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B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved
transcriptional regulator originally described as a repressor of gene transcription.
Blimp1 crucially regulates embryonic development and terminal differentiation in
numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in
immunity established its non-redundant role in lymphocytic terminal effector differentiation
and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion,
whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene
expression. These studies established Blimp1 as an essential transcriptional regulator that
promotes efficient and controlled adaptive immunity. Recent studies have also
demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid
cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation
and T cell priming. Emerging studies have determined both conserved and unique
functions of Blimp1 in different immune cell subsets, including the unique direct
activation of the igh gene transcription in B cells and a conserved antagonism with
BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the
gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory
conditions in humans. Blimp1 has been shown to regulate target gene expression by
either competing with other transcription factors for binding to the target loci, and/or by
recruiting various chromatin-modifying co-factors that promote suppressive chromatin
structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1
function has been shown to be essentially dose and context-dependent, which adds to
Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex
roles in immunity and highlight specific gaps in the understanding of the biology of this
transcriptional regulator, with a major focus on aspects that could foster the description
and understanding of novel pathways regulated by Blimp1 in the immune system.
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1 INTRODUCTION

The transcription factor PRDI-BF1/Blimp1, encoded by the
PRDM1 gene, was first described in human sarcoma cell lines
as a repressor of the IFN-b gene (1). The observation that this
PRDM1-encoded protein binds to the IFN-b promoter at the
positive regulatory domain 1 (PRDI) region led to the acronym
PRDI-BF1 (Positive Regulatory Domain 1 – Binding Factor 1).
Soon after, the same protein, this time in a murine system, was
named Blimp1 (B-lymphocyte-induced maturation protein 1), in
work done by Mark Davis and colleagues, which revealed
Blimp1’s role in driving functional differentiation and
plasmablast formation in murine B lymphoma cell lines (2).
This was then followed by the observation that human PRDI-
BF1 and murine Blimp1 are highly similar homologs of each
other (3). Both the human and the murine PRDI-BF1/Blimp1
proteins contain five Krüppel-like zinc finger DNA binding
domains located at the C-terminus of the protein (Figure 1),
the first two of which were described as necessary for binding to
the IFN-b promoter (1, 2, 6). Blimp1 recruits chromatin-
modifying factors, such as hGroucho and histone deacetylases,
to its target locus through a proline-rich region at the N-terminal
Frontiers in Immunology | www.frontiersin.org 2
side of the zinc fingers, and through this recruitment enables
repressive chromatin modifications and downregulates target
gene transcription (Figure 2) (7, 8).

In addition to human and murine cells, Blimp1 homologs have
been described in Caenorhabditis elegans, Drosophila melanogaster,
Xenopus, sea urchin, and zebrafish. The Blimp1 homolog BLMP-1 in
C. elegans enables proper gonadal cellmigration during development
(9), and the Blimp1 homolog inD.melanogaster,Drosophilablimp-1,
facilitates tracheal formationduringembryogenesis (10). In zebrafish,
the Blimp1 homolog u-boot (ubo) enables RB sensory neuron and
neural crest cell differentiation as well as the differentiation of slow-
twitch muscle fibers (11, 12). Thus, Blimp1 functions in terminal
differentiation not only in mammalian species but in several species
that are evolutionary distant from humans and mice, and the
molecular mechanisms of Blimp1 function may be conserved, to
some degree, in different cell types and species.

In addition to its ever-expanding role in the immune system,
discussed below, Blimp1 is also crucial for murine primordial
germ cell formation, and mice with a global deletion of Blimp1 are
embryonically lethal (13, 14). During pregnancy and embryo
implantation, Blimp1 expression increases in the uterine
epithelial cells and plays crucial roles in decidual tissue
A

B

FIGURE 1 | Schematic representation of Blimp1 and PRDI-BF1 mRNA and protein structure in mouse and human. (A) Both human and murine homologs of Blimp1
contain five Krüppel-type zinc fingers, two acidic regions (N and C terminal), proline-rich region and a PR domain. Murine Blimp1 contains 67 extra N-terminal amino
acids compared to the human homolog PRDI-BF1, and Blimp1 and PRDI-BF1 are 90% identical to each other and can be used interchangeably in functional
assays. Gene diagrams show exons as raised red boxes. Protein diagrams show exonic regions (green), acidic regions (light blue), PR domain (orange), proline-rich
region (dark blue) and zinc fingers (purple). (B) The full-length Blimp1 transcript encodes Blimp1a, while a truncated transcript encoded from an alternative promoter
(beta promoter) was name Blimp1b, and the resultant Blimp1b protein is 700 amino acids long and lacks the N-terminal acidic region and part of the PR domain
found in the full length Blimp1a protein. Protein diagrams show exonic regions (green), acidic regions (light blue), PR domain (orange), proline-rich region (dark blue)
and zinc fingers (purple). Adapted from Györy et al. (4) and Tunyaplin et al. (5).
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development (15). In fact, female mice with a conditional deletion
of Blimp1 in progesterone-responsive tissues, mediated by
crossing mice expressing CRE under control of the progesterone
receptor regulatory regions (PRCRE) to mice with “floxed” Prdm1
alleles (Prdm1F/F mice), display smaller deciduae and impaired
decidual zone establishment during pregnancy (15).

