, body mass index (BMI) and medication use, including
antibiotics, metformin, proton pump inhibitors and statins (7).
Gut microbiota live in symbiosis with the host and are needed for
the degradation of macronutrients and production of metabolites
(8, 9). Short chain fatty acids (SCFAs) are key metabolites of the
gut microbiota, which are produced by fermentation of
indigestible dietary fibers (10).

Animal studies have reported differences in gut microbiota
composition between AD and wild-type mice, including a
decrease in SCFA-producing microbes (11, 12). Fecal microbiota
transplantation fromwild typemice toAD-like animalmodels such
as APP/PS1 and ADLPAPTmice resulted in a reduction of amyloid,
suggesting a causal relation between gut microbes and AD (12, 13).
Colonization of Tg2576mice with Bacteroides exacerbates amyloid
depositions, suggesting a mechanism for the impact of gut
microbiota on AD pathology (14). In addition, an intervention
with sodium butyrate, an SCFA, in an ADmice model resulted in a
reduction of AD pathology (15).

In line with these animal studies, five human studies observed
alterations in microbiota composition in patients with AD or mild
cognitive impairment (MCI) compared to controls, with a lower
abundance of SCFA-producing species in patients with AD (16–
20). However, the nature of the specific microbiota alterations was
conflicting across studies, with for instance lower (16, 19, 20) and
higher (17) abundanceofRuminococcaceae spp., and lower (17) and
higher (16, 18, 19) abundance of the Bacteroidetes phylum of MCI
org 2
or AD patients compared to controls. In addition, former studies
did not take into account AD pathology as measured with AD
biomarkers (17–20), while studies that did focused on a limited set
of microbes for these analyses (16, 21).

Hence, we aimed to assess the relation between gut microbiota
composition, as measured with 16S rRNA sequencing, and
biomarkers of AD pathology, including CSF biomarkers and MRI
measures of vascular burden and neurodegeneration, in a memory
clinic population with AD dementia, mild cognitive impairment
(MCI) and subjective cognitive decline (SCD).
METHODS

Study Population
We invited 223 study participants from the Amsterdam Dementia
Cohort and SCIENCe project, for fecal sample collection. All invited
participantswerediagnosedwithADdementia,MCIorSCDandhad
mini-mental state examination(MMSE)scoreshigher than16.Of the
invited participants, 175 subjects collected samples, and 170 subjects
could be included in our analyses (Figure 1), comprising 33 patients
with AD, 22 patients with MCI and 120 subjects with SCD (23–25).
All patients underwent comprehensive neuropsychological
assessment, neurological examination, lumbar puncture and MRI
aspartof a standarddementia screening (23).MCIandADdiagnoses
were established by consensus in a multidisciplinary meeting
according to the National Institute on Aging-Alzheimer’s
Association criteria (26, 27). Subjects with SCD presented with
memory complaints but performed normal on cognitive
examinations and did not fulfill criteria for MCI, dementia,
psychiatric diagnoses or other neurological diagnoses (23). Patients
were seen annually for follow-up visits, during which cognitive
assessments and medical examinations were repeated. Prior to
these follow-up visits, patients were asked to collect fecal samples.
The study protocol was approved by the Ethics Committee of the
Amsterdam UMC, and all study participants provided written
informed consent.

Descriptive characteristics included age, sex, medical history
(history of hypertension, hypercholesterolemia and diabetes;
self-reported or described in a referral letter), medication use
[antihypertensive medication, glucose lowering medication,
cholesterol lowering medication, proton pump inhibitors
(PPI)], smoking status (current smoking yes/no) and alcohol
January 2022 | Volume 12 | Article 794519
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use (in units per day). Global cognitive functioning was assessed
using the MMSE (scale 0-30) (28).

