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Collapsing glomerulopathy represents a special variant of the proteinuric kidney disease
focal segmental glomerulosclerosis (FSGS). Histologically, the collapsing form of FSGS
(cFSGS) is characterized by segmental or global condensation and obliteration of
glomerular capillaries, the appearance of hyperplastic and hypertrophic podocytes and
severe tubulointerstitial damage. Clinically, cFSGS patients present with acute kidney
injury, nephrotic-range proteinuria and are at a high risk of rapid progression to irreversible
kidney failure. cFSGS can be attributed to numerous etiologies, namely, viral infections like
HIV, cytomegalovirus, Epstein–Barr-Virus, and parvovirus B19 and also drugs and severe
ischemia. Risk variants of the APOL1 gene, predominantly found in people of African
descent, increase the risk of developing cFSGS. Patients infected with the new Corona-
Virus SARS-CoV-2 display an increased rate of acute kidney injury (AKI) in severe cases of
COVID-19. Besides hemodynamic instability, cytokine mediated injury and direct viral
entry and infection of renal epithelial cells contributing to AKI, there are emerging reports of
cFSGS associated with SARS-CoV-2 infection in patients of mainly African ethnicity. The
pathogenesis of cFSGS is proposed to be linked with direct viral infection of podocytes, as
described for HIV-associated glomerulopathy. Nevertheless, there is growing evidence
that the systemic inflammatory cascade, activated in acute viral infections like COVID-19,
is a major contributor to the impairment of basic cellular functions in podocytes. This mini
review will summarize the current knowledge on cFSGS associated with viral infections
with a special focus on the influence of systemic immune responses and potential
mechanisms propagating the development of cFSGS.
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INTRODUCTION

Focal segmental glomerulosclerosis (FSGS) is a major glomerular cause of end stage renal disease. The
definition of FSGS is derived from its histopathological picture—the focal appearance of segmental
scarring in some glomeruli. Before sclerosis ensues, podocytes show foot process effacement, leading to
the manifestation of proteinuria. Since FSGS represents a pattern of response to injury, it was recently
proposed to group FSGS into primary (immune-mediated) FSGS, adaptive FSGS, FSGS caused by
pregnancy-related VEGF-inhibition, genetic, drug- and virus-associated FSGS (1, 2). The Columbia
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classification of FSGS differentiates 5 morphologic variants, namely,
FSGS not otherwise specified (NOS), perihilar, cellular, tip, and
collapsing variant (3).

The collapsing form of FSGS (cFSGS) represents a special form
of secondary FSGS. Histopathologically, cFSGS is characterized by
segmental or global condensation and obliteration of the capillary
tuft associated with wrinkling and collapsing of the glomerular
basement membrane. The podocytes display a distinct hyperplastic
and hypertrophic phenotype, often containing cytoplasmic protein
resorption droplets and pronounced foot process effacement. Severe
tubulointerstitial disease with inflammation, edema, interstitial
fibrosis and tubular atrophy as well as tubular regenerative
changes constitutes an important component of cFSGS (4). cFSGS
is associated with different etiologies. One of the best characterized
causes is an infection with the human immune deficiency virus
(HIV) and the development of HIV-associated nephropathy
(HIVAN) (5). Furthermore, cFSGS can also be attributed to other
infections, drugs, severe ischemia, autoimmune disease, genetic
causes, and idiopathic (6–9). Additionally, an infection with the
new Corona-Virus during the pandemic of SARS-CoV2 has been
associated with the potential to develop cFSGS.
HIV-ASSOCIATED cFSGS

HIV infection accompanied by acute kidney injury, proteinuria, and
a rapid progression to irreversible kidney failure characterizes the
course of HIVAN. Tubuloreticular aggregates in endothelial cells
and microcystic tubular dilatation in some cases may contribute to
differentiate HIVAN from other etiologies of cFSGS in light
microscopy (7).

Investigating the interaction of the virus or viral gene products
with podocyte signaling pathways that induce massive morphologic
alterations in cFSGS, might contribute to our understanding of
podocyte biology and find a targeted therapy in (collapsing) FSGS
independent of its etiology. It has been shown, even though
podocytes do not express CD4-receptors or other known HIV-
receptors, that podocytes are directly infected by HIV (10). The
virus is known to damage the actin cytoskeleton in any cell type
(11). The podocyte cytoskeleton is essential for the maintenance of
the glomerular filtration barrier.