In the developing small intestine, Blimp1 crucially maintains
proper enterocyte maturation and development, and mice with a
conditional deletion of Blimp1 in intestinal epithelial cells,
generated by crossing VillinCRE mice to Prdm1F/F mice, display
impaired growth and significantly higher mortality compared to
wild-type and heterozygous controls (16, 17). Prdm1F/F-
VillinCRE+ conditional knock-out (CKO) mice also exhibit an
adult-like intestinal epithelium shortly after birth, indicating
Blimp1 ensures the proper development of the intestinal
epithelium from the suckling-to-weaning stage (17).

Chromatin Immunoprecipitation sequencing (ChIP-seq)
analyses have revealed that Blimp1 and interferon regulatory factor
1 (Irf1) share overlapping binding sites at genes related to antigen
processing and expression ofMHC class I in the embryonic day 18.5
(E18.5) developing intestinal epithelium, and expression analyses
suggestBlimp1and Irf1might compete to regulateMHCI expression
and maturation of the intestinal epithelium (18). Blimp1’s non-
redundant roles during embryonic development have been
comprehensively reviewed elsewhere (19). In this review, we will
focus on the established roles of Blimp1 as a transcriptional regulator,
both as an activator and a repressor, in immune cell subsets and
discuss opportunities to further the understanding of Blimp1’s
biology and its role in immune homeostasis and diseases.
2 THE ROLE OF BLIMP1 IN THE
IMMUNE SYSTEM

2.1 The Requirement of Blimp1 for the
Terminal Differentiation of Plasma Cells
Davis’s group discovery of Blimp1’s role in B cells was the first of
an extensive body of work linking Blimp1 to terminal effector
Frontiers in Immunology | www.frontiersin.org 3
differentiation in B lymphocytes. Ectopic expression of Blimp1 in
mature B cells drives plasmablast formation, indicating a crucial
role for Blimp1 in B cell differentiation and antibody production
(2). Work from the Calame lab showed the requirement of
Blimp1 for plasma cell differentiation in vivo by generating
mice with a conditional deletion of Blimp1 in B cells. This was
achieved by flanking exons 6-8 of the Prdm1 gene with LoxP sites
(“floxed”; Prdm1F/F) and then crossing the resulting Prdm1F/F

mice with mice bearing a CD19CRE transgene, thereby preventing
expression of functional Blimp1 protein in B cells (20). Using this
model, it was shown that CD19CRE CKO mice display depleted
plasma cell populations and serum immunoglobulin (Ig) in
response to both T cell-dependent and T cell-independent
antigens, although these mice exhibit normal B cell
development, indicating Blimp1 plays a specific and crucial
role in the development of plasmablasts and antibody secretion
during an immune response (20). Further work from the Calame
lab showed that during plasma cell differentiation, Blimp1
directly represses the transcriptional regulators c-Myc, Pax5
and Bcl6, mitigating cell proliferation and promoting terminal
differentiation (21–24). BCL6 (B Cell Lymphoma-6) promotes
cell proliferation in B cells and preventing terminal effector
differentiation, and BCL6 also directly represses Prdm1 (25,
26). During plasmablast differentiation, Blimp1 downregulates
cell proliferation and instead promotes endoplasmic reticulum
(ER) remodeling and antibody production. In fact, Blimp1 and
BCL6 act antagonistically to regulate plasma cell differentiation
by functioning as transcriptional repressors of each other (5, 24).

In Blimp1-sufficient mice, plasmablasts utilize the unfolded
protein response (UPR) to expand the ER, creating the
machinery necessary for producing and secreting antibodies.
CD19CRE Blimp1CKO mice fail to repress Pax5 in B-1 B cells
and, as a result, fail to upregulate XBP-1, a necessary step for the
UPR and consequent ER expansion for antibody secretion,
establishing Blimp1 as an integral driver of this process (22).
In fact, Blimp1a, the full-length transcript of Blimp1, is induced
in human B cells in an NF-kB dependent fashion upon activation
of UPR pathways, whereas Blimp1b, the truncated isoform of
A B C

FIGURE 2 | Described mechanisms of gene regulation by Blimp1. (A) Blimp1 can repress target gene transcription by competing with transcriptional activators,
specifically IRF1 and IRF2, and potentially IRF4, for binding to different target genes. (B) Blimp1 can repress target gene transcription by recruiting chromatin-
modifying co-factors that promote suppressive chromatin structure, notably HDAC2 (histone de-acetylase 2, de-acetylates H3), G9a (lysine histone
methyltransferase, H3K9 and H3K27), EZH2 (methylates H3K27), LSD1 (histone lysine demethylase, H3K4 and H3K9), and Prmt5 (di-methylates arginine residues,
H2A and H4). (C) Blimp1 has been shown to activate Il10 transcription by binding directly to its locus, in a cooperative manner with IRF4, and mediating chromatin
modifications that facilitate transcription (tri-methylation of H3K4 and acetylation of H3K9). Blimp1 has also been shown to cooperate with c-Maf to induce Il10
transcription in T cells, but whether or not they physically bind with each other is not known.
January 2022 | Volume 12 | Article 805260

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nadeau and Martins Blimp1 Functions in Immune Cells
Blimp1 that lacks the PR-domain (Figure 1 and further
discussed below), is not induced (27). The Blimp1a isoform is
also induced in human myeloid cell lines as a response to UPR
pathways in the same manner, indicating Blimp1 may play
conserved functions in cell stress responses in both lymphoid
and myeloid populations (27).

