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Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific
electronic and optical properties, offering near-infrared mission and chemically active
surfaces. Increasing interest for QDs exists in developing theranostics platforms for
bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs’
biomedical applications, toxicity, and immunological effects on the respiratory system.
Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or
diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the
generation of oxidative stresses with subsequent DNA damage and decreased lung
cells viability in vitro and in vivo because of release of toxic metal ions or the features of
QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include
proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.
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INTRODUCTION

Quantum dots (QDs), one of the extensively studied nanoparticle material forms, have specific
optical, photochemical, and electronic properties. The quantum confinement effect was firstly
reported by Ekimov and Onushchenko in 1981, when they observed a size effect on the absorption
characteristics of CuCl crystals dispersed in silicate glasses (1). The application of QDs on biological
system for bioimaging started in1998 (2).

Generally, traditional organic label dyes have no ability of producing the near-infrared emission
highly desired for biological imaging because of its high tissue penetration (low light scattering and
absorption), and for this reason tunable optical QDs have gained utmost interests. Depending on
specific properties of the material, different kinds of QDs could even be excited by the very same
wavelength light, and their narrow emission stripes could be detected in parallel at individual
wavelengths, allowing the conduction of different assays simultaneously. The compositions, shell
thickness, and size of QDs determine the fluorescence bands (3). Generally QDs, like CdTeS, PbS,
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and HgTe, consist of elements such as Cd, Pb, and Hg from the
II–VI, III–IV and IV–VI groups of the periodic table.
Additionally, ternary I–III–VI elements (such as Ag, Cu, and
Se)-related QDs like Ag2S, CuInS2, and CdZnSe have been
developed (4). Besides, massive research regarding QDs has
shifted to new emerging materials. Among them silicon- and
carbon-based QDs have attracted great attention. Especially, the
carbon-based QDs, namely, carbon dots, carbon nanotube dots,
and graphene QDs have characteristics such as improved
biocompatibility, nontoxicity or low toxicity, eco-friendly,
stable and photobleaching-resistant compared to conventional
QDs (5, 6). It was reported that the distribution of carbon-based
QDs in the organ is related to its volume size: the smaller, the
harder to clear. Besides, the surface charge of QDs affects their
distribution: charged QDs are more capable of protein
adsorption, accumulating in organs like liver. On the contrary,
the neutral ones without protein adsorption are safely removed
by renal filtration (7).
BIOAPPLICATIONS OF QDS IN LUNG

Pulmonary System Related Bioimaging
Though bio-imaging with fluorescence has been employed in
cells or animal for decades, broader clinical applications are
limited for the visible light poor transmission through biological
tissues, which promoted scientists to employ the optical window
of Near Infrared (NIR) to carry out deep-tissue optical imaging
(8, 9). Many formulations of QDs for bio-imaging lung cell
signaling, tissue structures or related lung diseases in respiratory
system are currently available in the literature.

Overcoming traditional chest radiology by radiation-free,
noninvasive imaging is an important field in nanotechnology.
DNA methylation is an essential part of human epigenetic
modifications. The abnormal patterns of DNA methylation are
tightly connected with lots of cancers or genetic diseases of liver,
colon, and lung (10). Wang et al. reported that fluorescence
resonance energy transfer (FRET) based on QDs mediated by
tricyclic ligation chain reaction (LCR) were employed to image
and examine DNA methylation in H157 non-small cell lung
cancer cells, detecting DNA methylation with single 5-
methylcytosine resolution low to 1.0 aM and a 7-order
dynamic magnitude scope, which held great potential for
precisely epigenetically evaluating lung cancers (11).

As QDs could in real-time image and reflect biological
molecular activities in cells, some attempts have been taken to
study lung cellular signaling pathways. In lung vascular cell
adhesion molecule-1 (VCAM) is central to lung inflammation
because it facilitates recruiting and anchoring phagocytes to the
pulmonary endothelium, potentially aggravating endothelial
damages and eventual pulmonary dysfunction (12). NADPH
oxidase 2 (Nox2) is the major source of inflammation-associated
reactive oxygen species (ROS) production. Orndorff et al. showed
that endothelial Nox2 induced VCAM expression associated
with lung inflammation in vivo through functionalizing
fluorescent QDs with antibodies toward VCAM to detect its
Frontiers in Immunology | www.frontiersin.org 2
expression in a mouse model, demonstrates the relationship
between Nox2 and VCAM during lung inflammation (13).

