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DNA damage repair (DDR) comprises the detection and correction of alterations in the
chemical structure of DNA. The dysfunction of the DDR process has been determined to
have important implications for tumor carcinogenesis, malignancy progression, treatment
resistance, and prognosis assessment. However, the role of the DDR process in gastric
cancer (GC) remains to be fully understood. Thus, a total of 2,019 GC samples from our
hospital (Harbin Medical University Cancer Hospital in china) and 12 public data sets were
included in our study. In this study, single-sample gene set enrichment analysis (ssGSEA)
was used to generate the DDR pathway activity profiles of 8 DDR sub-pathways and
identify a DDR pathway signature by combining the DDR sub-pathway gene sets. The
DDR pathway profiling’s impacts on the clinical outcomes, biological functions, genetic
variants, immune heterogeneity, and treatment responses were analyzed through
multidimensional genomics and clinical data. The results demonstrate that the DDR
pathway profiling was clearly distinguished between tumor and normal tissues. The DDR
pathway profiling reveals patient-level variations, which may contribute to explaining the
high heterogeneity of human GC for the biological features and treatment outcomes.
Thus, tumors with low DDR signature scores were independently correlated with shorter
overall survival time and significantly associated with mesenchymal, invasion, and
metastasis phenotypes. The statistical model integrating this DDR pathway signature
with other clinical predictors outperforms each predictor alone for predicting overall
survival in discrimination, calibration, and net clinical benefit. Moreover, low DDR
signature scores were tightly associated with genome stability, characterized by low
tumor mutational burden (TMB) and low fractions of genome alteration. Furthermore, this
study confirms that patients with low DDR pathway signature scores might not benefit
from adjuvant chemotherapy and a monoclonal antibody directed against programmed
cell death-1 ligand 1 (anti-PD1) therapy. These findings highlighted that the DDR pathway
profiling confers important implications for patients with GC and provides insights into the
specific clinical and molecular features underlying the DDR process, which may help to
facilitate clinical management.
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INTRODUCTION

Gastric cancer (GC) is the sixth most prevalent cancer and the
third most common cause of cancer-related death worldwide (1).
Due to the lack of early symptoms, the majority of the patients
with GC are usually diagnosed at an advanced stage (2). The
patients with advanced GC still have a poor prognosis (< 20%)
despite several treatment options, including surgical resection,
targeted therapy, and chemotherapy (3). Immunotherapy is
being explored as adjuvant therapy for patients with advanced
GC due to the poor prognosis after standard treatment with
conventional chemotherapy.

Immune checkpoint inhibitors (ICIs), especially the
programmed cell death-1 ligand 1 (anti-PD-1) antibody
dramatically changed the therapeutic management for patients
with advanced GC. However, some limitations exist using this
treatment, namely its uncertain curative effects, the low objective
response rates (ORRs), several adverse effects, and even drug
resistance after the initial patient response (4–7). Therefore, a
biomarker that can predict the efficacy of ICI therapy is urgently
needed to improve the response rate of GC patients to ICI
treatment. Currently, some studies are demonstrating that
biomarkers, including the combined positive score (CPS),
tumor mutation burden (TMB), infection with Epstein-Barr
virus (EBV), and microsatellite instability (MSI) (8, 9) may be
used to predict the response to anti-PD-1 therapy in GC.
Nevertheless, some limitations hinder the clinical potential
application of these ICI markers. For instance, the TMB lacks
standard and consistent cut-off values (10). Hence, screening
other biomarkers for ICI therapy is demanding to better stratify
patients and previously identify the patients that would benefit
from the immunotherapy.