Blimp1 expression is not detected in human memory B cells,
and CD19CRE CKO mice retain memory B cell populations,
indicating that these cells are maintained and formed in a
Blimp1-independent manner. Prdm1F/FCD19CRE CKO mice
also show no impairment in early B cell development in the
bone marrow and production of naïve peripheral B cells.
However, CD19CRE CKO mice display impaired maintenance
of long-lived antibody secreting bone marrow plasma cells (28).
Of note, the premature expression of Blimp1 during B cell
development results in accelerated plasma cell development
and generation of self-reactive antibodies, resulting in the onset
of autoimmune disease in aged mice, further illustrating the
relevance of Blimp1 in B cell responses in general (Figure 3) (29).

2.2 Blimp1’s Role in T Lymphocytes
In addition to B cells, Blimp1 has also been extensively studied as a
crucial regulator of T lymphocyte function. Similar to observations
in B cells, Blimp1 is highly expressed in terminally differentiated
effector T cell populations, while its expression is low in naïve T
cells, indicating a conserved role for Blimp1 in mediating effector
lymphocytic functional differentiation (Figure 3). As observed in B
cells, Blimp1 also acts antagonistically to BCL6 in T lymphocytes,
mitigating follicular helper T cell (Tfh) differentiation and, thus,
Frontiers in Immunology | www.frontiersin.org 4
indirectly modulating antibody production (30). A similar
antagonism between Blimp1 and BCL6 could be operative in
CD8+ T cells, as BCL6 enables central memory CD8+ formation
and upregulates cell proliferation (31, 32), while Blimp1
downregulates cell proliferation and instead promotes CD8+

effector memory cell function, indicating the Blimp1-BCL6 axis
may also regulate CD8+ memory T cell responses (33, 34). Mice
with a conditional deletion of Blimp1 in T cells were generated in
the Calame lab by crossing the Prdm1F/F mice they originally made
(20) to mice expressing either proximal Lck promoterCRE or CD4
promoters-driven CRE expression transgenes, ultimately deleting
Blimp1 in all T cell subsets (35, 36). Both Prdm1F/FLckCRE and
Prdm1F/FCD4CRE mice develop spontaneous colitis due to
unrestrained inflammation caused by CD4+ T cells, establishing
Blimp1 as a mitigator of exacerbated inflammatory responses (37).
Similar results were obtained using a fetal liver RAG blastocyst
complementation system in which mice lacking endogenous B and
T lymphocytes (RAG1-/- mice) were reconstituted with fetal liver
cells from mice with a homozygous knock-in (KI) of a construct
encoding a truncated Blimp1 protein that lacks the DNA binding
domain (Prdm1GFP/GFP mice) (38). Further analysis of Blimp1-
deficient CD4+ T cells in vitro showed that Blimp1 controls
immune responses by repressing Il2 transcription and
consequently mitigating excessive T cell activation (36, 39). Of
note, a recent study implicated Blimp1 as a potential regulator of
pathogenic activity of tissue resident memory (TRM) CD4+ in
murine models of intestinal inflammation (40), however, that
study only compared wild type and double knockouts of both
Blimp1 and Hobit, a Blimp1-related transcription factor
FIGURE 3 | Described roles of Blimp1 in immune cell effector differentiation and function. Blimp1 expression in naïve B cells is low, however, during activation
Blimp1 is upregulated and necessary for the differentiation of antibody-secreting plasma cells. Similarly, Blimp1 is lowly expressed in naïve T cells and upregulated
during T cell activation, with higher expression in effector T cells. Further, Blimp1 plays important roles in effector T cell function, suppressing the differentiation of TFH
cells and regulating the expression of several cytokines (including Il2, Il17, Il10, Ifn), chemokines and cytokine/chemokine receptors (including Ccl8, Il-23r, Cxcr5,
Il2ra, Ccr7) and surface molecule (including PD-1 and Ctla4) genes. In dendritic cells (DCs), Blimp1 restrains autoantibody production by mitigating IL-6 production
and antigen presentation on MHCII, and Blimp1 plays a role in the differentiation of CD103+ intestinal DCs. Blimp1 is also upregulated during macrophage
differentiation, and Blimp1 overexpression in vitro is sufficient to drive macrophage differentiation.
January 2022 | Volume 12 | Article 805260
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previously shown to mediate the development of CD8+ TRM cells
in mice. The combined lack of Blimp1 and Hobit prevented the
expression of pro-inflammatory cytokines, but the lack of single
knockout mice for comparison makes it difficult to distinguish the
contributions of Blimp1 and Hobit in this effect.