Light microscopic imaging of blood vessels is a good way to
observe the hemodynamics of lungs under normal or pathologic
conditions. Saitoh et al. captured precise peripheral pulmonary
alveoli blood flow time-courses by injecting glutathione-
decorated QDs into heart right ventricles and at different time-
points performing in vivo cryotechnique (IVCT) in normal or
abnormal lung stages (acute pulmonary hypertension mouse
model) (14), thereby facilitating the investigation of mice lung
microvascular hemodynamics and the altered structures.

Several reports attempted to image lung tumor-related
markers in vitro or in vivo by employing QDs. Liu et al.
produced “Affibody” QDs (AF-QDs) to bio-image the human
epidermal growth factor receptor type 2 (HER2) in human
pulmonary tumor cells. The approach avoided complicated
chemical conjugation process and demonstrated to be a
promising way of fluorescent nanoprobes for imaging cancer
targets (15). Xue et al. employed CdTeS QDs decorated by folate–
polyethylene glycol (FA–PEG) to image the overexpressed folate
receptor (FR) in the tumors, demonstrating good biocompatibility,
excellent specificity, and sensitivity for tumors imaging. Su
et al. reported iodine doped carbon dots conjugated with
cetuximab as a dual fluorescent/CT probe for bioimaging lung
cancer cells epidermal growth factor receptor (EGFR) (16).
Additionally, QDs immunofluorescence histochemistry (QDs-
IHC) was employed to detect EGFR mutant, RRM2 and Bcl2,
and Monocarboxylate transporter 4 (MCT-4) in non-small cell
lung cancer patients (17).

Moreover, QDs also have been used to image and detect
lung-related viral infections. Using a three-dimensional single-
particle tracking technique (SPT) and through labeling avian
influenza H9N2 virus with QDs, Wang et al. found that the sialic
acid receptors were highly consistent with the number of
influenza virus in human bronchial epithelial (HBE) cells,
indicating sialic acid receptors may facilitate monitoring the
situation that avian influenza viruses infected humans beings
(18). Furthermore, by in vivo labeling H5N1 pseudotype of
avian influenza virus with QDs, Pan et al. found that QD-labeled
H5N1p showed sustained and bright fluorescent intensity in
mice pulmonary tissues, enabling them to observe respiratory
viral infection noninvasively and in real-time (19). Importantly,
Gorshkov et al. produced a probe (fluorescent QDs-conjugated
recombinant Spike receptor binding domain which could bind
to Angiotensin Converting Enzyme 2 (ACE2)) for tracking
SARS-CoV-2 virus. By employing the probe, they found the
probe immediately bound on the surface of ACE2-GFP-
transfected cells with subsequent endocytosis (20).

Drug Delivery Into Lung Tumors
QDs are desired candidates as drug nano-platforms because they
can be part of a more complex architecture or as the main carrier.
Currently, trials on the application of QDs for drug delivery in
the respiratory system mainly focused on pulmonary tumors.

5-Fluorouracil (5FU), an analogue of pyrimidine inhibiting
cell metabolism, is a widely employed chemotherapy drug in
cancer treatment. Duman et al. developed PEGylated Ag2S QDs
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which were decorated with Cetuximab and carried with 5-
fluorouracil (5FU) (an anticancer drug). PEGylated Ag2S QDs
demonstrated effectively and selectively delivering 5FU into
A549 cells with subsequently significantly increased apoptosis,
and also overcame better the cell protective effect of better 5FU-
induced autophagy (21).

The folate receptor (FR), highly overexpressing on human
pulmonary cancer cells surface, represents another potential
candidate for targeted tumor treatment. Ruzycka−Ayoush et al.
showed that Ag–In–Zn–S QDs nanocrystals which were
decorated with L−cysteine, 11−mercaptoundecanoic acid
(MUA), and lipoic acid modified with folic acid (FA) can be
employed as a good approach for engaging doxorubicin (DOX)
to FRs in A549. The QD–MUA–FA–DOX complex had a great
genotoxicity and cytotoxicity, and also inhibited the migration of
A549 significantly (22).

