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Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an
alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of
which the therapeutic effect is not yet conclusively proven, only symptomatic medication
that is effective for some AD patients is available. In order to be able to design more rational
and effective treatments, our understanding of the mechanisms behind the pathogenesis
and progression of AD urgently needs to be improved. Over the last years, it became
increasingly clear that peripheral inflammation is one of the detrimental factors that can
contribute to the disease. Here, we discuss the current understanding of how systemic
and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain
pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of
the different preclinical as well as clinical studies that link peripheral Inflammation to AD
initiation and progression. Altogether, this review broadens our understanding of the
mechanisms behind AD pathology and may help in the rational design of further research
aiming to identify novel therapeutic targets.
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INTRODUCTION

Dementia is a devastating age-related neurodegenerative disorder that affects over 40 million people
worldwide. The speed of disease progression is subjective to individual variability but patients are
estimated to live from a few up to 20 years after their diagnosis. Dementia is a very burdensome
disorder for patients, their family, caretakers and the health care system as a whole (1). The most
prevalent cause of dementia is Alzheimer disease (AD), which is a fatal neurodegenerative disorder
that is characterized by progressive cognitive and functional impairment and memory loss. Most
AD patients are late-onset and sporadic cases with no proven Mendelian pattern of inheritance. The
prevalence of the disease increases with life expectancy and affects 10-30% of people aged over 65
years (2). Recently, the FDA approved Aducanumab which is the first medication that aims at
treating AD via targeting (one of) the cause(s) of the disease, namely amyloid b (Ab). However, its
therapeutic effect is not yet conclusively proven (3) and next to that only symptomatic medication
that is effective for some AD patients is available. Therefore, there is still an urgent need to develop
new effective therapies that slow or prevent the progression of AD.

During the past years, the Ab cascade hypothesis has been the most influential model explaining
the pathogenesis of AD. This hypothesis proposes that the extracellular deposition of Ab in the form
org January 2022 | Volume 12 | Article 7968671
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of neuritic plaques is the initial pathological event in AD that also
leads to the intracellular accumulation of abnormal tau proteins
in neurofibrillary tangles (NFTs). These pathological changes,
directly or indirectly, induce synaptic and neuronal dysfunction,
and ultimately, clinical dementia (4). The steady progress in the
understanding of the etiopathogenesis of AD has led to the
evaluation of therapies aiming to reduce pathological aggregates
of either Ab or phosphorylated tau (pTau). Unfortunately, none
of these strategies has led to clinical success (5–10). As the
number of people affected with AD is rising every year, we
urgently need to improve our understanding of non-amyloid
components and their role in AD pathogenesis. Such new insight
may help to identify novel pathways that can be targeted in novel
AD therapies.

Over the last years, it became increasingly clear that innate
immune activation plays a crucial role in the pathogenesis and
progression of AD (11–13). For example, genome-wide
association studies (GWASs) show that genes encoding
immune receptors such as CR1, CLU, CD33, and TREM2 are
linked with AD development (14). Moreover, a new study also
identified SYK, GRN, SLC2A5, PYDC1, HEXB, and BLNK (15),
genes involved in the regulation of the immune function within
and outside the central nervous system (CNS), as risk genes.
Taken together, these studies suggest the role of both the central
as well as the peripheral immune system in the development and/
or progression of AD.

In this review, we provide a short summary of the different
pathways by which the periphery communicates with the brain.
Next, we give a comprehensive overview of the different
preclinical as well as clinical studies that link peripheral
inflammation to initiation and progression of AD. This is
followed by an in-depth analysis of the mechanisms of AD
pathology that are affected by peripheral inflammation. Lastly,
we elaborate on the growing body of evidence indicating that AD
may have an underlying intestinal inflammatory process, to
which alterations in gut microbiota plays an important role.
These insights are essential to broaden our understanding of the
mechanisms behind AD pathology and to rationally design new
strategies to treat or even prevent the disease.
HOW CAN THE PERIPHERY
COMMUNICATE WITH THE BRAIN?

The brain is protected from invading substances by tight barriers,
including the blood-brain barrier (BBB), the blood-
cerebrospinal fluid (CSF) barriers and the arachnoid barrier.
These barriers assure a balanced and well-controlled micro-
environment in the CNS and they provide protection against
external insults such as toxins, infectious agents and peripheral
pro-inflammatory cytokines. For this reason, the CNS has long
been considered as an ‘immune privileged’ site. However, over
the years this idea is been challenged as it is now clear that acute
systemic bacterial or viral infections do affect brain functioning
(16). Preclinical as well as clinical studies provide evidence that
systemic generated inflammatory mediators signal to the brain
Frontiers in Immunology | www.frontiersin.org 2
via alternative pathways, namely via neural and humoral
pathways (Figure 1) (17).

Neural Pathways
Peripheral signals such as cytokines or prostaglandins from the
thoracic-abdominal cavity (e.g. Kupffer cells in the liver) directly
activate the afferent vagal nerve by binding with the
corresponding receptors located at the vagus nerve fiber
terminals (16, 18). Subsequently, the vagal nerve signals to the
medulla oblongata that on its turn signals to the hypothalamus.
This cascade of signaling ultimately leads to changes in neural
activity inducing physiological and behavioral responses such as
fever and somnolence (16, 18). Important to note is that the
efferent vagal nerves can also secrete acetylcholine which on its
turn acts on a7 nicotinic receptors expressed on macrophages
leading to a downregulation of inflammatory cytokines such as
TNF (19). Preclinical evidence shows that vagotomy attenuates
the expression of pro-inflammatory cytokines in the brain
induced by peripherally administered of LPS or TNF (20).
Taken together, these findings underlie the importance of vagal
afferents and efferents in the communication between the
periphery and the brain.

Humoral Pathways
Humoral signals, including microbial metabolites, cytokines and
immune cells, circulate in the blood and signal to the CNS
mainly through the circumventricular organs (CVOs), across the
brain barriers or via activating vascular cells at the brain barriers
(21). Via these (in)direct pathways, humoral signals can
potentially influence the inflammatory reactions within the
brain by modulating the microglial activation, affecting
myelination and neurogenesis (22).

CVOs are specialized CNS regions that lack a typical barrier
structure as no tight junctions (TJs) between the capillary
endothelial cells are present. Consequently, circulating
substances from the blood can enter the brain via these
CVOs (23).