More recent studies focused on distinguishing Blimp1’s
intrinsic roles in effector (TEFF) and regulatory (TREG) CD4

+ T
cells indicate that the severe phenotype of mice with T cell-
specific deletion of Blimp1 is due to alterations in the function of
both Foxp3+ TREG and TEFF cells, as mice with Foxp3CRE

-mediated deletion of Blimp1 does not fully recapitulate the
phenotype of mice with T-cell specific deletion of Blimp1 (41,
42). Blimp1’s requirement for Foxp3+ TREG cell function has
been demonstrated in several different contexts and it is, at least
in part, mediated by Blimp1’s non-redundant role in the
induction of the regulatory cytokine IL-10.

In adipose tissue Foxp3+ TREG cells, Blimp1 mitigates adipose
tissue “beiging” and consequent protection from diet-induced
obesity through the induction of IL-10 (43, 44). Blimp1 is also
highly expressed in gut microbiota-associated RORgt+Foxp3+

TREG cells, and in mice with a conditional deletion of Blimp1 in
Foxp3+ TREG cells, intestinal RORgt+Foxp3+ TREG cells display a
significant reduction in IL-10 expression and produce the
inflammatory cytokine IL-17. This confers pathogenic
properties to these cells, which have the ability to cause
intestinal inflammation when adoptively transferred to RAG1-/-

mice (45). Further, ChIP assays demonstrated that Blimp1
directly binds to the Il17 locus in Foxp3+ TREG cells and
directly represses Il17 transcription (45). Central Nervous
System (CNS) Foxp3+ TREG cells also express Blimp1, and
mice with a conditional deletion of Blimp1 in Foxp3+ TREG

cells displayed a significant reduction in IL-10 production and
increased disease severity upon experimental autoimmunity
encephalitis (EAE) induction. Blimp1’s actions in this model
were described to depend on prevention of Foxp3
methylation (46).

In follicular regulatory T cells (TFR), which function to
suppress germinal center immune responses and self-reactive
antibody production (47, 48), Blimp1 maintains these
immunosuppressive functions by directly repressing the Il-23r
and Cxcr5 genes and inducing Il2ra, Ccr7, and Ctla-4 (49).
Moreover, in Foxp3- CD4+ T cells that produce both IL-10 and
IFN-g (TR1 cells), Blimp1 is required to maintain IL-10
production during parasitic infections, as shown in murine
models (50). Although this Blimp1-dependent IL-10
production dampens an inflammatory response to the parasite,
it mitigates tissue damage due to excessive inflammation.
Overall, Blimp1 is most highly expressed in effector and
regulatory T cell populations and crucially modulates the
severity of CD4+ T cell-mediated inflammatory responses,
notably by directly repressing the expression of cytokines,
cytokine receptors and inducing IL-10 in several CD4+

T cell subsets.
In CD8+ T cells, Blimp1 has been shown to be strongly

induced after LCMV infection and enables terminal effector
differentiation (33). Mice with a conditional deletion of Blimp1
Frontiers in Immunology | www.frontiersin.org 5
in CD8+ T cells, mediated by crossing Prdm1F/F mice with mice
expressing CRE recombinase under human Granzyme B
promoter control (GzBCRE), exhibit increased numbers of
antigen-specific CD8+ effector cells after infection but stunted
terminal effector differentiation, and Blimp1 was shown to
mediate downregulation of IL-2 and control of effector
responses and proliferation in CD8+ cells, further establishing
the importance of Blimp1 in preventing unrestrained
inflammatory responses to infection (33). Another study
showed Blimp1 to be dispensable for the generation of CD8+

memory but essential for effective CD8+ T cell responses to viral
infection, as both naïve and Influenza-primed Blimp1-deficient
cells (using the fetal liver RAG blastocyst complementation
system described above) exhibit stunted production of
Granzyme B and effector differentiation in response to HKx31
viral infection (34). Further, Blimp1 was shown to repress Id3, an
inhibitor of DNA-binding, and ultimately limit the formation of
the CD8+ memory pool (51). Blimp1 has also been shown to be
required for the generation of tissue-resident memory T cells
(TRM) in several tissues, including the skin and the lung, and to
promote Granzyme B production in CD8+ TRM cells while
limiting central memory populations (52–54).

2.3 Role of Blimp1 in Myeloid Cells
2.3.1 The Role of Blimp1 in Controlling Antigen-
Presentation and T Cell Priming by Dendritic Cells
Although the vast majority of the initial studies on Blimp1’s roles
in immunity focused on its expression and function in
lymphocytes, a role for Blimp1 in some myeloid cells has also
been demonstrated (Figure 3). Studies have shown that
conditional deletion of Blimp1 in dendritic cells (DC), in
Prdm1F/F mice crossed with CD11cCRE transgenic mice, led to
heightened IL-6 production that was linked to autoantibody
generation in female mice (55). In a different study, Blimp1 was
shown to mitigate antigen-processing through direct repression of
the Ctss gene, which encodes a cathepsin required for protein
processing prior to presentation on MHC class II molecules (56).
This was linked to expansion of the follicular helper T cell (Tfh)
repertoire and the ability to generate autoreactive antibodies in
female mice (56). Further, transcriptomic analyses of human and
murine intestinal DCs reported Blimp1 expression in a subset of
CD103+ intestinal DCs, and mice with a conditional deletion of
Blimp1 in DCs (mediated by CD11cCRE mice crossed to Prdm1F/F

mice) exhibit a significant reduction in this DC subset, indicating
a role for Blimp1 in their differentiation (57). Additionally,
this Blimp1+ DC subset in humans (CD103+SIRPa+ intestinal
DCs) induced significantly more Treg differentiation in vitro than
other sorted intestinal DC populations, implicating these Blimp1+