Cai et al. presented NH2-ZnOQDs with hyaluronic acid (HA)
decorated with the dicarboxyl-terminated PEG specifically
bound to cancer cells glycoprotein CD44. DOX were
introduced to PEG modified ZnO QDs decorated with PEG
via covalent interactions and metal–DOX complex. After uptake,
the pH-sensitive QDs dissolved and released Zn2+ ion into the
endosome and lysosome, followed by a controlled DOX releasing
and the metal–drug complex dissociating (23). Importantly, the
results showed that Zn2+ preferentially killed the tumor cells but
had little impact on the healthy control cells.

The development of efficient combination therapy has drawn
great attention in the oncotherapy field. Based on QDs
nanoparticles, Li et al. delivered small interfering RNA
(siRNA), paclitaxel, carboplatin, and doxorubicin for targeting
lung tumor. QD nanocarriers delivering Bcl-2-targeted siRNA
with other anticancer drugs not only induced greatly higher
inhibition in A549 viability than single but furthermore enabled
the real-time bioimaging of the delivery of the medicants and
release by employing the special fluorescence characteristics (24).

Chronic obstructive pulmonary disease is a nonmalignant but
intractable ill condition, manifested by airway obstruction and
the increase of sticky mucus layers. Accordingly, QDs material
with mucus-penetrating ability offered a novel approach to
therapeutically give medicants. Li et al. reported that black
phosphorus QDs (BPQDs) modified with PEG-decorated
chitosan nano-particle with amikacin, which facilitated deep
penetration of nano-vehicles into the mucus layer. The rapid
degradation of BPQDs promoted dissociation of PEGylated QDs,
accelerated release of amikacin, and eventually destroyed the
biofilms (25).

Biosensor and Diagnosis of
Lung Tumors
Based on QDs unique light properties, recently the new relevant
molecules detection and quantification strategies have arisen.
Currently, developing and exploring novel QDs diagnosis
methods in respiratory system mainly focused on lung cancers.

For EGFRs overexpressed in the lung cancer cells, Chen et al.
developed a novel DNA electrochemiluminescence (ECL) sensor
combining with CuZnInS QDs and gold-nanoparticles to detect
Frontiers in Immunology | www.frontiersin.org 3
highly sensitively EGFR gene. The range of target DNA
concentration was from 0.05 to 1 nmol/L, and the detection
limit reached low enough to 0.0043 nmol/L (26).

Silencing or decreasing tumor suppressor genes expressions
always helps the initiation and progression of cancers (27), and
DNA methylation is tightly related to the initiation of cancers.
Ma et al. utilized the QDs-based FRET nanosensor technology to
detect the tumor suppressor genes—protocadherin gamma
subfamily B, 6 (PCDHGB6), Homeobox A9 (HOXA9) and Ras
association domain family 1 isoform A (RASSF1A)-promoters
methylation in non-small-cell lung carcinoma (NSCLC) early-
stage specimens or noninvasive bronchial brushing tissues. The
method could identify pulmonary tumor tissue samples and
noninvasive bronchial brushing tissues from healthy controls
with an excellent sensitivity of 92 and 80% respectively (28).

CYFRA 21-1 (a cytokeratin 19 fragment) is part of
intermediate filament proteins stabilizing epithelial cells. Its
expression on various epithelial cells makes it a useful
biomarker in lung or other organ cancers (29). Several studies
attempted to develop QDs related methods for detecting CYFRA
21-1 for helping diagnose lung cancer. Firstly, Chen et al.
reported that a novel lateral flow test strips (QPs-LFTS) system
based on polystyrene QDs particles was generated to examine
human serum carcinoembryonic antigen (CEA) and CYFRA 21-
1 simultaneously. The limit of detection for CEA or CYFRA 21-1
was 0.35 or 0.16 ng/ml respectively, indicating the system is
highly efficient enough to be employed for the early screening
and prognosis of lung cancer patients (30). Also, Meng et al.
reported that molybdenum oxide QDs (MoOx QDs) were
generated in one-pot manner and employed as a versatile
probe in an ECL immunoassay of CYFRA21-1 as a model
analyte (31). Besides, Alarfaj reported a different way of
detecting CYFRA 21-1 that the green synthesized carbon QDs
conjugated ZnO nanocomposite using Citrus lemon pericarp
quickly determinate human serum CYFRA 21-1 antigen (32).
Additionally, Liu et al, presented a method by combining the
suspension and planar microarray formats in a single
polydimethylsiloxane layer. On the basis of the target proteins,
they formed a sandwich structure between the QD probes and
the magnetic beads by specific antigen–antibody interactions,
which could be used for simultaneous detecting pulmonary
tumor biomarkers (CEA, CYFRA21-1 and neuron-specific
enolase) with a broad linear dynamic scope and a low
detection limit (33).