Next to the CVOs, inflammatory molecules and immune cells
can also enter the CNS by crossing one of the brain barriers via an
active transport system (24) or via a disrupt barrier (25). Under
physiological conditions, only soluble lipid molecules with a low
molecular weight (under 0.4-0.6 kDa) and with a positive charge
can cross (26). However, during systemic inflammation brain
barrier dysfunction may occur and may allow the infiltration of
peripheral molecules and immune cells into the CNS. This can
then ultimately lead to neuroinflammation (27). Next to the well-
known BBB, also the blood-CSF barrier forms an important brain
barrier in health and disease. This latter barrier is formed by TJs
located between the apical parts of the choroid plexus epithelium
(CPE) cells and prevents the accumulation of noxious compounds
into the CSF and the brain (28). Recently, it is shown that CPE
cells play an important role in the transmission of peripheral
signals to the brain (29). In accordance with the BBB, systemic
inflammation can disrupt the blood-CSF barrier integrity (29) and
leads to the invasion of peripheral immune cells (30). In this
regard, Marques et al. showed that the choroid plexus displays an
altered expression of genes related to cell entry pathways and
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innate immune responses upon repeated inflammatory stimuli
(31). Interestingly, systemic inflammation also induces the release
of pro-inflammatory miRNA-containing extracellular vesicles
(EVs) into the CSF. Upon entry into the brain parenchyma,
those EVs can be engulfed by e.g. microglia and astrocytes and
subsequently regulate gene expression thereby transmitting signals
from the periphery to the brain (32).

In a third possible humoral route, systemic perivascular
macrophages (PVMs) or inflammatory mediators directly
activate signaling pathways in vascular cells. This e.g. leads to
the release of prostaglandins that are implicated in the
development of sickness symptoms such as fever (33).

Of course, the above described pathways are not mutually
exclusive, so the net effect of systemic inflammation on the brain
can be the result of a combination of the different routes.
Frontiers in Immunology | www.frontiersin.org 3
AN INCREASING BODY OF EVIDENCE
LINKS SYSTEMIC INFLAMMATION TO
AD DEVELOPMENT

Over the last years, it became increasingly clear that systemic
inflammation affects the brain in multiple ways and that it is key
in the development of neurodegenerative diseases. Below, we
look into preclinical and clinical studies that hint to this
latter association.

Evidence From Preclinical Studies
To be able to investigate the effect of systemic inflammatory
processes on AD pathology, different mouse models using
different insults have been designed. Below we look deeper into
these different models and their effect on AD pathogenesis.
FIGURE 1 | Periphery-to-brain communication pathways. The periphery can communicate to the brain via neural and humoral routes. Peripheral organs project
signals to varied cerebral regions via the vagus nerve (the neural route). Additionally, different humoral routes are used by the periphery to communicate to the brain:
(1) Circulating immune mediators access the brain via the circumventricular organs (CVOs); (2) Peripheral immune cells cytokines and metabolites interact with their
transporters on cerebral endothelial cells and choroid plexus epithelium (CPE) cells and subsequently enter to the brain; (3) Periphery-to-brain communication can
occur via cell-mediated interactions between peripheral signals and brain cells which in turn lead to microglial activation and neuroinflammation. (4) Peripheral
immune mediators activate choroid plexus epithelial cells and induces the release of extracellular vesicles (EVs). EVs enter the brain and can be engulfed by microglia
to induce pro-inflammatory response. BBB, blood-brain barrier; CPE, choroid plexus epithelium; CVOs, circumventricular organs; CSF, cerebrospinal fluid; EVs,
extracellular vesicles.
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The majority of animal models use peripheral injection of
immune-stimulating molecules such as lipopolysaccharide
(LPS), polyinosinic-polycytidylic acid (poly I:C) or pro-
inflammatory cytokines to evoke systemic inflammation. For
example, systemic LPS challenge induces a number of sickness
symptoms in rodents including fever, loss of appetite and
decreased activity (16). Remarkable is that peripheral systemic
LPS or increased levels of peripheral pro-inflammatory cytokines
do not lead to a prolonged induction of neuronal death (34, 35).
It however does lead to temporal induction of neuronal death.
This temporary effect can be explained by a whole repertoire of
regulatory mechanisms that limit the effects of pro-inflammatory
responses in the brain. E.g. increased production of a large
variety of proteins from microglial cells including antimicrobial
peptides, anti-inflammatory cytokines (IL-10), transforming
growth factor (TGF)-b, prostaglandin E2 (PGE2), anti-nuclear
factor-kappa B (NF-kB) proteins, mitogen-activated protein and
suppressor of cytokine signaling proteins (36). Next to this, the
CNS regulates the peripheral inflammatory response through
feedback loops in hypothalamic-pituitary-adrenal (HPA) axis
and vagal reflex, and neurochemical changes (16). Despite the
limited and temporal induction of neuronal damage, a single
systemic LPS challenge does lead to increased deposition of Ab1-
42 and phospho-tau (p-tau) levels in the brain of wild type
rodents (37). Moreover, repeated systemic LPS injections even
lead to a prolonged elevation of Ab levels and cognitive deficits
(38–40). Strikingly, pregnant mice exposed to repeated systemic
LPS causes AD‐related features including behavioral and
neuropathological changes in their offspring (41).

To better understand the impact of systemic inflammation on
AD pathology, researcher looked into the effect of systemic
inflammation on the removal or the deposition of Ab plaques in
the brain (42). Studies in Tg2576 (43), PDAPP (44), APPSwe (45),
APP/PS1 (40, 46) and AppNL-G-F (47) mice show an increase in Ab
deposition upon LPS-induced systemic inflammation. Similarly,
poly I:C induced systemic inflammation in 4 months old 3xTg-
AD mice increases Ab deposition in the brain (48). Also, TNF-
induced systemic inflammation in 15 months old APP/PS1 mice
increases Ab plaques formation (49). Unfortunately, there are
several contradictory results regarding the impact of systemic
inflammation on Ab burden in the mouse brain (Table 1). For
example, experiments similar to those mentioned above in 3xTg-
AD and 5XFAD mice show elevated C-terminal APP fragments
(b-CTF) and tau hyperphosphorylation while Ab deposition is
unchanged (59, 60). Even studies in Tg2576 (64, 65, 74), APP/PS1
(50–53) and tgSwe (66) mice show reduced Ab burden upon
systemic LPS challenge. Important to keep in mind is that none of
these latter studies analyzed the impact on cognitive impairment.
This is important as LPS-induced systemic inflammation affects
more than only the Ab pathology. For example, a study in 3xTg-
AD mice demonstrates that LPS challenge affects key
neuropathological features of the AD-like phenotype including
behavior, microgliosis and astrocytosis (62). In addition, we
recently found that low-grade systemic inflammation induced
by LPS also causes the microgliosis and neuronal dysfunction in
a second-generation mouse model (AppNL-G-F) of AD (47).
Frontiers in Immunology | www.frontiersin.org 4
The contradictory results in literature regarding the effect of
systemic inflammation on Ab pathology can be due to the
experimental setup, such as the genetic background of the used
mouse model, age, LPS injection procedure such as number of
injections, LPS dosage, source and route of administration, and
the time between injection and sacrification. Table 1 gives an
overview of preclinical mouse studies in which the effect of
systemic inflammation on AD was studied.

Next to the above described genetic mouse models for AD,
also ME7 prion mice are used as a model for AD. These mice are
characterized by synaptic loss, microglial and astrocyte
activation, neuronal death and an age-independent induction
of AD pathology (75). A systemic LPS challenge of these ME7
prion mice evokes exaggerated AD related sickness (70).
Moreover, a single systemic LPS challenge is enough to cause
abnormal CNS functioning including increased pro-
inflammatory responses, neuronal apoptosis, cognitive decline,
motor symptoms and an earlier onset of AD in the ME7
compared to control mice (35, 71).