DCs in the regulation of immune homeostasis in the intestines
(57). These studies illustrate the importance of Blimp1 in
regulating the differentiation and effector function of DCs,
inhibiting exacerbated adaptive responses and ultimately
preventing autoimmunity.

Blimp1 has also been implicated as a regulator of type I IFN
production in DCs by a mechanism that involves control of
IKKa and IRF7 activity by directly suppressing interleukin-1
January 2022 | Volume 12 | Article 805260
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receptor-associated kinase 3 (Irak3), a negative regulator of TLR
signaling (58). In this study, it was shown that the same Prdm1F/F

mice developed by the Calame group and crossed to CD11cCRE

transgenic mice display impaired responses to viral infection,
consistent with decreased type I interferon production (58).
These findings are seemly in contrast with earlier studies that
demonstrated a role for Blimp1 in directly repressing IFN-b
expression in sarcoma cells through the recruitment of repressive
co-factors to the IFN-b locus (1, 7). However, the initial studies
that implicated PRDI-BF1 (and another factor, PRDII-BF1) as
direct repressors of type I IFN relied mostly on over expression
and more recently, the same group showed that knockdown of
PRDI-BF1 or PRDII-BF1 in mouse embryonic fibroblasts and
human MG63 cells does not affect IFN-b repression after viral
infection, indicating that at least in this system, Blimp1 is
dispensable for the repression of IFN-b expression (59). Thus,
it is conceivable that Blimp1 can only function as a repressor of
IFNB1 when overexpressed, which might or might not
recapitulate Blimp1’s physiological role in repressing gene
expression. As discussed below, it is conceivable that Blimp-1’s
activity is, at least in part, regulated by its abundancy and the
availability of different co-factors (7, 8, 60–63). In summary,
Blimp1 can drive effector function in DCs and help to curtail
excessive inflammation during an immune response through
regulating T cell priming and activation.
2.3.2 The Role of Blimp1 in Other Myeloid Cells
Although studies of Blimp1 function in the myeloid lineage are
not nearly as extensive as those in lymphocytes, some of Blimp1’s
targets and mechanisms of action have been determined to be
conserved in both lineages. Similarly to that observed in T and B
lymphocytes, Blimp1 and BCL6 act antagonistically to regulate
differentiation and control homeostasis in osteoclasts, which are
required for bone homeostasis (64). Moreover, in bone marrow-
derived macrophages, Blimp1 has been shown to act as a
transcriptional repressor of the chemokine CCL8, which was
associated with regulation of the inflammatory response to
Listeria monocytogenes infection in mice (65). Importantly,
although Blimp1 expression was shown to be induced in bone-
marrow derived macrophages by Listeria monocytogenes and
Blimp1-deficient macrophages show higher Ccl8 expression
when compared to Blimp1-sufficient cells, comparative
transcriptional analysis of Blimp1-sufficient or deficient bone
marrow-derived macrophages by microarray analysis revealed a
very low number of differentially expressed genes between the
two groups, suggesting a limited role for Blimp1 in regulating
gene expression in bone marrow-derived macrophages (65). Of
note, LysMCRE- mediated gene deletion has been shown to be
inconsistent before (66) and comparative analysis of the two
different Prdm1 probes in the microarray data deposited by the
study above does indicate suboptimal deletion of Prdm1 (see
GSE53145). Nonetheless, this study also showed that Prdm1F/F

LysMCRE+ mice were less susceptible to L. monocytogenes
infection and had increased CCL8 production along with
heightened recruitment of g/d T cells to the peritoneal
cavity (65).
Frontiers in Immunology | www.frontiersin.org 6
Of note, despite the observation that peritoneal macrophages
seemed to be affected by lack of Blimp1, the potential role of
Blimp1 in other tissue-resident macrophages remains to be
investigated. In recent years, tissue-resident macrophages have
been shown to display distinct transcriptomic profiles depending
on their tissue of residence and functional needs which are
distinct from circulating monocytes, indicating a specific
function for each tissue-resident macrophage population that
differs from other monocytic cells (67). Thus, these cells might
offer yet another interesting system to elucidate the intricate roles
of Blimp1 in regulating gene expression and immune
cell identity.
3 REGULATION OF GENE EXPRESSION
BY BLIMP1

3.1 Blimp1 Is a Potent Repressor of
Gene Expression
Comparative transcriptome analysis in Blimp1-sufficient and
deficient immune cells illustrate the extensive role of Blimp1 in
regulating gene expression. Blimp1 is thought to repress
transcription by at least two different mechanisms: 1)
competing with other transcriptional activators for direct
binding to target loci and 2) directly binding and recruiting
transcriptional co-repressors to the target locus to facilitate the
formation of repressive chromatin structure (Figure 2). The first
two of the five zinc fingers in the Blimp1 protein are sufficient for
Blimp1 binding to target genes (6). The PR-domain of Blimp1 is
crucial for the recruitment of chromatin-modifying co-factors,
and this is illustrated by the inability of Blimp1b, a truncated
isoform that lacks the intact PR-domain of full-length Blimp1a,
to mediate repression of target gene expression, although it
retains the zinc finger domains that facilitate DNA binding (4).