Therapy Against Lung Tumors, Infection
and Pulmonary Arterial Hypertension
QDs have been shown in various applications from the treatment
of lung tumors to kill pulmonary infection-related bacteria and
also alleviate pulmonary arterial hypertension.

In this context, Sun et al. reported that CdSe/ZnS-3-
mercaptopropionic acid and CdSe/ZnS-glutathione QDs could
inhibit the expressions of P-glycoprotein gene and protein
accounting for multidrug resistance of lung cancer cells by
inducing miR-185 and miR-34b, indicating miR-185 and miR-
34b could be also interesting and potential targets for lung cancer
January 2022 | Volume 12 | Article 795232
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treatment (34). Moreover, Green Synthesis Derived CdS QDs
with Camellia sinensis leaf extracts arrested lung tumor cells
cycle and decreased cell viability (35). In addition they showed
that leaf extract-mediated CdS QDs inhibited pulmonary
infection-related gram positive Streptococcus pyogens and gram
negative Serratia marcescens in vitro (36). Besides, Zhao et al.
reported that nitrogen-doped carbon QDs (NDQDs) generated
from diethylenetriamine (DETA) and D (+)-Glucose
monohydrate had specific antibacterial activity against
Staphylococcus by inducing the rupture and integrity loss of
cytoplasmic membrane of methicillin-resistant Staphylococcus
aureus (37).

Photodynamic therapy (PDT) is a novel and innovative
method for treating tumor in which a photosensitizing agent is
administered and then exposed to visible or invisible light (38).
Hsu et al. reported that Renilla luciferase-immobilized QDs-655
was employed for bioluminescence resonance energy transfer-
mediated PDT to efficiently generate ROS, in vitro killing tumor
cells and in vivo inhibiting tumor growth (39). Additionally,
Choi et al. found CdSe/ZnS QDs irradiated by ultraviolet A/B
inhibited the viability of lung tumor cells and induced cell
apoptosis, suggesting that UV irradiation enhanced the efficacy
of QDs in photodynamic cancer therapy (40). Besides, Liu et al.
encapsulated BPQDs with exosomes (hEX) and found that
hEX@BP showed evident tumor cells inhibition in a mice
subcutaneous lung cancer model. When combined with
photothermal therapy, hEX@BP got a more evident inhibitory
effects against tumor cells (41), demonstrating great potentials
for clinical applications.

Pulmonary arterial hypertension (PAH) is known as
hypertension with high blood pressure in the lungs and
primarily affects the pulmonary vasculature (42). In this
regard, Zhu et al. reported that amorphous nano-selenium
QDs (A-SeQDs) increased cellular tetrahydrobiopterin to
protect against PAH through reuniting endothelial nitric oxide
synthase (43). Specifically, A-SeQDs not only enhanced nitric
oxide production and intracellular BH4 levels, but increased the
activity of dihydrofolate reductase in lungs, above of which
upregulated pulmonary arterial remodeling. The role of
dihydrofolate reductase in preventing PAH was verified by
gene knockout mice. In addition, clinical studies showed that
the reduced tetrahydrobiopterin and selenium in the blood of
patients with PAH confirmed the role of dihydrofolate reductase
in the protection from pulmonary arterial hypertension.
TOXICITIES OF QDS IN LUNG

The toxicity concerns regarding QDs are mostly connected with
their chemical compositions, especially heavy metal ions in the
core of QD such as Cd and Hg which might be released upon
endocytic uptake into the cytoplasm of cells (Figure 1). However
as for all nanoparticles with an extreme high surface to mass
ratio, the surface reactivity of QDs is of toxicological concerns
and accordingly often modified by surface passivation, e.g.,
via PEGylation.
Frontiers in Immunology | www.frontiersin.org 4
In Vitro Pulmonary Cytotoxicity
CdTe QDs are a kind of widely employed QDs in biomedicine,
and their safety concerns people most. Zheng et al. presented
findings about effects of CdTe QDs with different particle sizes
on normal human bronchial epithelial cells (44). Acute exposure
to CdTe QD induced dose-dependent cytotoxicity and
carcinogenicity in BEAS-2B; chronic exposure induced BEAS-
2B cell transformation including enhancing cell migration. They
further examined the cellular response at the proteome level
treated with CdTe QDs. 520Q with 520 nm emission maximum
and 580Q with 580 nm emission maximum treatment changed
cells proteome greatly in a very similar magnitude. Pre-treatment
of cells with glutathione impeded the different upregulated/
downregulated proteins and blocked cell death, indicating that
ROS mediated QDs-induced cytotoxicity (45).