Gut Microbiota Composition
Patients were sent a fecal collection kit prior to their memory
clinic follow-up visit. Seven patients who used antibiotics within
three months prior to collection were not included. Other
exclusion criteria were diarrhea in the past week or severe
gastro-intestinal conditions, including inflammatory bowel
disease. A flowchart with the screening and recruiting
procedure and reasons for exclusion at each stage is presented
in Figure 1. The included patients were asked to store the sample
in a freezer and to transport the samples to the hospital in a
cooling bag. The 175 samples were shipped to Erasmus Medical
Center, Rotterdam, the Netherlands, for sequencing. Aliquots
of ~300 mg feces were homogenized and DNA was isolated using
bead-beating and the InviMag Stool DNA kit (Invitek Molecular
GmbH, Berlin, Germany) on a KingFisher Flex robot (Thermo
Fisher Scientific, Breda, Netherlands). Fecal microbiota
composition was determined by sequencing the V3 and V4
hypervariable regions of the 16S rRNA gene on an Illumina
MiSeq platform (Illumina Inc., San Diego, CA, USA) using 319F
(ACTCCTACGGGAGGCAGCAG) −806R (GGACTACHVGGG
TWTCTAAT) primers and dual-indexing (29). The processing of
the raw sequencing data is described in Supplement 1, which after
rarefying to 20.000 counts per sample resulted in a dataset with 170
samples and 7894 amplicon sequence variants (ASVs). Prior to the
machine learning analyses, we filtered for ASVs that had at least 5
Frontiers in Immunology | www.frontiersin.org 3
counts in 30% of the subjects, which resulted in a dataset with 181
ASVs.Of theseASVs, taxonomywas available up to species level for
32%, up to genus level for 88% and up to family level for 99%.

AD Biomarkers
CSF was obtained by lumbar puncture using a 25-gauge needle
and collected in 10 ml polypropylene tubes (Sarstedt). Amyloid-
b1-42 (Ab42) and p-tau concentrations were determined with
sandwich ELISAs, using Innotest (Fujirebio) and Elecsys
immunoassays. Patients were classified as having a positive
amyloid status, indicative for AD pathology, if they had
amyloid values lower than the platform-dependent cut-off
(Innotest <813 pg/ml (30, 31); Elecsys <1000 pg/ml). A
positive p-tau status was defined as having p-tau values higher
than the platform-dependent cut-off (Innotest >52 pg/ml;
Elecsys >19pg/ml). Because of the high correlations between
these platforms, Elecsys values were converted to Innotest values
(32). CSF biomarkers were available for 116 patients at a median
of 2.4 [IQR 2.2, 3.2] years before the time of fecal sampling.

MRI scans were performed on a 3.0T scanner and the
protocol included T1-weighted, T2-weighted, fluid-attenuated
inversion recovery (FLAIR) and gradient echo T2*-weighted
images. A trained neuroradiologist evaluated all scans using
visual rating scales. Medial temporal atrophy (MTA) was rated
on coronal reconstructions of T1-weighted images of both sides,
perpendicular to the long axis of the hippocampus (0-4 scale).
MTA was averaged across left and right scores, and was
dichotomized with a cut-off of ≥1 (33, 34). Global cortical
FIGURE 1 | Study flowchart. Flowchart of the number of patients from the Amsterdam Dementia Cohort screened, recruited and included in the analysis, including
reasons for exclusion at different stages. The flowchart was designed following the ‘Strengthening The Organization and Reporting of Microbiome Studies’ (STORMS)
checklist (22).
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atrophy (GCA) was assessed on transverse FLAIR images and
rated using a 4-point scale (0-3) and dichotomized (cut-off ≥1)
(34, 35). White matter hyperintensities (WMH) were assessed on
the same sequences using the Fazekas scale for white matter
hyperintensities (0-3) and dichotomized with a cut-off of ≥2 (36).
Microbleeds were defined as oval or round hypointense lesions
up to 10 mm on a T2*-weighted MRI. Microbleeds counts were
dichotomized into present or absent (37). MRI results were
available for 136 patients at a median of 2.1 [IQR 0.5, 2.4]
years before the time of fecal sampling.