In addition to its target genes initially identified in B cells
(discussed above), Blimp1 directly represses Pax5, c-Myc, and
Bcl6 to downregulate cell proliferation and promote terminal
effector differentiation (21, 23, 24). Blimp1 also represses c-Myc
in U937 and HL-60 human myeloid leukemia cells to
downregulate cell proliferation (68). Similar to observations in
plasma cell differentiation, Blimp1 also acts antagonistically with
BCL6 in T lymphocytes to inhibit differentiation of follicular
helper T (TFH) cells, and the antagonism between Blimp1 and
BCL6 is also observed in the regulation of osteoclast
differentiation in the bone marrow, indicating that Blimp1 can
play conserved molecular functions in both lymphoid and
myeloid lineages (Table 1) (30, 64).

In both CD4+ and CD8+ T cells, Blimp1 directly regulates the
expression of several cytokine and chemokine genes. Of note, in a
system in which both TREG and TEFF cells differentiate from the
same pool of naïve CD4+ T cells in vivo, Blimp1 regulated both
common and unique gene sets, illustrating its multifunctional
role as a transcription factor (41). In naïve CD4+ T cells, antigen-
specific TCR stimulation leads to expression of Blimp1 (35, 38),
which directly represses the Il2 and Fos genes, curtailing IL-2
expression and T cell proliferation (36). Similarly, during acute
January 2022 | Volume 12 | Article 805260
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LCMV infection, Blimp1 is upregulated in effector and memory
CD8+ T cells, and deletion of Blimp1 in these cells results in
stunted terminal effector differentiation (33). In intestinal
RORgt+ Foxp3+ regulatory T cells, Blimp1 directly binds and
represses the Il17 gene, preventing transcription and consequent
inflammatory responses (45). This repression appears to involve
Blimp1 competition with IRF4 for binding at the Il17 locus, and
mice with a T cell-specific deletion of Blimp1 show increased
binding of IRF4 to this site and enhanced IL17 expression and
Th17 differentiation (37, 45). Conversely, Blimp1 has also been
shown to bind cooperatively with IRF4 in regulatory T cells to
induce Il10 expression, illustrating the nuanced nature of the
molecular mechanisms of Blimp1 function even within the same
immune cell populations and co-factors (69). In Foxp3+ Treg

cells, Blimp1 also protects and maintains Foxp3 expression by
repressing transcription of Dnmt3a, a methyltransferase that
represses Foxp3 transcription by methylating CNS2 of the
Foxp3 gene (46).

3.2 Blimp1 Can Compete With
Transcriptional Activators and Recruit
Chromatin-Modifying Protein Complexes
Although Blimp1 has not been shown to display any intrinsic
chromatin modifying capabilities, despite having a histone
methyltransferase-like domain characteristic of other members
of the Prdm1 family (24), one of the mechanisms by which it
controls target gene transcription is through the recruitment of
various chromatin modifying co-factors (Figure 2), including at
least one lysine methyltransferase (see below). Blimp1 also recruits
Groucho family proteins, which function as transcriptional co-
repressors, including human Groucho-related gene (hGrg), which
Blimp1 has been shown to recruit to facilitate repression of IFN-b
in HeLa cells after Sendai virus infection (7).

The lysine methyltransferase G9a, also known as EHMT2,
mediates the methylation of Histone 3 lysine 9 (H3K9) and
Histone 3 Lysine 27 (H3K27) and consequent silencing of target
gene transcription (70). Similarly, histone deacetylases (HDACs)
confer repressive chromatin structure by deacetylating lysine
residues at the N-terminal tails of target gene core histones (71,
72). ChIP assays have shown that Blimp1 directly binds the IFN-
b gene and recruits G9a to this locus, consequently facilitating
repressive chromatin modifications that silence IFN-b
transcription (73). Blimp1 also directly binds HDAC1 and
Frontiers in Immunology | www.frontiersin.org 7
HDAC2, and HDAC recruitment by Blimp1 to the c-Myc
promoter facilitates deacetylation of H3 at this site and
consequent c-Myc repression in 293T human embryonic
kidney fibroblasts and 18-81 murine pre-B cells (8, 21).