Furthermore, it has been shown, that HIV-1 also induces
vascular endothelial growth factor (VEGF), leading to
proliferation and de-differentiation of podocytes in cFSGS (12).
Podocyte VEGF overexpression in a mouse model was able to cause
glomerular disease with podocyte foot process effacement (13),
while it was also shown that VEGF is crucial for podocyte
survival via phospatidyl inositol 3 kinase/Akt signaling (14).

HIV associated cFSGS predominantly affects patients of African
descent carrying a risk variant of the Apolipoprotein L gene 1
(APOL1), termed G1 and G2. The only known physiological
function of APOL1 is its anti-trypanosomal activity (15). Several
subspecies of trypanosoma have developed resistency against the
“normal” G0 variants of APOL1. Therefore, the presence of one of
the APOL1 variants G1 or G2 appears to protect against infection of
several subspecies of Trypanosoma brucei (16–18). APOL1 is an
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abundantly secreted protein that circulates and associates with
apolipoprotein A-I as a component of high-density lipoprotein
(HDL) (19). It is also expressed in the intracellular compartment of
various tissues—in the kidney specifically in glomeruli, proximal
tubular endothelia and arteriolar endothelium. Within healthy
glomeruli, APOL1 is localized exclusively in the podocytes (20).
In both FSGS and HIVAN however, APOL1 expressing a-smooth
muscle actin-positive cells were detected in the media of medium
arteries and arterioles.

The APOL1 risk alleles G1 and G2 increase the risk of chronic
kidney disease and are associated with an elevated risk of
developing hypertension-associated end stage renal disease,
FSGS, Lupus-nephritis, and HIVAN (16, 21–23).

Numerous studies suggested multiple pathways leading to
impaired podocyte function and injury in HIVAN. The lack of
the APOL1 gene in most model organisms and the absence of
tissue specificity constitute barriers in identifying the underlying
mechanisms. Conversely, the lack of the APOL1 gene in most
mammals and a case report of a healthy APOL1-null patient
supports the hypothesis, that APOL1 is not essential for kidney
development and homeostasis (24).

The overexpression of APOL1 risk variants in podocytes was
associated with increased necrosis and lysosomal permeability with
leakage of lysosomal enzymes like cathepsin L into the cytosolic and
nuclear compartment. Cathepsin L-induced degradation of the
cytoskeletal protein F-actin might contribute to podocyte injury
(25). Reduced numbers of autolysosomes led to impaired
autophagic flux in APOL1 risk variant expressing HEK293 cells
and podocytes (26). APOL1 risk variant dependent on upregulation
of miR193a was found to result in the dedifferentiation of podocytes
by blocking autophagy (27). Furthermore, APOL1 risk variants
seem to downregulate expression levels of nephrin and podocin, key
players in the slit diaphragm, and mediators of crucial signaling
pathways (28).

These studies indicated the important role of APOL1 in the
development of FSGS, as podocyte loss due to cell death occurred in
all models of APOL1 risk variant overexpression. Pyroptosis, but
not apoptosis was found to be increased in APOL1 risk allele
transfected cells and might be a result of elevated levels of cleaved
caspase 1 (26).

Scientific efforts could show that expression of human APOL1
risk variants in kidneys, spleens, and macrophages of bacterial
artificial chromosome (BAC) transgenic mice promotes
cholesterol accumulation (29). BAC/APOL1 transgenic mice
express either the G0 allele or the risk alleles G1 and G2 under
the endogenous APOL1 promotor. In line with these results, a
recent study demonstrated in an APOL1/BAC mouse model that
APOL1 risk variant expression drives lipid accumulation in renal
cortices but not proteinuria. APOL1 risk variant expression in
transgenic mice of a FSGS model (APOL1; Podocin-rtTA;
NFATc1nuc) were more susceptible to doxycyclin induction as
their wildtype littermates (WT; Podocin-rtTA; NFATc1nuc) and
developed podocyte loss and mesangial matrix expansion.
Interestingly, at baseline the human APOL1 transgenic mice did
not develop proteinuria. The investigation of urinary podocytes
from FSGS patients carrying either the G0/G0 or G1/G2 allele
January 2022 | Volume 12 | Article 800074
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suggested that the APOL1 risk variants cause mitochondrial
dysfunction linked with lipid accumulation and compensatory
OXPHOS complexes elevation in podocytes (30).