Increasing evidence supports the association of systemic
inflammation induced by bacterial infections and AD
progression in humans. For example, Helicobacter pylori (H.
pylori) and periodontal bacteria like Porphyromonas gingivalis
(P. gingivalis) are potential risk factors for the development of AD
(16). As the above described immune-stimulating molecules are
only mimicking parts of a ‘real’ infection, several studies also use
peripheral bacterial infections to induce systemic inflammation.

An experimental study demonstrates that P. gingivalis infected
mice evoke increased expression of IL-1b, AbPP770, cathepsin B
(CatB) and Ab in the liver (76). Additionally, P. gingivalis infected-
hAPP-J20 AD mice, show exacerbated cognitive impairment with
increased Ab deposits and neuroinflammation (73). A variety of
in vivo studies show that also H. pylori infection plays a role in AD
development. For example, the intraperitoneal injection of H. pylori
TN2GF4 leads to elevated Ab levels and induces spatial learning and
memory impairment in wild type rats (77). The same research
group showed that H. pylori TN2GF4 infection induces significant
tau hyperphosphorylation with activation of glycogen synthase
kinase-3b (GSK-3b) and that treatment with GSK-3 inhibitors
significantly attenuated H. pylori-induced AD pathology (78).
Important to underscore is that these results are obtained upon
intraperitoneal injection ofH. pyloriwhile normally these germs live
in the digestive tract. To explore the long-term effect of H. pylori
infection on brain function, H. pylori TN2GF4 was given this time
by oral gavage to rats once a week during a period of four weeks.
Despite the reported short-term effects upon intraperitoneal
injection, 4 weeks H. pylori TN2GF4-infected rats via oral gavage
showed no tauopathy or cognitive impairment. Compared to other
H. pylori strains such as B47 and SS1, the colonization capacity of
TN2GF4 is significant lower (79). Consequently, TN2GF4 may not
be able to induce a strong inflammatory response resulting in the
recovery of the observed short-term pathology (40). However, the
route of infection may also play a crucial role on the outcome of
the experiments.

Additionally, also the used strain has an impact on the outcome
of the infection. For example, infection withH. pylori B47 orH. felis
January 2022 | Volume 12 | Article 796867
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TABLE 1 | Preclinical studies on the effect of systemic inflammation in mouse models for AD.

Mouse
model

Age at first insult Insult Stimulus source Sacrification
time after last

insult

Effect Reference

APP/
PS1

2 and 12 months 2 µg LPS i.h. S. abortus equi,
Sigma

7 days Decreased Ab deposits;
Increased microglial
immunoreactivity;
Decreased CD45
immunoreactivity.

(50)

9 months 0.5 mg/kg LPS i.p.
once a week for 13
weeks

E. coli 0111:B4,
Sigma

4 hours Decreased Ab deposits;
Increased neuroinflammatory
reaction;
Elevated lysosomal protease
cathepsin Z, APP, APOE, CLU.

(51)

3 months 3 µg i.p. LPS once per week for 12 weeks E. coli 055:B5, Sigma Directly after last
injection

Increased Ab deposits. (46)

25 months 4 µg LPS i.h. S. typhimurium,
Sigma

7 days Decreased Ab deposits;
Infiltration of BM-derived
monocytic cells.

(52)

11 or 16 months 4 µg LPS i.h. S. abortus equi,
Sigma

7 days Decreased Ab deposits;
Microglial activation.

(53)

11 ± 4 months 1.5 µg LPS i.p. once per week for 12
weeks

E. coli 055:B5, Sigma Directly after last
injection

Increased Ab deposits;
Microglial activation.

(45)

5 and 15 months 1 mg/kg LPS i.p. Ultrapure LPS, S.
typhimurium,
#L6143, Sigma.

2 and 10 days Increased Ab deposits and
impairing microglial Ab clearance;
NLRP3 inflammasome activation.

(40)

4 and 13–16 months 0.2 mg/kg LPS i.p.
once a day for 2 days

E. coli O127:B8, #L
3129, Sigma;
S. typhimurium, #L
6511, Sigma

24 hours and 3
months

Decreased neuronal complexity;
Impaired long-term potentiation
and spatial learning;
NLRP3 inflammasome activation.

(54)

7 months 5 mg/kg LPS i.p. E. coli 055:B5,
#L2880, Sigma

24 hours Neuronal Apoptosis;
Microglial activation;
Aggravated cognitive impairment.

(55)

4.5 months 0.1 mg/kg LPS i.v. E. coli 0111:B4,
Sigma

4 hours Inflammatory reactions;
Sex-specific hippocampal
metabolic signatures;
Sickness behaviors.

(56)

APP23 3 months 10 mg/kg LPS i.p. E. coli 0111:B4,
Sigma

0, 1, 3, and 12
hours

Increased neuroinflammatory
reaction;
Increased vulnerability of the
BBB;
Severe sickness behaviors.

(57)

3 months 0.5 mg/kg LPS i.p. once or once a day for
4 days

S. typhimurium,
Sigma

5 days, 3, 6,
and 9 months

Modified pathological features. (58)

3xtg-
AD

3 and 4.5 months 0.25 mg/kg LPS i.p. twice a week for 4
weeks

E. coli 0111:B4,
Sigma.

Directly after last
injection

AbPP b-CTP was increased
intraneuronal, but Ab was
unchanged.

(59)

4 months 0.5 mg/kg LPS i.p. twice per week for 6
weeks

E. coli 055:B5, Sigma 24 hours No effect on Ab deposits;
Inducing tau
hyperphosphorylation.

(60)

4 months 1 mg/kg LPS i.p. E. coli
055:B5, Sigma

6 weeks long-term impairment on
hippocampal neurogenesis and
memory.

(61)

6 months 0.5mg/kg i.p. twice a week for 6 weeks E. coli 055:B5, Sigma 6 weeks Increased neuroinflammatory
reaction;
up-regulated g-secretase;
Worsening of behavior;
5-Lipoxygenase pathway affects
key neuropathological features.

(62)

4 months 5 mg/kg Poly I:C i.v. #P9582, Sigma 11 months Increased Ab deposits. (48)
5-6 and 11-12
months

Inoculation with 104 tachyzoites of T.
gondii or 40 viable eggs of T. muris by
o.g. or i.p. once

5, 7, 9, 35 days Increased pro-inflammatory
response;
Increased in immune cell
infiltration;
Microglial activation.

(63)

(Continued)
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CS1 increases neuroinflammation but has no effect on brain Ab
deposition (80) while infection with H. pylori SS1 or H. felis has no
effect on neuroinflammation nor on Ab deposition (81). This
contradiction can be explained by the fact that different H. pylori
strains and H. pylori SS1 lacks some important virulence factors
such as functional cag pathogenicity island (cagPAI) and
vacuolating cytotoxin A (VacA) (82).