Protein arginine methyltransferase 5 (Prmt5) di-methylates
arginine residues of target histones, and Blimp1 recruits Prmt5 in
murine primordial germ cells to di-methylate H2A and H4,
enabling proper germ cell development (61, 74). Lysine
demethylase 1A (LSD1), also known as KDM1A, can
demethylate both H3K4 and H3K9, and in this way LSD1 can
act as both a co-repressor and co-activator. Blimp1 interacts with
LSD1 through its proline-rich domain, which mediates
downregulation of Ciita, Pax5, and Spib, further enforcing the
terminally differentiated B cell transcriptional program (60). In
CD8+ T cells, Blimp1 and LSD1 interaction is required to repress
the expression of PD1 (Pdcd1) during the acute phase of viral
infection (75). Similarly, enhancer of zeste 2 (EZH2) methylates
H3K27 (H3K27me3), creating repressive chromatin structure of
the target gene, and Blimp1 recruits EZH2 in plasma cells to
downregulate Spib, Tlr9, Klf2, and Btg1, consistent with
transcriptional signature of plasma cells (76). Non-POU
domain containing octamer-binding protein (NONO) binds
directly to the Il6 gene, and NONO has been shown to act as a
Blimp1 co-factor in monocyte-derived dendritic cells to suppress
Il6 transcription (77). Thus, in addition to directly competing
with activators of transcription (45, 78), Blimp1 functions as a
transcriptional repressor by recruiting chromatin modifying co-
factors to target loci. Of note, Blimp1’s capability to recruit
several different co-factors could be one of the mechanisms
mediating its established multifaceted roles as both repressor
and activator of transcription.

Additionally, Blimp1’s known DNA consensus binding motif
has been show to resemble the consensus binding sites of some of
the Interferon Regulatory Factors (IRF) family members,
specifically IRF1 and IRF 2 (78) (Figure 2), which Blimp1 was
shown to directly compete with for binding at the IFN-b locus in
HeLa cells (78). Moreover, despite its potentially cooperative
binding with IRF4 at the Il10 locus in Foxp3+ TREG cells, Blimp1
could potentially compete with IRF4 for binding at the Il17a/f
CNS7 region in the same cells (45, 69). However, much remains
to be learned about how Blimp1 cooperatively and competitively
binds target loci, and as alluded to before, much of it may be
enabled by the chromatin status at different loci, the availability
TABLE 1 | Conserved and unique targets of Blimp1 transcriptional regulation.

Gene B Cells T Cells Natural Killer Cells Myeloid Repressor or Activator?

ciita Yes Not expressed n.e. n.e. Repressor
pax-5 Yes Not expressed n.e. Not expressed Repressor
igh Yes Not expressed Not expressed Not expressed Activator
spiB Yes n.e. n.e. n.e. Repressor
bcl6 Yes Yes n.e. Yes Repressor
c-myc Yes No n.e. Yes Repressor
il6 n.e. n.e. n.e. Yes Repressor
Il10 n.e. Yes n.e. n.e. Activator
Il2 n.e. Yes n.e. n.e. Repressor
Tnf n.e. n.e. Yes n.e. Repressor
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of Blimp1 co-factors in different cellular contexts and the
concentration of Blimp1 protein in different cell types, as at
least during development, Blimp1 function was shown to be
dose-dependent (63).

3.2 Blimp1 Can Also Directly Induce
Gene Expression
Although Blimp1 was initially described as a transcriptional
repressor, further studies uncovered its capability to function
as a transcriptional activator (Figure 2). In addition to its
repressive roles in B cells during plasmablast development,
including direct repression of Ciita, Pax5, Spib, and Id3,
Blimp1 also directly binds and activates several genes in pre-
plasmablasts associated with enforcing the terminally
differentiated plasmablast program, including genes involved in
ER stress pathways, as activation of the UPR response is required
for the ER expansion necessary for antibody production and
secretion in plasmablasts (79). As shown by ChIP-seq, Blimp1
binds an enhancer region of immunoglobulin heavy chain (Igh)
and activates transcription, continuing to promote the
progression from pre-plasmablast to terminally differentiated
plasmablast (79), however, the exact mechanism by which
Blimp1 induce Igh expression in not clear.

In conjunction with IRF4, which has been shown to induce
Blimp1 expression in lymphocytes (80, 81) Blimp1 directly
promotes Il10 transcription in Foxp3+TREG cells, promoting an
anti-inflammatory response (69). This was first observed in
Foxp3+ Treg cells in which Blimp1 was found to be required
for Il10 production, and Blimp1 and IRF4 both induce the
Foxp3+TREG effector transcriptional program, as shown by
microarray gene expression analysis (69). Further ChIP studies
revealed both Blimp1 and IRF4 bind to the Il10 locus. In fact, as
alluded to above, Blimp1 induces Il10 expression in several TREG

cell subsets, including TR1 cells, adipose tissue TREG, CNS TREG,
and RORgt+Foxp3+ intestinal TREG cells (44–46, 50). Blimp1 also
acts synergistically with c-Maf in Foxp3- effector T cells to
promote IL-10 production during Toxoplasma gondii infection,
mitigating excessive inflammation and tissue damage (82). Thus,
although Blimp1 was initially characterized as a transcriptional
repressor, recent studies demonstrate that Blimp1 can act as both
transcriptional repressor and activator, illustrating a multifaceted
role for Blimp1 in gene regulation (Figure 2).