Since most carriers of two risk alleles do not develop kidney
disease spontaneously and the APOL1 variant expression itself was
not sufficient to induce podocyte dysfunction, a second hit is
postulated essential for the development of kidney disease.
Infection with HIV is believed to be the strongest known risk
factor for APOL1-associated kidney disease (18) as the innate
immune response to HIV upregulates APOL1 gene expression (31).

Several innate immune pathways like interleukin 1ß and Toll-
like receptor 3 (TLR3) signaling showed impact on APOL1
expression levels, but the predominant effect upon HIV infection
is demonstrated for interferons (INF), especially for type 1 INF
(INF-a and -b) (32–34). Type 1 INF represents a part of the innate
host response against viruses. It induces the intracellular response to
viral infection by orchestrating a signaling cascade through the
Janus kinase signal transducer and activator of transcription (JAK-
STAT) pathway. The JAK-STAT-pathway regulates the
transcription of INF-regulated genes (IRG), that contribute to
reduce viral spread via distinct mechanism like the inhibition of
virus entry, translation, replication and viral egress (35).

Additionally, type 1 INF induces apoptosis of infected cells in an
autocrine and paracrine manner. Acute and chronic HIV infections
constitute a proinflammatory state with elevated levels of interferon
in plasma and tissue (36). It was indicated that type 1 INF-a and -b
and also type 2 INF g is able to upregulate APOL1 gene expression
in both endothelial cells and podocytes (34). In addition, case
reports describe patients carrying APOL1 risk variants who
developed cFSGS after treatment with exogenous INF (34, 37)
and INF-g induced proteinuria in APOL1 G1 transgenic mice (38).

Stimulator of interferon genes (STING) is suggested to be an
INF-induced candidate pathway that upregulates APOL1. HIV
infection induces cyclic guanosine monophosphate-adenosine
(cGAMP) synthase (cGAS) to produce cGAMP, an activator of
STING (39). Interferon-inducible protein 16 (IFI16) has also been
shown to act as a sensor of HIV infection and activator of STING
(40). TANK binding kinase 1 (TBK1) is recruited by activated
STING and phosphorylates STING and interferon regulatory factor
3 (IRF3). Phosphorylated IRF3 is then translocated to the nucleus
and initiates transcription of INF-b and APOL1 in human
podocytes. INF-b can furthermore activate the type I IFN
receptor, leading to STAT1 phosphorylation through IFNAR-
associated JAK1 kinase and increased upregulation of APOL1 and
IFI16, further enhancing upregulation of STING (41). Further,
cGAS/STING seem to play a key role in the increased endothelial
dysfunction mediated by APOL1 risk variants and might contribute
to explain the increased sepsis incidence and severity among
patients of African ancestry (42).

Both cGAS and IFI16 might also play a role in the progression to
lupus nephritis in SLE patients carrying risk alleles of APOL1 (41, 43).

In line with these results, it was demonstrated that retinoic
acid-inducible gene I (RIG-I) also recognizes HIV and enhances
APOL1 expression and also activation of nuclear factor kappa B
(NFкB). The knockdown of RIG-I in human podocytes resulted
in attenuated inflammatory and apoptotic effects of APOL1 (44).
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Additionally, TLR 3 signaling, that can be activated by double
stranded RNAs, can be found in replication cycles of nearly all
viruses and was shown to enhance APOL1 expression INF-
independent via NFкB-signaling (34).

To summarize, the described interactions lead to an enhanced
expression of APOL1. As the risk variants seem to exert an
endotoxic effect on podocytes in a dose-dependent manner, this
overexpression can induce podocyte damage in case of HIV
infection, whereas, the toxic influence of the risk variants might
not be high enough to induce cell damage and therefore cFSGS,
without the “second hit” HIV.

Another recently debated mechanism is the contribution of
parietal epithelial cells (PEC) to the cFSGS. PECs are capable of
self-renewal and differentiation into various cell types, namely,
podocytes (45–47) while the regeneration of podocytes appears
limited to non-existent (47, 48). It has been shown in vitro, that
the induction of APOL1 in PECs leads to the expression of
podocyte markers, potentially as a repair mechanism and the
effort to replace damaged podocytes (49). Furthermore, analysis
of the glomerular extracellular matrix shows differences between
non-collapsing and cFSGS, with an altered extracellular matrix
remodelling and activation of PECs (50).