Next to bacterial infections, also viruses and parasites are known
to induce systemic inflammation in human and several of them
such as herpes viruses and Toxoplasma have been proposed as
triggers of AD (83, 84). Similarly, also a few mouse studies using
viruses or parasites to induce systemic inflammation have been
reported in the context of AD. For example, local gut inflammation
induced by infection with the parasites Toxoplasma gondii and
Trichuris muris significantly enhances neuroinflammation in 3xTg-
AD mice. Unfortunately, no cognitive tests were performed in this
study (63). Also Chlamydophila pneumonia (C. pneumoniae) (85),
Frontiers in Immunology | www.frontiersin.org 6
fungi (86), herpes simplex viruses (HSV) (87) and cytomegalovirus
(CMV) (88) are reported to promote the development of AD. Most
recently, coronavirus disease 2019 (COVID-19) has been reported
to cause various neurologic symptoms including cognitive
impairment that may ultimately result in AD, either directly
through the invasion of the coronavirus into the CNS or
indirectly via virus-induced inflammation (89). In rhesus monkey,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
was shown to invade primarily via the olfactory bulb followed by
spreading into CNS thereby inducing neuroinflammation possibly
by targeting neurons, microglia, and astrocytes (90).

Surgical interventions are sometimes necessary in human
patients for a variety of reasons. In some cases, the immune
system may not effectively distinguish between stimuli elicited by
surgery and those elicited by trauma or pathogenic infection (91).
Surgical procedures thus represent a potential trigger for systemic
inflammation and are consequently also used in animal research.
TABLE 1 | Continued

Mouse
model

Age at first insult Insult Stimulus source Sacrification
time after last

insult

Effect Reference

Tg2576 17 months 10 µg i.h. LPS S. abortus equi,
Sigma

7 days Decreased Ab deposits;
Microglial activation.

(64)

16-17 months 4 or 10 µg LPS i.h. S. abortus equi,
Sigma

1, 3, 7, 14, 28
days

Decreased Ab deposits;
Microglial and astrocyte
activation.

(65)

6 and 16 months 25 µg LPS i.v. E. coli 0111:B4,
Sigma

1, 2, 4, 6, 18
hours

Increased Ab deposits transiently;
Inflammatory responses.

(43)

PDAPP 2 months 10 µg LPS i.c.v. daily for two weeks E. coli 0111:B4,
Sigma

Directly after last
injection

Increased Ab deposits;
Microglial and astrocyte
activation.

(44)

tgSwe 13 months 50 mg LPS i.p. E. coli 055:B5,
#L2880, Sigma

1.5 months Decreased Ab deposits;
Reduced CD45-immunoreactivity.

(66)

5xFAD 3-5 and 13-15
months

0.01, 0.1, 1, 3 mg/kg LPS i.v. once E. coli 0111:B4,
Sigma

8 hours Increased BBB permeability. (67)

6 and 13 months 2 µg LPS i.c.v. once or daily Ultrapure LPS, P.
gingivalis, In vivoGen

7, 14, 28 days Increased Iba-1 and CD3 positive
cells in periventricular area;
No effect on Ab and cognitive
impairment.

(68)

8 months Ligature-induced periodontal disease / 4 weeks Decreased plaque-associated
microglia;
Increased insoluble Ab42 level.

(69)

ME7 8 and 19 weeks
post-inoculation with
ME7

10 mg LPS i.p. S. abortus equi,
Sigma

1.5, 3, 6 and 24
hours

Increased levels of IL-1b;
Exaggerated sickness behaviors.

(70)

12, 14 and 15 weeks
post-inoculation with
ME7

0.1 or 0.5 mg/kg of LPS S. abortus equi,
#L5886, Sigma.

2 hours Exacerbated neuronal death and
sickness behavior.

(71)

18 weeks post-
inoculation with ME7

12 mg/kg poly I:C i.p. Amersham
Biosciences

3, 15 hours Activated interferon-dependent
pro-apoptotic pathways;
Heightened acute sickness
behaviour and acute neurological
impairments.

(72)

hAPP-
J20

62 weeks Inoculation with 109 CFU of live P.
gingivalis

/ 5 weeks Increased Ab deposits;
Trigger neuroinflammation;
Enhanced cognitive impairments.

(73)

AppNL-
G-F

20-23 weeks 1 mg/kg LPS i.p. once a week for 2
weeks

S. abortus equi, #L-
5886, Sigma

2 weeks Increased Ab deposits;
Increased microgliosis;
Reduced clearance of Ab across
blood-CSF barrier;
Trigger neuronal dysfunction.

(47)
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A study that uses cecal ligation and puncture (CLP) to induce
polymicrobial sepsis in rats shows escalated levels of Ab, p-tau
protein and receptor for advanced glycation end products (RAGE)
markers with simultaneous cognitive impairment (92). Similarly,
laparotomy-induced systemic inflammation in wild-type mice
induced abnormal tau phosphorylation and memory impairment
(93). Furthermore, orthopedic surgery causes hippocampal-
dependent memory impairment, which is associated with
increased levels of IL-1b both in plasma and hippocampus (94).

Also for several non-infectious diseases such as
atherosclerosis, obesity, diabetes and depressive illness, there is
clear evidence for being risk factors in the development of AD
and all these diseases are associated with a chronic pro-
inflammatory phenotype (16). For example, in B6Tg2576 mice,
a transgenic mouse model of AD was produced by back-crossing
Tg2576 mice, early atherosclerosis lesions were detected and
were positively correlated with brain Ab accumulation when
mice were fed a normal diet or atherogenic diets (95, 96).
Diabetic mouse models include streptozotocin-induced Type 1
diabetes and high-fat and/or sugar diet-induced Type 2 diabetes
have been showed to aggravate Ab pathology in APP transgenic
mice and even in non-transgenic rodents (97). Similarly, high fat
diet-induced obesity in mice promotes systemic inflammation
and impairs cognitive functioning through increased Ab
accumulation and BBB disruption (98, 99). For the studies on
depression in mouse models of AD, anti-depressive treatment
can decrease Ab burden and cognitive impairment (100).

Altogether, the above described preclinical studies form a large
body of evidence showing an association between peripheral
inflammation and AD pathology. Rodent studies suggest that Ab
and neuroinflammation are the result of a direct response to
systemic infections and are part of the brains innate immune
response to inflammatory insults. Of note, every mouse model
has limitations in replicating the full AD pathology, and further
side-by-side comparisons between different mouse models and
observations from human AD patients are required to move
towards the development of effective treatments.

Evidence From Clinical Studies
Next to the preclinical studies, there are also a large number of
clinical studies reporting that systemic inflammation is
associated with the increase in cognitive decline in AD (101–
103). This systemic inflammation can be caused by specific
environmental factors, bacterial and viral infections and the
presence of a chronic disease, such as diabetes.