Statistical Analysis
Differences in descriptive and outcome variables between
diagnosis groups were tested using analysis of variance for
continuous variables with normal distributions, Kruskal-Wallis
tests for continuous variables with non-normal distributions and
chi-square tests for categorical variables. To compare microbiota
composition between groups, we calculated alpha diversity
indices, including Shannon index, richness and Faith’s
phylogenetic diversity (38, 39). In addition, we compared beta
diversity between groups by testing differences in Bray-Curtis
distance with a PERMANOVA test. We used the rarefied
microbiota data to calculate alpha and beta diversity.

We used machine learning models to predict dichotomized
AD biomarkers, including amyloid and p-tau status, MTA, GCA,
WMH and microbleeds, from gut microbiota composition (i.e.
the relative abundance of ASVs). Subjects were excluded for a
particular model if data on that outcome variable were missing.
Microbiota abundance data is compositional data, with skewed,
zero-inflated and overdispersed distributions. We used gradient-
boosted tree models [XGBoost algorithm (40)], which is a state-
of-the art algorithm that has shown good accuracy in
comparative microbiota studies (41). To prevent overfitting, we
used a nested cross-validation design in performing these models
(Supplement 2). In each of the 200 iterations, the dataset was
randomly split into a test set containing 20% of the subjects and a
training set with the remaining 80%. Within the train set, 5-fold
cross-validation was performed in order to optimize the model
hyperparameters. Two random variables were added to the
microbiota data in each iteration as a benchmark. The
resulting model was evaluated on the test set which yielded an
area under the receiver-operator curve (AUC) as main model
quality metric, and a ranked list of microbial predictors with
their relative importance to the model. These were recorded for
each iteration and were averaged across 200 iterations.

We selected the two machine learning models with the
highest AUCs for logistic regression, to obtain effect sizes for
the associations between the 20 highest ranked (i.e. highest
feature importance) microbes and the dichotomous outcome of
these machine learning models. We ran three models: model 1
adjusted for age, sex and BMI, model 2 with additional
adjustment for diabetes, statin and proton pump inhibitor
(PPI) use and model 3 with additional adjustment for MMSE.
The effect sizes, reported as odds ratios (OR) per log2-increase in
counts with 95%-confidence intervals (95%-CI) were visualized
in a forest plot. Spearman rank correlation coefficients were
calculated between the top 10 best predicting ASVs found by the
Frontiers in Immunology | www.frontiersin.org 4
two best performing machine learning models and the AD
biomarkers and were visualized with a correlation heatmap.
We used hierarchical clustering (Ward’s method) to order the
ASVs in this plot and to draw a dendrogram. The correlations
with amyloid levels and MMSE scores were inversed for
interpretability, since lower levels are indicative for AD
pathology in contrast to other biomarkers.

Machine learning was implemented in Python (v. 3.7.4) using
the XGBoost (v. 0.90), numpy (v. 1.16.4), pandas (v. 0.25.1), and
scikit-learn (v. 0.21.2) packages. Statistical analyses and
visualizations were performed using R version 3.6.2.

Data Availability
The sequencing data presented in this study can be found in an
online repository, European Nucleotide Archive (ENA) accession
number PRJEB49329 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB49329). Clinical data are available upon reasonable request
at Alzheimer Center Amsterdam, Amsterdam UMC, location
VUmc in Amsterdam, The Netherlands.
RESULTS