PEC activation can be detected as a first sign of ensuing
glomerular scarring (51). Podocyte hypertrophy, as present in
cFSGS, seems to prevent PEC activation and glomerulosclerosis.
In glomerular extracts from biopsies of FSGS and diabetic
nephropathy mammalian target of rapamycin (mTOR) and
PEC-activation related genes were found to be upregulated
(48). mTOR-mediated podocyte hypertrophy during podocyte
loss seems to be crucial to maintain glomerular functional
integrity, as pharmacological mTOR-inhibition during acute
podocyte loss resulted in albuminuria, PEC-activation and
glomerulosclerosis in mice (48). Interestingly, exacerbated and
persistent podocyte hypertrophy also induced podocyte loss
and PEC-activation, indicating a limited beneficial effect (48).

These data suggest the targeting of PECs as a potential
therapeutic option in cFSGS. APOL1-risk variant effects on
podocytes might impair their capacity to prevent PEC-activation
and glomerulosclerosis.
COVID-ASSOCIATED NEPHROPATHY
(COVAN)

Renal involvement with acute kidney injury (AKI), proteinuria and
hematuria, worsening the overall prognosis, has been shown
frequently in COVID-19 patients (52–54). Chronic kidney disease
or conditions with increased risk of impaired kidney function
represent strong risk factors for a severe clinical course (55). Biopsy
and autopsy studies revealed acute tubular necrosis (ATN) in the
majority of COVID-19 associated AKI. Nevertheless, glomerular
involvement was also reported and should be distinguished from
the majority of AKI due to ATN. Beside reports of minimal change
disease, membranous nephropathy, anti-glomerular basement
membrane glomerulonephritis, IgA-vasculitis, lupus nephritis and
crescentic glomerulonephritis (56–58) associated with SARS-CoV-2,
January 2022 | Volume 12 | Article 800074
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cases of cFSGS displaying similar lesions, observed in HIVAN, have
led to the emergence of the SARS-CoV-2 associated entity named
“COVAN” (59). COVAN patients mostly present with severe AKI
and nephrotic range proteinuria in native kidneys and kidney
allografts (60–62).

Like HIVAN, COVAN is mostly reported in patients carrying
risk variants of APOL1 supporting the hypothesis of a “second hit”
necessary for the onset of APOL1-associated kidney disease. Paying
tribute to the short time period of research on COVAN, compared
to decades of HIV-research, only few mechanistic data are available
for SARS-CoV-2 induced cFSGS. Interestingly, although
intracellular and not secreted APOL1 seems to be responsible for
kidney injury, a case of SARS-CoV-2 associated cFSGS was reported
in a patient carrying 2 APOL1 high risk alleles with a kidney
allograft stemming from a low-risk genotype donor (62).

Cytokine induced podocyte damage by the virus and/or direct
toxic viral effects on podocytes are suggested to be responsible for
SARS-CoV-2 associated cFSGS and might interact with APOL1.
The membrane proteins angiotensin converting enzyme II (ACE2)
and transmembrane serin protease 2 (TMPRSS2) are used as
receptors by SARS-CoV-2 to facilitate cell entry. ACE2 is highly
expressed in kidney cells, mainly in the proximal tubule. However,
podocytes, parietal epithelial cells, mesangial cells and cells of the
collecting duct are found to express ACE2 at lower levels (63).
Autopsy studies could detect SARS-CoV-2 RNA and viral proteins
in the kidney (64, 65) and indicated, that SARS-CoV-2 renal
tropism is associated with the development of acute kidney injury
and disease severity (66). In contrast, cases of cFSGS occurred also
in patients with mild or even absent respiratory symptoms (67). To
our knowledge, all biopsy studies failed to detect SARS-CoV-2 in the
kidney. This limits investigating direct toxic viral effects on
podocytes and implicates cytokine-mediated effects as shown for
HIVAN. Nevertheless, most studies relied on electron microscopy,
immunohistochemistry or RNA in situ hybridization limiting the
conclusions drawn concerning viral detection. PCR based detection
methods were regularly able to detect viral RNA within kidney
tissue and complimentary RNA and protein detection underline a
probable renal SARS-CoV-2 tropism (64, 65, 68–70).