Environmental Risk Factors
It is well known that several of the environmental risk factors for
the development of AD have systemic pro-inflammation as a
common characteristic. For example, ageing is a major risk factor
and is accompanied by a low-grade systemic inflammation and a
relative decline in adaptive immunity and T helper 2 (Th2) cell
response. This concept is better known as inflammaging (16) and
is caused by an imbalance between pro- and anti-inflammatory
mediators. An example of inflammaging is the age-related
endocrine dyscrasia with loss of sex steroids and elevation of
gonadotrophins that is associated with an increased pro-
Frontiers in Immunology | www.frontiersin.org 7
inflammatory state and is remarkably also associated with an
increased development of AD (104, 105).

There is also a build-up of amyloid plaques throughout life.
However, it is not clear if this build-up is primarily caused by the
occurrence of systemic inflammatory events or if it is due to other
ageing mechanisms or even a combination of both. Cross-sectional
studies show that patients with cognitive impairment and evidence
of Ab exhibit an increased systemic inflammatory response and
increased microglial activation compared to healthy subjects (106).
Nevertheless, it is also known that not all these patients have
activated microglia (107) and that one-third of the healthy
population older than 80 years have Ab loads comparable to the
load found in AD patients (108). Next to this, persons with high Ab
loads but without dementia have lower level of pro-inflammatory
cytokines than AD patients (16). Additionally, analysis of AD and
mild cognitive impairment (MCI) patients showed a significant
correlation between cognition andmicroglial activation but not with
Ab loads (109, 110). These findings support the idea that microglial
activation rather than Ab alone may be the key change leading to
initiation and progression of AD.

Bacterial and Viral Infections
Along with preclinical studies, also epidemiologic studies
demonstrate an association between periodontal bacteria or
H. pylori infection and MCI and AD (111–113). GWAS show that
P. gingivalis infection significantly enrich the expression of genes
related to cognitive decline (114). Moreover, AD patients show
elevated levels of antibodies against periodontal bacteria (115, 116),
increased levels of periodontopathic virulence factors (117) and
P. gingivalis in postmortem brain tissue (118). Also, gingipains, i.e.
proteases secreted by P. gingivalis, are found in the brain of 90% of
AD patients and this is correlated with the present tau and Ab levels
(118). Taken together, all these data suggest that periodontitis leads
to cognitive decline that may be mediated by systemic inflammation
(119). In contrast, a recent cross-sectional study reports that only 11
of the 29 inflammatory biomarkers are associated with cognitive
impairment in patients with severe periodontitis. However, the
inflammatory response to severe periodontitis was more reduced
(lower biomarker concentrations) in patients with cognitive
impairment or dementia than in cognitively healthy controls
(120). These contradictory or inconsistent results may be caused
by differences in study design, diagnostic criteria, length of follow-up,
controls, and appropriate analytical approach (121).

Next to periodontal bacteria, also H. pylori is a possible risk
factor for the development of AD, although not all studies are
consistent about this (122). Clinical studies confirm that AD and
MCI patients have higher anti-H. pylori IgG titers in their blood
and brain (111, 123) and indicate that AD patients have more
gastric inflammation (112). Moreover, the presence of H. pylori
IgG antibodies is associated with a 1.46 times increased risk for
the development of dementia compared to non-infected controls
(124). Additionally, two independent surveys show that H. pylori
eradication may improve AD manifestation at 2- and 5-year
clinical endpoints (125, 126). In contrast to the above studies is
the study of Roubaud-Baudron et al. that shows that there is no
correlation betweenH. pylori infection and the occurrence of AD
(127). Important to keep in mind is that the latter study has a
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small patient cohort and lack non-AD dementia patients or
control patients. Moreover, serum antibody detection was used
to diagnose H. pylori infection but this method has a high rate of
false negative result (128).

Next to the effect of bacterial infections, increasing clinical
evidence indicates that also viral and fungal infections may be
causative factors for the development of AD. For example,
neurotropic pathogens such as HSV-1 have been repeatedly
isolated from the brains of AD patients and HSV infection is
associated with a higher risk for dementia in some studies (129–
132). In contrast to these studies, a genetic analysis study using
Mendelian randomization found no association between gene-
predicted risk for herpes infection and subsequent cognitive decline
or AD (133). The same holds true for the association between an
infection with cytomegalovirus (CMV) and the development of
dementia (134).

Chronic Diseases
The chronic diseases including obesity, diabetes, Atherosclerosis and
depressive illness have also an epidemiological basis for being
proposed as risk factors in the development of AD and are all
associated with a chronic pro-inflammatory state. The abnormal
metabolism inherent to a chronic disease induces a general pro-
inflammatory response in peripheral organs. For example,
dysfunction of lipid metabolism in obese patients leads to
inappropriate overflow of circulating free fatty acids (FFAs), which
can activate pro-inflammatory pathways through cell surface pattern
recognition receptors (PRRs) (135). Consequently, this sustained
chronic inflammatory situation can amongst others disrupt blood-
brain interfaces, allowing peripheral mediators to enter the brain.
This on its termmight induce persistent chronic brain inflammation
resulting in problems with brain function, including cognitive
impairment in AD (22). In obese and diabetic patients, they show a
greater cognitive decline over last decades compared to healthy
subjects (136–139). The further investigation indicates the higher
blood glucose levels in the preceding 5 years correlate with an
increased risk of dementia among participants with and without
diabetes (140). Epidemiological studies also report that the incidence
cardiovascular disease affects Ab metabolism and leads to
accumulation of Ab in peripheral and brain (141). Depression is
common in AD patients, but the individual with depression is also
associated with higher chance in dementia risk (100). While their
individual attributable risk is likely to be small, their combined
cumulative effects over time might be considerable (16).
SYSTEMIC INFLAMMATION AFFECTS
DIFFERENT CHARACTERISTICS OF
AD PATHOLOGY

As discussed above there is a huge amount of (pre)clinical data
supporting the hypothesis that systemic inflammation is
correlated with AD pathology. Below, we look deeper into the
mechanisms of AD pathology that are affected by systemic
inflammation. More precisely, we elaborate on how systemic
inflammation induces neuroinflammation, promotes Tau
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hyperphosphorylation, impairs Ab clearance and brain barrier
integrity (Figure 2). The mechanism studies included below are
mainly from preclinical experiments, but were applicable also
clinical studies are mentioned.

Systemic Inflammation Triggers
Neuroinflammation
Peripheral inflammation results in the activation of the innate
immune system and the production of pro-inflammatory
cytokines. These immune factors circulate in the blood and
ultimately affect neurons and glial cells in the brain via the
neural and humoral pathways mentioned above. In the context
of chronic inflammation present in AD patients, evidence suggests
that peripheral immune cells infiltrate in the CNS and accumulate
near areas of pathology (142). On their term, these cells induce
increased microglial activation and Ab deposition (143).
Microglia, the primary immune effector cells of the CNS, are
key cellular mediators of the neuroinflammatory responses in AD
(144). In absence of inflammatory stimuli, microglial cells are in a
“resting” or inactive state in which they continually survey their
immediate environment without interfering with neurons and
neuronal activities. However, when activated, the morphological
and biological functions of microglial cells are altered and they
migrate to the site of injury to initiate an innate immune response
(145, 146). Unfortunately, when microglia remain for a long time
in such an activated state, they release cytokines and neurotoxic
agents such as IL-1b, TNF, IL-6, nitric oxide (NO) and reactive
oxygen species (ROS) that can directly or indirectly cause
neuronal cell death (144).