Population Characteristics
The mean age of the overall study population was 63 years
(Table 1), with the AD dementia group (66.0±8.0) older than the
SCD group (62.0±7.5; p<0.05). Patients with AD dementia, MCI
and SCD were comparable in terms of sex, BMI, smoking status
and alcohol use, as well as most cardiovascular risk factors.
However, diabetes was more prevalent among patients with AD
dementia and MCI compared to SCD (p<0.05). AD dementia
and MCI patients more often had abnormal AD biomarkers than
controls, such as positive amyloid and p-tau status (p<0.001),
and MTA (p<0.01) and GCA scores ≥1 (p<0.05). Distributions of
amyloid and p-tau CSF levels are presented in Supplement 3.
Prevalence of WMH ≥2 and microbleeds tended to be higher in
patients with MCI, but this difference was not significant. The
gut microbiota composition on genus level of the three diagnosis
groups is shown in Figure 2. When comparing the 20 most
abundant genera between diagnosis groups, only two genera,
Subdoligranulum (p<0.05) and Phascolarctobacterium (p<0.05),
had different abundances between groups. There were no
differences in beta diversity (PERMANOVA p=0.223), nor in
alpha diversity, as measured with Shannon index, richness and
Faith’s phylogenetic diversity.

Associations Gut Microbiota Composition
and AD Biomarkers
The machine learning model for the prediction of amyloid status
from gut microbiota composition performed best with an AUC of
0.64±0.10 (Figure 3). This model was closely followed by the p-tau
model with an AUC of 0.63±0.09, while AUCs of the MRI visual
scores ranged between 0.50 and 0.53. Highest ranked predictors of
the amyloid (CSF) predicting model with all subjects included
[Eubacterium] ventriosum group spp., Subdoligranulum spp., and
Anaerostipes spp. In the model predicting p-tau, highest ranked
January 2022 | Volume 12 | Article 794519
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microbes included Lachnospiraceae spp., Lachnoclostridium
edouardi and Blautia faecis. These microbes are all anaerobic
bacteria from the Firmicutes phylum and Eubacterieae,
Ruminococcaceae and Lachnospiraceae families that are
known for production of SCFAs. Some ASVs, including
Subdoligranulum spp., Roseburia hominis and Butyricoccus spp.,
could be found in the top 20 predictors of both the amyloid and p-
tau model. The receiver-operating curves (ROCs) of the amyloid
andp-taumodelswith the relative importance of the highest ranked
predictors can be found in Supplement 4.

Logistic regression models showed significant associations with
amyloid status for 10 of the 20 highest rankedmicrobial predictors
from the amyloid status machine learning model (Figure 4A) in
model 1 and 2. Two ASVs,Coprococcus catus (OR 0.78 (0.63-0.97),
p<0.05; model 2) and Oscillospiraceae UCG-005 spp. (OR 0.76
(0.59-0.93), p<0.05; model 2), were only associated with amyloid
status in model 1 and 2. Eight associations remained significant in
model 3, adjusting for age, sex, BMI, diabetes, proton pump
inhibitor and statin use, and MMSE, including [Eubacterium]
ventriosum group spp. (OR 0.76 (0.62-0.91) per log2-increase in
counts, p<0.01), Lachnospiraceae spp. (OR 0.69 (0.49-0.97),
p<0.05), Marvinbryantia spp. (OR 0.72 (0.53-0.96), p<0.05),
Monoglobus spp. (OR 0.75 (0.57-0.98)), [Ruminococcus] torques
group spp. (OR 0.84 (0.71-0.99), p<0.05), Roseburia hominis (OR
0.78 (0.63-0.95), p<0.05), andChristensenellaceaeR-7 spp. (OR0.82
(0.68-0.96), p<0.05), and [Clostridium] leptum spp. (OR 1.55 (1.18-
2.12), p<0.01).

Six of the top 20 highest ranked microbial predictors from
the p-tau status model were associated with p-tau status in the
fully adjusted model 3 (Figure 4B). These included two
Frontiers in Immunology | www.frontiersin.org 5
Lachnospiraceae spp. ASVs (OR 0.49 (0.33-0.67), p<0.001, and
OR 0.72 (0.54-0.94), p<0.05), Lachnospiraceae edouardii (OR
0.62 (0.41-0.85), p<0.01) and Lachnoclostridium spp. (OR 0.72
(0.54-0.94), p<0.01), which all belong to the Lachnospiraceae
family. In addition, Roseburia hominis (OR 0.81 (0.64-0.99),
p<0.05) and Bilophila wadsworthia (OR 0.72 (0.52-0.97), p<0.05)
were lower abundant in patients with a positive p-tau status.