Besides, Chen et al. present the cytotoxicity of InP/ZnS QDs
decorated with NH2, COOH, OH in human lung cancer cell and
alveolar type II epithelial cell (46). High doses of all three QDs
decreased the cell viability, causing intracellular ROS generation
and cell apoptosis. Additionally, COOH QDs and NH2
QDs were more toxic than OH QDs, suggesting that
surface decoration and concentration of InP/ZnS QDs
should be optimized well for therapeutic purpose or
biological imaging.

Stan et al. reported effects of Si/SiO2 QDs on human lung
fibroblasts MRC-5 cells. They found Si/SiO2 QDs increased ROS
and malondialdehyde (MDA) levels and decreased glutathione
contents, suggesting that Si/SiO2 QDs’ cytotoxicity on human
lung fibroblast was caused by disturbing cellular homeostasis
(47). Furthermore, they found Si/SiO2 QDs induced MRC-5
cellular membrane disruption, changed cell morphology as actin
filaments disrupted. Besides, matrix metalloproteinase (MMP)-1
and MMP-2 and also MMP-9 activity decreased which resulted
in an unbalanced extracellular matrix turnover, for which MMPs
might be risk factors of pulmonary fibrosis as SiO2 is a well-
known harmful silica agent closely related to silicosis (48).

Because of GQDs biocompatibility and safety, GQDs-related
nanomaterials received much more attention. Yuan et al.
explored the cytotoxicity of GQDs decorated with COOH,
NH2, and CO-N (CH3)2 in A549 cells. By employing trypan
blue and thiazoyl blue colorimetric (MTT) assays in order to
detect cell viability or flow cytometry analysis to detect cellular
apoptosis or necrosis, they found all three GQDs had excellent
biocompatibility and low cytotoxicity independent of chemical
modifications (49). However, there are also some reports about
the harmful effects of GQDs. Tian et al. explored the effects of
hydroxyl-decorated GQDs (OH-GQDs) on A549 (p53+/+) and
H1299 (p53−/−) cells. They found OH-GQDs enhanced
intracellular ROS generation, led to cell cycle arrest and cells
senescence (50). Besides, Xu et al. reported that aminated
graphene GQDs (AG-QD) accumulated in rat alveolar
macrophages nuclei, further resulting in nuclear damages and
DNA cleavage. The detailed mechanisms were that AG-QD
induced oxidative damage mediated by directly contacted via
H-bonding and p–p stacking between AG-QD and DNA and
promoted the upregulation of caspase genes (51) (Figure 1).
January 2022 | Volume 12 | Article 795232
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In Vivo Pulmonary Tissue Toxicity
There are several reports indicating QDs depositions resulting in
lung tissue damages.

Roberts et al. reported that CdSe/ZnS QDs led to lung
abnormities accompanied with increased lactate dehydrogenase,
lung injury parameters and albumin. The injury was at its
severest at days 7 and 14 after inhalation. QDs dose had a
positive correlation with the lung damage severity (52). Also
researchers started to get interested in QDs effects on lung
mechanics. Scoville et al. reported that amphiphilic
polymercoated CdSe/ZnS QDs affected lung mechanics in A/J
mice only but not C57BL/6J through using forced oscillation.
Besides, they found significant inverse relationships between
lung glutathione levels and the lung mechanics by measuring
Resistance and Tissue Damping in QD-treated mice (53). Tang
et al. reported that CdSe/ZnS QDs decorated with cationic
polydiallyldimethylammonium chloride showed acute severe
toxicity because of pulmonary embolism. All QDs caused
Frontiers in Immunology | www.frontiersin.org 5
injuries in specific tissues such as lung and liver after acute or
long-term exposure, however, the injury degree was determined
by their surface properties (54). Yang et al, found that 218 genes
were significantly differentially expressed in the lung after ZnO
QDs treatment by RNA sequencing. Related signaling and
pathways mainly included cell DNA replication, peroxisome
proliferator-activated receptor (PPAR) signaling, retinol
metabolism, p53 signaling pathway and cellular senescence (55).