Next to the direct infection of kidney tissue, an injury of the
glomerulus induced by the host response might be another plausible
mechanism of the development of cFSGS in COVID-19. The often
described “cytokine storm” can damage the kidney directly or
secondary through the induction of life-threatening circumstances
like sepsis, shock, ischemia, hypoxia or rhabdomyolysis (71).
Especially patients with severe disease show high plasma levels of
cytokines like interleukins, granulocyte cell stimulating factor and
tumor necrosis factor a (TNFa) (72). Interferon g (INF g) is also
upregulated in SARS-CoV-2 infected patients, but a meta-analysis
could not show significant differences between the severe and non-
severe group of COVID-19 patients (73). Nevertheless, data from
subgroups carrying APOL1 risk alleles are not available to our
knowledge. A recent study observed that APOL1 risk variants are
associated with a higher incidence of sepsis and increased disease
severity in patients with COVID-19. Plasma levels of APOL1 were
higher in patients with severe sepsis and COVID-19 and correlated
with markers of endothelial dysfunction. A mouse model with
Frontiers in Immunology | www.frontiersin.org 4
endothelial cell specific expression of APOL1 risk alleles, developed
increased endothelial inflammation, vascular leakage, albuminuria
and increased sepsis severity. APOL1 risk variant expression in
endothelial cells in vitro resulted in mitophagy and leakage of
mitochondrial DNA into cytoplasm. Cytosolic DNA is sensed by
the NLRP3 inflammasome and by cGAS, an activator of STING,
leading to endothelial dysfunction (42). The onset and role of
endothelial dysfunction in cFSGS is poorly understood. Although
it is commonly assumed that podocyte injury is the first event in the
pathogenesis of cFSGS, it was demonstrated, that in Adriamycin-
induced nephropathy, endothelial damage occurs prior to podocyte
injury (74). Additionally, it was shown that patients with primary
FSGS and nephrotic range proteinuria had elevated markers of
endothelial dysfunction compared to healthy controls, which were
largely related to the activity of the disease (75).

Beyond these recent observations, upregulated cytokines in
COVID-19 patients carrying risk alleles of APOL1 could still
contribute to the development of cFSGS as a “second hit” as the
expression of chemokines (e.g., CCL2 and CXCL10) and Interleukin
6 seems to be elevated within the kidney of COVID 19 patients (76).

It remains elusive, whether podocytes or endothelial cells
predominantly orchestrate the histopatholgical changes. All
known mechanisms, which lead to kidney damage beyond cFSGS
in case of infection with SARS-CoV-2 have been extensively
reviewed by Ahmadian et al. (77).

cFSGS and Other Viral Infections
While the association of cFSGS to an infection with HIV is well
established and probable for SARS-CoV 2, cases associated with
other viral infections are rare and the mechanisms remain
incompletely understood due to the limited number of cases.
Infections with Parvovirus B19, the cytomegalovirus (CMV),
Hepatitis C, simian virus 40 or Epstein–Barr virus are thought to
be further potential causes of the development of cFSGS (78).
While the CMV seems to be a probable inducer of cFSGS, the
association of other viruses and the collapsing variant has still to
be proven. Additionally, in 2018 there has been a case series
reported the association of dengue virus and zika virus infection
and the development of cFSGS (79). In these cases a direct
infection of kidney tissue was shown and interestingly, there was
no correlation with APOL1 risk alleles. This case study also
points to a potential involvement of the complement cascade in
the development of the cFSGS. Next to the direct effect of the
virus to the podocytes, which has not been shown for these
infections, systemic immune response, similar to the response to
HIV or SARS-CoV2, might be responsible for upregulation of
APOL1 or could directly influence podocyte function (80). A
converging mechanism of the innate immune response therefore
seems likely, nevertheless has to be further assessed. A summary
of these mechanisms is presented in Figure 1.
CONCLUSION

Research on molecular changes in podocytes expressing risk
variants of APOL1 shed light on multiple pathways relevant for
January 2022 | Volume 12 | Article 80007
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podocyte homeostasis. Although none of the suggested pathways
alone could explain the development of cFSGS, the role of a
second is evident, at least in APOL1 dependent forms. Limited
numbers of patients in case reports hamper the identification of
“second hits” like HIV, so the pandemic situation of COVID-19
could help to further scientific effort by providing larger cohorts.
Furthermore, the analysis of APOL1-risk factor independent
cFSGS forms, the identification of viral etiology and associated
damaging mechanisms are crucial to understand the
development of the disease. Further investigation of the
interaction of viral products and the immune response with
podocyte signaling pathways that induce the massive
morphologic alterations might contribute to our understanding
of podocyte biology and the search for targeted therapies in
(collapsing) FSGS independent of its etiology.
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