Associations of Top Predicting Microbes
With Other Biomarkers
We also calculated Spearman’s correlations between the 10
highest ranked microbes from the amyloid and p-tau models
(19 microbes in total, because of an overlap of one ASV) and all
AD biomarkers, including amyloid and p-tau levels (Figure 5).
Five ASVs correlated with higher amyloid levels (0.27<rs<0.22),
while one ASV, [Clostridium] leptum, correlated with lower
amyloid levels (rs 0.29, p<0.01). Four ASVs correlated with
lower p-tau levels (-0.33<rs<-0.19). Roseburia hominis and
Odoribacter splanchicus correlated with both higher amyloid
and lower p-tau levels. Lachnospiraceae NK4A136 group spp.
and Anaerostipes spp. correlated with lower GCA visual scores
on MRI. In addition, Anaerostipes spp. and Odoribacter
splanchicus correlated with higher MMSE scores, while
[Clostridium] leptum correlated with lower MMSE scores.
DISCUSSION

Our main findings are the associations between gut microbiota
composition and CSF amyloid and p-tau status. Discriminative
TABLE 1 | Patient characteristics.

N Overall AD dementia MCI SCD p

170 33 21 116
Age 170 63.1±7.8 66.0±8.0a 64.1±7.9 62.0±7.5 0.028
Female sex 170 75 (44.1) 15 (45.5) 9 (42.9) 51 (44.0) 0.981
BMI 144 25.3±4.0 25.2±3.7 24.0±3.3 25.6±4.1 0.289
Current smoking 129 12 (9.3) 0 (0.0) 2 (11.8) 10 (10.6) 0.338
Alcohol units/day 130 1.3±1.5 1.2±1.4 1.3±1.3 1.3±1.5 0.908
Hypertension 170 42 (24.7) 12 (36.4) 4 (19.0) 26 (22.4) 0.212
Diabetes 170 15 (8.8) 5 (15.2) 4 (19.0) 6 (5.2) 0.043
Hypercholesterolemia 170 29 (17.1) 5 (15.2) 5 (23.8) 19 (16.4) 0.671
Antihypertensive drugs 170 55 (32.4) 13 (39.4) 5 (23.8) 37 (31.9) 0.482
Cholesterol lowering drugs 170 48 (28.2) 11 (33.3) 6 (28.6) 31 (26.7) 0.758
Glucose lowering drugs 170 12 (7.1) 4 (12.1) 3 (14.3) 5 (4.3) 0.117
Proton pump inhibitors 170 29 (17.1) 6 (18.2) 2 (9.5) 21 (18.1) 0.618
MMSE 161 29 [26, 30] 21 [19, 24]a,b 27 [25, 29]a 29 [28, 30] <0.001
ApoE4 allele 166 74 (44.6) 24 (75.0)a 12 (57.1) 38 (33.6) <0.001
amyloid positive status 115 49 (42.6) 24 (96.0)a,b 8 (47.1) 17 (23.3) <0.001
amyloid CSF levels 115 884 [646-1100] 589 [526-663]a,b 875 [643-943]a 1034 [828-1188] <0.001
p-tau positive status 116 71 (61.2) 26 (100.0)a 14 (82.4)a 31 (42.5) <0.001
p-tau CSF levels 116 56 [45-88] 100 [80-140]a,b 78 [54-107]a 49 [34-58] <0.001
MTA≥1 137 41 (29.9) 12 (54.5)a 7 (41.2) 22 (22.4) 0.007
GCA≥1 137 49 (35.8) 11 (50.0) 10 (58.8)a 28 (28.6) 0.018
WMH≥2 137 15 (10.9) 2 (9.1) 3 (17.6) 10 (10.2) 0.633
Microbleeds present 137 24 (17.5) 4 (18.2) 6 (35.3) 14 (14.3) 0.109
January 2
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Patient characteristics are presented as mean ± SD, median [interquartile range] or n (%). Differences were tested with one-way ANOVA for continuous variables with normal distribution,
and Kruskal-Wallis test for continuous variables with non-normal distribution, or chi-square tests for categorical variables. aSignificantly different from SCD upon post-hoc testing,
bSignificantly different from MCI upon post-hoc testing. CSF, cerebrospinal fluid; MTA, medial temporal atrophy; GCA, global cortical atrophy; WMH, white matter hyperintensities.
Significant p-values (p < 0.05) are marked in bold.
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FIGURE 3 | Distribution of area under the receiver-operating curves (AUCs) resulting from 200 iterations of the machine learning classification models (XGBoost algorithm)
for each outcome. The labels indicate the mean AUC over 200 iterations. MTA, medial temporal atrophy; GCA, global cortical atrophy; WMH, white matter hyperintensities.
A B