Microglia express various cell surface receptors, such as PRRs
that recognize misfolded and aggregated proteins such as Ab and
subsequently trigger an innate immune response (147). Activated
microglia that are persistent in the release of pro-inflammatory
mediators are involved in the suppression of axonal transport and
adult neurogenesis (148). Moreover, activated microglia are
characterized by the retraction of their processes, which is a
phenotypic change that correlates with an impaired ability to
remodel synapses (47, 149). This effect contributes to impaired
synaptic plasticity seen in AD. Additionally, prolonged microglia
impairment caused by pro-inflammatory cytokines can also damage
neurons by reducing trophic factors such as brain-derived
neurotrophic factor (BDNF) and insulin-like growth factor (IGF)
(149–151). Studies on signalingmechanisms indicate that microglial
myeloid differentiation primary response 88 (MyD88) (152) and
p38 mitogen activated protein kinase (MAPK) (153, 154) signaling
are involved in the release of neurotoxins leading to neuronal
damage. These inflammatory effects are specifically initiated by
the microglia-derived pro-inflammatory cytokine TNF (153, 155).
In addition, neuronal mitochondria play an important role in the
regulation of microglial activation and the neuronal protein
Mitofusin-2 is likely the mechanistic linker between neuronal
mitochondria dysfunction and neuroinflammation (156).

Next to microglia also inflammasomes, i.e. multiprotein
complexes that control the production of pro-inflammatory
cytokines, play an important role in neuroinflammation (157).
The NOD-, LRR- and pyrin domain-containing 3 (NLRP3)
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inflammasome is one of the best defined and most widely
implicated regulators of IL-1b and IL-18 production (157).
Inflammasomes function as intracellular sensors for both foreign
and host-derived danger signals. For example, soluble Ab oligomers
and protofibrils can induce NLRP3 inflammasome activation in
microglia (158). Ablation of NLRP3 inflammasomes protects mice
from age-related increases of innate immune activation in the
periphery and the CNS and attenuates functional decline (159).

In addition, also other molecular and cellular players are
involved in the institution of neuroinflammation upon
peripheral inflammation. For example, a study demonstrates
that IL-32 and IL-32b affect neuroinflammation and Ab
formation by activating signal transducers and activators of
transcription 3 (STAT3) and NF-kB (160).

Systemic Inflammation Impairs
Ab Clearance
Ab load is the net result of Ab production and Ab clearance and
small changes in this equilibrium result in abnormal
accumulation of the protein. Ab clearance depends on several
potential pathways (1): phagocytosis (2), endocytosis and
Frontiers in Immunology | www.frontiersin.org 9
macropinocytosis by professional phagocytes and microglia, as
well as by astrocytes, oligodendrocytes and neurons (3), Ab
degradation by Ab-degrading enzymes like neprilysin, insulin-
degrading enzyme (IDE) and matrix metalloproteinases (MMPs)
and (4) Ab efflux from the brain to the blood and influx from the
blood to the brain via transport across the BBB and blood-CSF
barrier, interstitial fluid bulk flow and CSF egress pathways,
including arachnoid villi and glymphatic-lymphatic pathways
(47, 161).

In aged AD mice, microglial cells have lower expression of
Ab-phagocytic receptors and Ab-degrading enzymes, but their
ability to produce pro-inflammatory cytokines is maintained
(162). Furthermore, AD mice crossed with Tg197 mice (163),
mice carrying a modified human TNF-globin transgene, show
deregulated patterns of human TNF gene expression that
develop chronic inflammatory polyarthritis and amyloid
deposition. The increased amyloid deposition can be explained
by the fact that systemic TNF indirectly modulates Ab pathology
by regulating peripheral immune cell trafficking and glial
responses in the brain (164). Our recent study has also
indicated that sustained exposure to LPS leads to impaired
FIGURE 2 | Cerebral changes in response to systemic inflammation. Systemic inflammation leads to increased levels of pro-inflammatory mediators. These signals
can project to the brain via nerve afferents and the brain barriers. This can directly and/or indirectly induce neuronal cytotoxicity and affect Ab transport resulting in
increased Ab aggregation. The aggregated Ab induces an initial activation of microglial cells that leads to activated microglial cells with an impaired Ab clearing ability.
Additionally, the activated microglial cells produce a large amount of pro-inflammatory cytokines that further exacerbate neuroinflammation. This worsening of
neuroinflammation promotes the development of brain pathology and ultimately leads to cognitive impairments.
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microglial phagocytosis of Ab and increased Ab deposition in
AppNL-G-F mice (47).

Recently, it has been shown that inflammasome signaling is
involved in microglial Ab clearance. Indeed, NLRP3 deficient APP/
PS1 mice are partially protected from Ab pathology and neuronal
dysfunction under LPS-induced systemic inflammation (40, 54).
Importantly, these mice show almost normal cognitive function
and they are protected from Ab-induced suppression of synaptic
plasticity (165). ASC (apoptosis-associated speck-like protein
containing a C-terminal caspase recruitment domain) is a key
adaptor molecule required for the inflammatory processes and
represents an essential step in the activation of NLRP3
inflammasomes (166). Ab can bind to ASC and consequently
amplifies NLRP3 inflammasome activity which on his turn impairs
Ab clearance by microglia. The resulting accumulated Ab binds to
more ASC and in this way a vicious circle is established (167).

Next, low Ab levels within the healthy brain are also
maintained through transport across the BBB (161).
Unfortunately, LPS-induced systemic inflammation causes
lipoprotein receptor-related protein-1 (LRP-1)-dependent
decreased Ab entry into the blood (168, 169) and increased Ab
influx into the brain (170). Moreover, polymicrobial infection-
induced RAGE accumulation facilitates the transport of Ab
across the BBB and increases the central Ab load (92). In
addition, the blood-CSF barrier is also involved in processes
that clear substances from the CSF and the blood. Moreover, the
main transporters of Ab are also found in choroid plexus
epithelium, including LRP1, LRP2, P-glycoprotein (P-gp) and
RAGE (47, 171). Interestingly, using primary cells to mimic the
blood-CSF barrier, we recently showed that the transporter LRP2
is involved in Ab efflux from the CSF to blood side and that this
is impaired in response to inflammation (47).