The mechanism (s) underlying Blimp1’s role as a
transcriptional activator are far less understood than the ones
regulating Blimp’s repression function. Blimp1’s synergistic
partnership with IRF4 and c-Maf has not been studied in
detail, e.g., it remains to be determined if and how Blimp1
physically interacts with these and other factors or if both
molecules just bind to DNA in close proximity to each other.
Given the ample repertoire of transcriptional regulators that
Blimp1 can partner with, including chromatin modifiers such as
LSD1, which can mediate both repressing and activating
chromatin modifications, it is likely that differential physical
interaction/recruitment of co-factors mediates Blimp1 apparent
opposite function in regulating gene expression. However, this
remains to be examined in detail.
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4 BLIMP1 AND REGULATION OF
HUMAN DISEASE

Consistent with the established role of Blimp1 as an essential
regulator of immune cell function (Figure 3), numerous disease-
linked single nucleotide polymorphisms (SNP) have been
associated with the PRDM1 gene. PRDM1-associated risk
alleles have been linked with ulcerative colitis and Crohn’s
disease through a comprehensive meta-analysis of six genome-
wide association studies (GWAS) on ulcerative colitis patients,
and another study identified one particular SNP, Ser354Asn,
located at position 106659789 on chromosome 6, is associated
with decreased plasmablasts, increased T cell proliferation and
increased IFN-g production (83, 84). PRDM1 risk alleles have
also been associated with systemic lupus erythematosus (SLE),
and females carrying the rs548234 PRDM1 SNP, located at
position 106120159 on chromosome 6, display a reduction in
PRDM1 expression in monocyte-derived dendritic cells (Mo-
DCs) but not B cells in the peripheral blood (85). Meta-analysis
of rheumatoid arthritis GWAS studies also revealed the presence
of the rs548234 SNP as a risk allele, further suggesting the
implication of PRDM1 in autoimmune disease pathogeneis (86).

Additionally, PRDM1 has been identified as a tumor
suppressor gene and found to be inactivated in several
lymphomas, including natural killer cell lymphoma (NKCL),
diffuse large B cell lymphoma (DLBCL), and anaplastic large T-
cell lymphoma (ALCL) (87–89). Further, BCL6 expression has
been shown to be unrestrained in some lymphomas, and it has
been proposed that this mediates downregulation of PRDM1 and
consequent cancer progression due to a dysregulated Blimp1-
BCL6 axis (26, 87). Taken together, these studies suggest
potentially crucial roles for Blimp1 in both lymphoid and
myeloid lineages in humans. In human natural killer (NK)
cells, PRDM1 is induced after stimulation both in vitro and in
vivo, and PRDM1 directly binds and suppresses IFNG and TNF
transcription, potentially restraining a prolonged inflammatory
response by NK cells (90). However, mechanisms of PRDM1
function in other human immune cells are not fully explored and
may be crucial to understanding autoimmune disease
pathogenesis and cancer. Importantly, studies focusing on the
potential functional consequences of PRDM1-associated disease-
linked SNP have so far only established association between these
variants and altered immune cell function, and no direct causal
roles have been attributed to PRDM1-associated variants in
human disease.
5 DISCUSSION AND FUTURE
DIRECTIONS

Although the functions of Blimp1 have been extensively studied
in B and T lymphocytes, the underlying molecular mechanisms
of action have not been fully elucidated and require further
studies. Overall, the mechanisms underlying regulation of gene
expression by Blimp1 are complex and likely nuanced, including
the dependence on Blimp1 protein concentrations and the
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reliance on the availability of various co-factors and other
transcriptional regulators. This supports the notion that
Blimp1 function is context-dependent and might vary
depending on the particular immune cell subset and tissue
microenvironment. However, the potential role of Blimp1 in
regulating tissue homeostasis and immunity is only now
beginning to be explored. Studies focusing on this aspect of
Blimp1’s biology have so far focused solely on T cells, specifically
TRM (40, 52–54). In the myeloid compartment, Blimp1 studies in
specific immune cell subsets in vivo are still very few and mostly
limited to bone marrow-derived myeloid cells, only rarely
focused on splenic and blood-monocyte-derived DC (55, 56)
or peritoneal macrophages (65). The recent understanding of the
vast heterogeneity of tissue-resident myeloid populations by
high-throughput sequencing studies highlighting the distinct
tissue-imprinted transcriptomic and epigenomic profiles of
tissue-resident myeloid cells (67) supports the notion that the
role of transcription factors in myeloid cell homeostasis and
function in vivo goes far beyond what can be learned from
studies of in vitro-derived myeloid cells (91, 92). Considering
this, it is likely that the role of Blimp1 in regulating myeloid cell
function and potentially overall tissue immune homeostasis is far
more extensive than what has been described so far, and moving
forward, the field would greatly benefit from further studies on
Blimp1’s function in tissue-resident immune cells, which has the
Frontiers in Immunology | www.frontiersin.org 9
potential to further our understanding of Blimp1’s biology in
different systems and its implications in human disease.
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