C

FIGURE 2 | Descriptive characteristics of microbiota composition, differences between diagnosis groups. (A) Compositional plot of top 20 genera with bars
representing diagnosis groups: Alzheimer’s disease dementia (AD), mild cognitive impairment (MCI) and subjective cognitive decline (SCD). “Unknown” refers to ASVs
of which taxonomy was not known up to genus level. Genera with different abundances across groups (Kruskal-Wallis test, p <0.05) are marked in bold. (B) Principal
coordinate analysis (PCoA) plot of Bray-Curtis distances per diagnosis group with PERMANOVA test for group differences. (C) Alpha diversity (Shannon index) of gut
microbiota composition per diagnosis group.
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value of the models predicting amyloid and p-tau status from gut
microbiota composition was modest, but nonetheless we provide
evidence that several SCFA-producing microbes are altered in
patients with abnormal CSF amyloid and/or p-tau. We extend on
animal studies reporting associations between SCFAs and
amyloid pathology by showing that lower abundance SCFA-
producing microbes was associated with lower odds of amyloid
and p-tau positive status (15, 42).

Five cross-sectional studies of differences in gut microbiota
between patients with AD and controls found that several
microbes were less abundant in AD, including Faecalibacterium
prausnitzii, Eubacterium, Anaerostipes, Ruminococcus, and
Roseburia spp, while other microbes, such as Odoribacter
splanchicus, Bacteroides, Prevotella, and Alistipes spp., were more
abundant (16–20). In linewith these studies, we found thatmany of
the highest rankedpredictors for amyloid andp-tau status belonged
to the Lachnospiraceae family, including Roseburia hominis,
[Ruminococcus] torques, Lachnoclostridium, Monoglobus and
Marvinbryantia spp. In contrast to earlier findings, higher
abundance of Odoribacter splanchicus and Alistipes spp.
correlated with more normal levels of AD biomarkers (higher
amyloid and lower p-tau CSF levels) in our analyses, albeit these
associations were lost after adjustment for covariates.