Systemic Inflammation Induces Changes
at the Brain Barriers
As already mentioned above, the brain parenchyma is enclosed by
different structures including multilayered meninges, the BBB, the
blood-CSF barrier and the glia limitans. The BBB and blood-CSF
barrier are the two main brain barriers to impede free diffusion
between brain and blood and to provide transport processes for
essential nutrients, ions and metabolic waste products (172).
Although research is mainly focused on the BBB, more and more
research is now emphasizing the important role of the blood-CSF
barrier in CNS homeostasis and neurological disorders. The BBB is
formed by endothelial cells that are tightly linked by tight junctions
(TJs). On the basement side of the membrane, pericytes and
astrocytes perform supporting and regulatory functions (173).
The blood-CSF barrier is formed by TJs between neighboring
choroid plexus epithelial cells (174).

As described above, a number of in vitro and in vivo studies
show that systemic inflammation has disruptive effects on BBB
integrity leading to the diffusion of peripheral inflammatory
factors into the brain (25). These factors then further induce
changes in the brain and are associated with an increased
cognitive decline in AD patients (16). Next to the diffusion of
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peripheral factors, also Tau transmission in the brain via the
disrupted BBB is observed upon peripheral inflammation (175).

A number of mechanisms are described to explain the BBB
disruptive effect of systemic inflammation. Central to these
mechanisms are prostanoids and NO, which are both
synthesized by LPS-stimulated cerebrovascular endothelium
and surrounding cells (25). The mediators, including MMPs
(176, 177) and ROS (178), are also involved in the destruction of
BBB integrity by activating intracellular pathways such as MAPK
signaling (176) and inducing mitochondrial dysfunction (179)
while blood-CSF barrier integrity loss was linked to MMP-
dependent collagen cleavage (173). In addition, some miRNAs
play a role in BBB structure and function (180). E.g. the
expression of miR-155 in microvessels is strongly and rapidly
upregulated by inflammatory cytokines and alters BBB function
by affecting expression of TJs and adhesion components (181).

Next to these molecules, also different cell types influence
BBB integrity. Abbott and colleagues showed that astrocytes and
pericytes secrete a number of molecules that enhance and
maintain BBB integrity. Moreover, the end-feet of these cells
form a lacework of fine lamellae closely linked to the outer
surface of the BBB endothelium and basement membrane (182).
Previous studies have shown that systemic inflammation induces
astrocyte proliferation and activation followed by astrocyte loss
(183, 184) and changes in astrocytic end-feet structures (185).
During sustained systemic inflammation, astrocytes produce a
range of substances including pro-inflammatory cytokines and
prostaglandins that are associated with disruption of the BBB
(25). Next, also microglia are important players of the
neurovascular unit although their ablation in mature mice does
not directly leads to an increase in BBB permeability (150).
However, a recent study shows that vessel-associated microglia
initially maintain BBB integrity via expression of claudin-5 and
make physical contact with endothelial cells. Yet, under LPS-
induced systemic inflammation, brain resident microglia migrate
in a CCR5-dependent manner to the cerebral vasculature and
phagocytose astrocytic end-feet. In this way microglia then
anyway impair BBB integrity (186).

The crossing of leukocytes through the BBB upon systemic
inflammation primarily occurs at postcapillary venules and may
occur in a paracellular or transcellular way (25). TNF has been
shown to promote expression of brain microvessel P- and E-
selectin, which are both required for cellular recruitment (187). In
addition, systemic inflammation stimulates endothelial
production of chemokines such as CCL2, which lead to
conformational changes in leukocyte integrins and enhance their
binding to endothelial ligands (188). Similarly, the expression of
endothelial cell adhesion molecules such as intercellular adhesion
molecule 1 (ICAM-1) are promoted upon inflammation.
Important is that leukocytes need to cross the glia limitans to
enter the brain parenchyma after passing though the endothelium
and this crossing depends on the degradation of basement
membrane components by MMP-2 and -9 (189). In vitro
studies show that LPS stimulation increases expression of MMP-
2 in the endothelium (176) and pericytes (190).
January 2022 | Volume 12 | Article 796867

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xie et al. Systemic Inflammation and Alzheimer’s Disease
Next to direct morphological changes in the BBB, systemic
inflammation can also cause non-disruptive changes that affect
BBB functionality. For example, there are different studies
indicating that BBB transport pathways are affected by systemic
inflammation. Including the downregulation of the multi-
functional efflux transporter P-gp (191) and the upregulation of
influx carriers responsible for TNF (192). Correspondingly,
systemic inflammation also results in a reduced bulk flow of
CSF and interstitial fluid (ISF) across the BBB, which can
further impair Ab clearance (168). Additionally, non-disruptive
BBB changes during systemic inflammation may also promote
neuroinvasion of pathogens. For example, systemic LPS enhances
the transcellular transport of the human immunodeficiency virus
(HIV) without disrupting the BBB though luminal stimulation
by IL-6 and granulocyte-macrophage colony-stimulating factor
(GM-CSF) and MAPK signaling (193).

As mentioned above, systemic inflammation not only has an
impact on the integrity of the BBB, but LPS-induced systemic
inflammation in mice also disrupts the blood-CSF barrier (47, 177)
and induces the release of extracellular vesicles (EVs) (32); both
resulting in increased neuroinflammation. Interestingly, also Ab on
its own has a direct impact on the blood-CSF barrier: induction of
morphological changes of the CPE cells, decreased expression of TJ
components, loss of barrier integrity, and EV release into the CSF
(47, 194, 195). Analysis of human gene expression data comparing
control and AD patient choroid plexus tissue revealed that TNF/
TNFR1 signaling was upregulated in AD suggesting an involvement
of this pathway in the blood-CSF barrier associated changes in AD
(196). In agreement with this, both TNFR1 deficiency and
treatment with a TNFR1 inhibitor prevented the Ab-induced
cognitive decline (196). Additionally, also treatment with an
inhibitor of EV production had the same effect (195). Based on
these results, it is tempting to speculate that the combined effect of
systemic inflammation and the presence of Ab might further
worsen AD disease progression among others via specific
mechanisms at the blood-CSF barriers, such as loss of barrier
integrity and EV release, which on their turn further aggravate
neuroinflammation. However, in our study in which APPNL-G-F

mice were challenged twice with a low dose of LPS no additive effect
on blood-CSF barrier disruption was observed (47), which might
indicate that high LPS levels are needed to disrupt this barrier.

Gut Inflammation Affects AD Pathology
Despite the anatomical separation between the CNS and the
gastrointestinal system, a bidirectional network between the two,
known as the ‘gut-brain axis’, exists. A growing body of evidence
indicates that AD may have an underlying intestinal
inflammatory process, to which altered gut microbiota plays an
important role. The gut-brain interaction can occur via two
routes: via vagal transmission and via systemic circulation (197).