The surface modification of QDs could influence in vivo
toxicity and the biological behavior. In this context, Li et al.
explored the in vivo toxicity and distributions of InP/ZnS QDs
decorated with COOH, NH2, and OH, in BALB/c mice after
being intravenously injected. They found there were no evident
histopathological abnormalities in all mice tissues after exposure
to these three QDs. However, high dose of QDs-NH2 and QDs-
COOH resulted in acute inflammation of the whole body but not
QDs-OH. In addition, high-dose QDs-COOH induced mice
death and slight liver function alternations (56). Moreover, in
FIGURE 1 | Cytotoxicity of QDs on the respiratory system. The picture illustrates that QDs entered the endo-lysosomal system and then are released into cytoplasm,
resulting in cell membrane damages, depolymerization or disruption of cytoskeleton, ROS generation, mitochondrial damages, ER stress, DNA damage, and
apoptosis. Besides, QDs-induced ROS promotes mitochondrial damages, ER stress, and apoptosis. Full lines represent the situation demonstrated and dotted lines
represent our deductions.
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BALB/c mice Lin et al. also explored acute toxicity of the above
three InP/ZnS QDs with aerosol inhalation. All QDs deposited in
the lung, but the amount of QDs-OH was the most abundant
possibly because of its largest size in aqueous solutions. Similarly,
there were no histopathological conditions in the main mice
organs. However, QDs-NH2 led to obvious hyperemia in alveoli
septum (57). Additionally, Rehberg et al. reported that amine-
modified CdSe/ZnS QDs (PEG), but not carboxyl-CdSe/ZnS
QDs (PEG), accumulated in the postcapillary venule vessel wall
and increased ischemia–reperfusion-induced leukocyte
transmigration in postischemic heart and skeletal muscle (58).
Therefore, the surface chemistry of QDs should be given
adequate attention to for their biomedical applications.
IMMUNOLOGICAL EFFECTS OF QDs

QDs immunological effects have been studied at the cellular level,
organs and the whole body as well in mice. After exposure, QDs
are recognized and “swallowed” by lung tissue cells such as
epithelial cells and immune cells. Generally, QDs would pose
damages to them and induce inflammatory responses, which
would recruit innate leukocyte cells (e.g., macrophages and
neutrophils) and also adaptive immune T cells.

Several literatures showed the potential of QDs to modulate
lung epithelial cells, fibroblast cells or alveolar macrophages
inflammatory response, like the activation of proinflammatory
signaling or the promotion of cytokines release in vitro. For
example, Stan et al. reported that Si/SiO2 QDs enhanced the
production of nitric oxide, interleukin-6 (IL-6) and IL-8
expressions in human fibroblast MRC-5 cells (47). Besides, in
cellular levels Lee et al. showed TOPO-PMAT CdSe/ZnS QDs
induced expressions of neutrophil chemokines Chemokine (C-
X-C motif) ligand (CXCL) -1, CXCL-2, IL-6, IL-12, and other
proinflammatory factors in mice tracheal epithelial cells, alveolar
macrophages, and bone marrow-derived macrophages (59).

In vivo, Ho et al. discovered intratracheal instillation of
QD705-COOH induced acute neutrophils infiltration,
interstitial lymphocytes infiltration, and a granulomatous
reaction with cytokines, chemokines, and metalloproteinase 12
expressions (60). Furthermore, they found QD705-COOH-
induced IFN-b expression might be dependent on Toll-like
receptor pathways which was dependent on Toll/interleukin-1
receptor domain-containing adapter protein (61).

Besides, Roberts et al. showed that the treatment of CdSe/ZnS
induced rat pulmonary inflammatory chemokines, increased
innate immune cells (polymorphonuclear cells and alveolar
macrophages) and also adaptive immune lymphocytes,
indicating the leading to strong immune responses of CdSe/
ZnS QDs (52). McConnachie et al. also showed that TOPO-
PMAT CdSe/ZnS QDs induced the releasing of CXCL-1, GM-
CSF, MIP-1a, and MIP-1g, and in mouse bronchoalveolar lavage
fluid (BALF), and also increased neutrophils infiltration but not
alveolar macrophages. They found significantly inverse
association between lung tissue cytokines levels, glutathione
and BALF neutrophils and deposited pulmonary Cd QDs,
Frontiers in Immunology | www.frontiersin.org 6
indicating decreased glutathione might be the reason of QDs-
induced lung inflammation (62). Also, Scoville et al. reported
similar findings in NOD/ShiLtJ or NZO/HlLtJ mice (63).