Two previous studies investigated associations between AD
biomarkers and a specific subset of gut microbes (16, 21). One
cross-sectional study correlated 13 microbial genera, that were
differently abundant between AD patients and controls including
a few that are SCFA-producing, with amyloid and p-tau levels in
40 patients. Blautia and Bacteroides spp. were associated with
Frontiers in Immunology | www.frontiersin.org 7
higher levels of biomarkers indicative of AD pathology, while
SMB53 and cc115 spp. were associated with lower AD
biomarkers. Of these genera, only Blautia faecis was also
among the best predictors for p-tau status in our analyses,
although this association was not significant in the adjusted
analyses. These different findings could be explained by the older
study population or by their inclusion of very low abundance
taxa in the statistical analyses. A study that assessed differences
between amyloid positive and negative patients in six microbes
measured using qPCR found that Escherichia/Shigella spp. were
more abundant while Eubacterium rectale was less abundant in
amyloid positive patients (21). Indeed, several Eubacterium
species were among the highest ranked predictors for amyloid
status in our analyses. We did, however, not confirm the
Escherichia/Shigella association, most likely because qPCR is
more sensitive in finding changes in low abundant pathogens
than 16S rRNA gene amplicon sequencing. [Clostridium] leptum,
a microbe from the Oscillospiraceae family, was the only ASV
associated with higher odds of amyloid positive status, and also
correlated with lower continuous amyloid CSF levels. To our
knowledge, we are the first to report an association between this
microbe and AD biomarkers.

Our analyses allowed us to differentiate between predictors
for amyloid and p-tau status. Microbial predictors for amyloid
and p-tau status showed some overlap, such as Roseburia
hominis and Lachnospiraceae spp. We also found differences in
highest ranked predictors for amyloid compared to p-tau status;
microbial strains from the Eubacterium and Ruminococcus
genera were the highest ranked predictors for amyloid status,
A B

FIGURE 4 | Forest plots with results from the logistic regression models with associations between the 20 highest ranked microbial predictors from the machine
learning model, ordered by ranking, and (A) amyloid and (B) p-tau positive status. Three models are shown: 1) adjusted for age, sex and body mass index (BMI), 2)
additionally adjusted for diabetes mellitus (DM), use of proton pump inhibitors (PPI) and statins and 3) additionally adjusted for mini-mental state examination (MMSE)
score. Results are presented as odds ratios (OR) with 95% confidence intervals. Microbes with significant associations in the fully adjusted model are marked in bold.
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while several Lachnoclostridium spp. were among the highest
predictors for p-tau status.

In contrast to our findings inCSF amyloid and p-tau, we did not
find associations between microbiota composition and MRI
measures including vascular markers such as WMH and
microbleeds in our machine learning model (AUC 0.50), perhaps
due to the low prevalence of cerebrovascular damage in this young
study population. The low prevalence of cerebrovascular damage
also makes it unlikely that the observed associations with amyloid
and p-tau were mediated by vascular pathology.

There are several hypotheses regarding the mechanisms by
which gut microbiota could affect AD pathology which involve
several metabolites and toxins. Lipopolysaccharide (LPS) can be
found in the outer membrane of gram-negative bacteria and has
been shown to elicit peripheral inflammatory responses, affect
the permeability of the blood-brain barrier and induce
neuroinflammation (43, 44). In contrast, capsular polysaccharide
A (PSA) of Bacteroides fragilis species has been shown to have anti-
inflammatory effects on the peripheral immune system (45), and to
suppress central neuroinflammation by induction of T-regulatory
cells in mice (46). However, Bacteroides fragilis was not among the
highest ranked predictors for amyloid nor p-tau status in our
Frontiers in Immunology | www.frontiersin.org 8
analyses, nor were other species from the gram-negative
Bacteroides genus.

The highest ranked predictors were mostly species from the
predominantly gram-positive Firmicutes phylum known for SCFA
production. SCFAs, including acetate, propionate and butyrate, are
produced by gut bacteria in fermentation processes of otherwise
undigestible dietary fibers and have immunomodulatory potential
(10, 47). SCFAs could have indirect effects on AD pathology by
induction of peripheral inflammation or by altering the integrity of
the blood-brain barrier, as shown by a butyrate intervention study
in germ-free mice (42). Alternatively, SCFA could have direct anti-
inflammatory effects onmicroglia as was shown in an in vitro study
(48). In that regard, future studies could focus on associations
between fecal and plasma SCFA levels and inflammatory brain
markers such as glial fibrillary acidic protein (GFAP) (49).