Thousands of sensor and motor fibers from the vagus nerve
connect the gut with the brainstem and serve as a conduit for neural
signals. These signals are governed by changes in enteric neuron
activity and the behavior of gut microbes. Such gut bacteria activate
the vagus nerve either directly or indirectly through their
metabolites and neuroactive substances. Moreover, the vagus
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nerve interacts extensively with different components of the
systemic immune system and in this way continuously monitors
the inflammatory state of the gut. Upon sensing inflammatory
signals by binding to specific receptors in the vagus nerve fiber such
as the proinflammatory tachykinin/neurokinin receptors (198), the
vagal afferents transmit signals to the dorsal vagal complex (DVC)
where most sensory information is relayed to nucleus tractus
solitarii (NTS) (199). Neurons in the NTS that receive the vagal
sensory inputs can modulate microglial state and activity by specific
ligand-receptor pairs (e.g. CX3CL1-CX3CR1 and CD200-
CD200R), neurotransmitters (e.g. glutamate and GABA), and
purinergic signaling (200). Activated microglia on their turn
produce pro-inflammatory (e.g. nitric oxide and PGE2) and
cytokines (e.g. TNF, IL-1b and IL-6) and ultimately influence the
neuroinflammatory state (201). Concurrently, vagal efferent nerves
hand over information about the immune status of the brain back
to the gut, with increased CNS inflammation feeding back to inhibit
further release of peripheral pro-inflammatory cytokines through
acetylcholine-mediated signaling (202). Effective vagal nerve
signaling is critical for sending appropriate signals to microglia in
order to modulate levels of neuroinflammation (201). Moreover,
vagus nerve stimulation combined with LPS challenge leads to a
decrease in microglial production of pro-inflammatory cytokines in
the brain, an effect no longer observed after vagotomy (203). Taken
together, the vagus nerve is a physical conduit between gut
microbial activity and neuroinflammation.

Interestingly, intestinal inflammation induced by gut
microbiota perturbation is directly associated with intestinal
barrier dysfunction. The enhancement of intestinal permeability
allows the entrance of pathogenic, immune-stimulating and
neuroactive substances into the systemic circulation. Increased
systemic pro-inflammatory cytokines and neurotoxic compounds
may contribute to an increased microglial activation and
production of pro-inflammatory cytokines in the brain as
described above (204, 205). Calprotectin as a marker of intestinal
inflammation and has intrinsically amyloidogenic amino acid
sequences that can form amyloid oligomers and fibrils (206).
Interestingly, calprotectin levels are significantly increased in the
CSF and the brain of AD patients, which promotes its amyloid
aggregation and co-aggregation with Ab (207). It is possible that
this intestinal source of calprotectin may contribute to amyloid
fibril formation in the gut or directly in the brain.

Along with affecting the level of intestinal permeability, gut
microbiota can indirectly influence the state of systemic
inflammation through interactions with nearby immune cells.
When pathogen-associated molecular patterns (PAMPs)
produced by pathogenic invaders bind to PRRs, such as TLRs,
inflammatory cytokine production is altered (208). The
circulation and subsequent potential entry of these cytokines
into the brain act locally on CNS cells, including microglia,
thereby influencing the state of inflammation in the brain (209).
Indeed, increased intestinal inflammation driven by either LPS
or bacterial infection correlates with elevated levels of microglial
activation and release of pro-inflammatory cytokines (124, 210).

Gut microbiota-derived metabolites are additional contributors
to the gut-brain crosstalk. Circulation of microbial metabolites,
January 2022 | Volume 12 | Article 796867

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xie et al. Systemic Inflammation and Alzheimer’s Disease
including neurotransmitters, short-chain fatty acids (SCFAs), and
trimethylamines can potentially influence microglial activation
through direct and indirect means (197, 211). For example,
binding of serotonin to 5-hydroxytryptamine receptors
expressed on microglia induces the release of cytokine-carrying
exosomes and induces neuroinflammation (212). However, the
exact SCFA signaling pathways that modulate microglial
activation are not yet fully understood. Mice lacking the free
fatty acid receptor 2 (FFAR2), a GPCR required for SCFA
signaling in the gut, exhibit a microglial phenotype similar to
that observed in germ-free mice (209). The absence of FFAR2
expression on microglia suggests that SCFAs may influence
microglial activation through signaling that originate in the gut
and SCFAs may have potential direct influences on microglia.
Indeed, treatment of microglial cells in vitro with various SCFAs,
including valproic acid and butyric acid, elevates the levels of
acetylation of histone H3 (213). This suggests that SCFAs
influence microglial behavior in vivo through a combination of
GPCR signaling and histone deacetylase inhibition.

Bacterial extracellular vesicles (bEVs), including Gram-
negative bacteria derived outer membrane vesicles (OMVs) and
Gram-positive bacteria secreted membrane vesicles (MVs), carry
molecular cargo from paternal bacteria to target cells. bEVs
contain numerous PAMPs, including DNA, RNA, lipoproteins,
LPS and peptidoglycan. The PAMP content of bEVs enables them
to engage with host PRRs and consequently initiate pro-
inflammatory signaling cascades that lead to the production of
cytokines and chemokines. A growing body of evidence suggests
that bEVs play a key role in the communication and regulation of
the host and even manipulate the host immune response.
Interestingly, this may ultimately affect AD progression (214,
215). For example, OMVs fromH. pylori were shown to modulate
pro-inflammatory responses in gut epithelial cells with a dose-
dependent production of the pro-inflammatory cytokine IL-8
(216). Also bEVs from other bacteria have immunostimulatory
abilities in mice and human (214). Taken together, bEVs have
the abilities to modulate systemic inflammation and disrupt
epithelial barrier integrity and ultimately increase development
of AD though the pathways mentioned above. For example,
extracellular RNAs (exRNAs) in periodontal bacteria
Aggregatibacter actinomycetemcomitans OMVs were shown to
cross the BBB in mice and promote TNF production in human
macrophages via activating TLR-8 and NF-kB signaling pathways
(217). In addition, intravenous administration of bEVs isolated
from faeces of AD patients increases the BBB permeability and
promotse glial cell activation in wild-type mice, thereby inducing
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an inflammatory response and tau hyperphosphorylation by
activating the GSK‐3b pathway and finally leading to cognitive
impairment (218).

All the above mentioned findings further underscore the
associated between systemic inflammation, influenced in part
by the gut microbiota, and BBB, microglial activation and
neuroinflammation, and ultimately AD.
CONCLUSION

Increasing evidence indicates that systemic inflammation might
drive the initiation and progression of AD. It is becoming
increasingly clear that the brain cannot longer be viewed as an
immune-privileged region and that CNS inflammation and
systemic inflammation are connected to each other. Systemic
inflammation rather than Ab or tau alone may be a key player in
AD pathology and its role may precede Ab deposition. In
addition, whether the build-up of Ab plaques and tau
hyperphosphorylation as we age is primarily due to the
occurrence of systemic inflammatory events or to other ageing
mechanisms is still unclear but it is likely that the combination of
different factors, such as inflammaging and microglial priming
are crucial. Clearly, continued research in this area is needed to
further unravel the effects of systemic inflammation on AD and
its mechanisms. Furthermore, this review strengthens the believe
that peripheral inflammation worsens AD progression and this
opens up a wide range of possible therapeutic strategies for AD
via the modulation of peripheral inflammation.
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