Except for research about QDs direct treatment on lung,
Scoville et al. explored the combined effects of house dust mite
(HDM) and TOPO-PMAT CdSe/ZnS QDs on allergic airway
disease (AAD) of C57BL/6J and A/J mice. Compared with
C57BL/6J, they found that HDM plus QD group of A/J mice
had more significantly enhanced levels of BALF IL-33 than
that in HDM and saline controls. Moreover, A/J mice had
greatly more innate lymphoid 2 cells (ILC2s) cells than C57BL/
6J mice. ILC2s in A/J mice lung were negatively related to lung
glutathione and resident macrophages with high MHC-II, and
positively related to resident macrophages with low MHC-II,
suggest ing QDs could aggravate HDM-induced the
development of AAD by recruiting ILC2s and increasing
selected cytokines production (64).

In the above literatures, QDs’ proinflammatory and immune
responses activation roles have been reported. However, there
are also reports that QDs negatively regulate inflammation or
immunological responses. Firstly, Volarevic et al. showed that
GQDs significantly inhibited concanavalin A-induced mouse
hepatitis. Specifically, GQDs decreased both apoptosis and
autophagy in liver tissue which were associated with the
reduced liver T cells producing IFN-g and a serum IFN-g
decrease (65). Also, recently, Lee et al. reported that GQDs
effectively alleviated dextran sulfate sodium-mediated acute and
chronic colitis model by inhibiting TH1/TH17 polarization,
switching macrophage M1 polarization to M2, and enhancing
intestinal regulatory T cell infiltration (66). However, whether
GQDs also show anti-inflammatory effects on lung inflammatory
diseases like AAD or bacterial or virus infection-induced
inflammation and cytokine storm is still unknown and needs to
be investigated in the future.

Based on the above, different kinds of QDs would induce
respiratory inflammatory response, but the related further details
or the underlying mechanisms need to be examined carefully.
For example, QDs caused DNA damages in A549 and Beas-2B
cell lines (67, 68), and DNA damages reagents-induced cells
inflammation are dependent on Toll-like receptors 9 (TLR9)
receptor or Cyclic GMP-AMP synthase (cGAS)-Stimulator of
Interferon Genes (STING) pathway (69). Therefore it might be
possible that QDs-induced cell damage also activates nucleic acid
receptor TLR9 or cGAS-STING to mediate inflammatory
responses. Alveolar macrophages include proinflammatory M1
type and anti-inflammatory M2 type (Figure 2). Whether QDs-
induced lung inflammation could be attributed to excessive M1
macrophages activation and damaged M2 macrophages
functions also needs to be explored in the future.

Collectively, employing QDs would perturb normal cell
signals and cytoskeleton homeostasis, damage essential
organelles, e.g., mitochondria and endoplasmic reticulum, and
even activate related programmed cell death, which were mainly
attributed to QDs’ heavy metal cores. Since pulmonary delivered
particles are cleared from the lungs only very slowly and thus
persist over a long period of time (70), the use of biopersistent
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materials such as QDs for diagnosis or therapy has to be balanced
for its pros and cons.
CONCLUSION

QDs have high potentials for biomedical applications in areas like
bio-imaging, drug delivery, and diagnosis in the pulmonary
system. For QDs to be realistically translated into clinical
applications, issues such as pulmonary toxicity and
immunological responses triggered by QDs should be addressed.
Decreasing the toxicity of QDs for example by surface coating
with more safe and biocompatible materials or replacing the heavy
metal core, or the usage of low toxicity chemical cores such as Zn
and graphene still should to be taken into account. In this mini
review, we summarized the newest progress in the literature about
the employment and the shortcomings of QDs for bioapplications
to the respiratory system.
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FIGURE 2 | Immune modulatory effects of QDs on the respiratory system. The picture shows that after being exposed to QDs, resident pulmonary macrophages,
lung epithelial cells, and fibroblast swallowed QDs, and then QDs would activate inflammatory-related pathway like TLR signaling, which promoted cells to release
proinflammatory cytokines (TNF-a, IL-1b, and IL-6) and chemokines (CXCL-1/2/5/MIP-1a,g/CCL-2). Sequentially neutrophils would be recruited firstly, and then
monocyte and adaptive immune T cells would follow. Besides, QDs activated AT II cells and released IL-33 which activated ILC2 cells.
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