There are several limitations of our study including the cross-
sectional design which warrants caution that observed
associations should not be interpreted as causal relationships.
Moreover, time lags between the biomarker measurements and
the fecal sampling might have confounded some associations.
Although we adjusted for relevant confounders such as age, sex,
BMI, diabetes and medication use, we cannot rule out residual
FIGURE 5 | Heatmap of correlations with highest ranked predictors. Spearman’s correlations between 10 highest ranked microbial predictors from the amyloid and
p-tau machine learning models and continuous AD biomarkers. Hierarchical clustering (Ward’s method) was used to order the microbes and draw the dendrogram
on the right. Correlations with MMSE and amyloid CSF levels are reversed for interpretability (-MMSE and -Amyloid), as lower values of these variables are indicative
for pathology, in contrast to the other biomarkers. Negative (blue) correlations in this heatmap reflect correlations with less biomarkers indicative for AD pathology.
*p < 0.05, **p < 0.01, ***p < 0.001. MMSE, mini-mental state examination; P-tau, phosphorylated tau; MTA, medial temporal atrophy; GCA, global cortical atrophy;
WMH, white matter hyperintensities.
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confounding. Dietary factors in particular have been shown to
affect microbiota composition (50). Since AD patients tend to
lose weight over the course of the disease, it has been suggested
that cognitive decline could lead to lower energy intake which
might also affect microbiota composition (51). However, we have
found previously that macronutrient intake was not different
between diagnosis groups in this cohort (52). Moreover,
associations between gut microbiota composition and AD
biomarkers remained significant when adjusting for cognitive
function (MMSE). Of note, higher abundance of SCFA-
producing microbes is indicative for, but does not necessarily
reflect higher gut or plasma SCFA levels. To assess microbial
production of SCFAs, metagenomic sequencing would be
needed, which was not within the scope of the current study.

Strengths of this study include the availability of several AD
biomarkers, including CSF and MRI data, and the inclusion of
patients in different stages of the AD disease continuum. Fecal
samples were obtained using a standardized protocol, participants
taking antibiotics were excluded, and microbiota composition was
determined with 16S gene amplicon sequencing, which is a widely
used sequencing method. Machine learning prediction models
enabled us to simultaneously include all ASVs as features in order
to find the best predicting microbes. Nested cross-validation
ensured robustness of the models and prevented overfitting.

The putative relation between gut microbiota composition and
AD pathology, may provide opportunities for future treatment.
Different treatment strategies based on modulating gut
microbiota composition have been investigated in other
diseases such as inflammatory bowel disease and diabetes
(53–55). Fecal microbiota transplantation (FMT) aims to
restore gut microbiota composition by administering
microbiota from healthy donors to diseased subjects through a
nasoduodenal tube (55). In obese subjects, FMT has been shown
to alter brain dopamine transporter binding, thus pointing
towards a gut-brain connection (56). Nonetheless, FMT is
logistically challenging and the effects of transplantation fade
over time (57, 58). Another strategy includes the use of prebiotics
(often fiber supplements) aimed to promote the growth of certain
microbes, or probiotics, supplements of beneficial strains (59). A
meta-analysis showed positive effects on cognition of
Bifidobacterium and Lactobacillus probiotics in patients with
MCI (60). However, beneficial butyrate-producing species are
often strictly anaerobic or oxygen sensitive, complicating
culturing and probiotic production (61). A third strategy is to
directly target microbial pathways such as SCFA production, by
interventions with high fiber intake or by administering SCFAs
including acetate or sodium butyrate (62, 63).

Concluding, we found associations between gut microbiota
composition and AD pathology in our memory clinic cohort.
Lower abundance of SCFA-producing microbes was associated
Frontiers in Immunology | www.frontiersin.org 9
with higher odds of AD pathology. SCFAs are known to have
peripheral immunomodulatory potential, providing a putative
target for treatment.
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