DNA damage repair (DDR) consists of the detection of
alterations and correction in DNA chemical structure (11).
Generally, the complete DDR pathway contains 8 core sub-
pathways, namely base excision repair (BER), nucleotide excision
repair (NER), mismatch repair (MMR), Fanconi anemia (FA)
pathway, homology-dependent recombination (HR), non-
homologous DNA end joining (NHEJ), direct damage reversal/
repair (DR), and translesion DNA synthesis (TLS) (12). The
interaction of these DNA repair processes repairs DNA damage
accurately and promptly prevents gene distortion, and ensures
the cell genome’s integrity (13). Consequently, dysfunction of the
DDR process has important implications for tumor formation
and malignant progression. In addition, tumors that harbor
ineffective DNA repair machinery are likely to exhibit greater
genomic instability, which is expected to drive malignant
progression and generate more aggressive tumor phenotypes
(14). Meanwhile, the cellular efficiencies of these repair processes
also play a central role in tumor responsiveness during the
treatment of patients with cancer (14). The mechanism of
action of many anti-tumor agents is to generate DNA damage
or target synthetic lethality. The most marked examples are the
hypersensitivities of DDR-deficient tumors to poly (ADP-ribose)
polymerase (PARP) inhibitors and plat inum-based
chemotherapies (15–17). The importance of the DDR process
has been highlighted in recent years regarding the development
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and application of immunotherapy for tumor treatment. The
evidence indicates that DDR process disorders may induce a
hypermutated phenotype, causing a higher TMB (18, 19). The
high TMB could generate more neoantigens, facilitating immune
recognition and triggering spontaneous tumor-infiltrating
lymphocytes (TIL) infiltration (10, 20). Therefore, taken
together these results indicate a strong correlation between the
DDR process activity and ICI therapy response.

Human GC is a biologically heterogeneous disease (21),
exhibiting a wide range of malignant features and
responsiveness to oncologic treatments. This study aims to
understand if the biologically heterogeneous of GC disease
may be explained at least in part for the different activity levels
of the DDR pathway. Thus, a method that successfully quantifies
the DDR pathway activity might have broad applications in
clinical oncology because it would predict patient prognosis and
treatment sensitivity. However, only a few studies have been
focused on the activity level of the DDR process, and to what
extent it affects GC patients’ clinical outcomes and drug response
remain to be unclear.

In this study, the single-sample gene set enrichment analysis
(ssGSEA) was performed to indirectly quantify the DDR pathway
activity. Moreover, a novel patient-level DDR pathway profiling
approach was developed to explore the DDR pathway activity’s
impacts on the clinical outcomes, biological features, genetic
variants, immune heterogeneity, and drug responses. The results
obtained provide a valuable resource to guide both mechanistic
and therapeutic analyses of the role of the DDR process in human
GC, which has the promise to facilitate clinical management.
MATERIALS AND METHODS

Gastric Cancer Dataset Source
This study includes 268 patients with GC, being studied in terms
of demographic information, clinical data, and also tissue
samples. The samples were obtained from patients who had
undergone gastrectomy as the primary treatment between 2016
and 2019 at Harbin Medical University (HMU) Cancer Hospital
in China to construct the HMU-GC cohort (22). Surgical
specimens obtained at operation were immediately frozen and
stored at -80°C until required. All samples were collected after
written informed consent was obtained from the patients. This
study was approved by the HMU Cancer Hospital Institutional
Review Board. For high-throughput mRNA sequencing, 1 µg
RNA per sample was used for library construction with the
NEBNext® UltraTM RNA Library Prep Kit for Illumina® and
were sequenced with Illumina HiSeq 2000. RNA isolation, library
construction, and high-throughput mRNA sequencing were
performed by Novogene (Beijing, China). The data were
deposited in the Gene Expression Omnibus (GEO) repository
(GSE184336 and GSE179252) (22).

Gastric cancer gene-expression data sets were systematically
searched in GEO and The Cancer Genome Atlas (TCGA)
databases. Data sets with missing follow-up data were
excluded. A total of 12 public treatment-naive GC cohorts,
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namely (TCGA-STAD (Stomach Adenocarcinoma), GSE66229/
ACRG (Asian Cancer Research Group), GSE15459, GSE57303,
GSE34942, GSE38749, GSE29272, GSE84437, GSE26901,
GSE26899, GSE13861, GSE28541) were enrolled for further
analysis. The basic information for the 12 pubic datasets is
shown in Table S1.
Data Preprocessing
For microarray data, the raw CEL files for the data sets from
Affymetrix® were processed using the robust multichip average
(RMA) algorithm for background correction and normalization
through the affy package (23, 24). The raw data from Illumina®

were processed using the limma package (25). For microarray
data sets without raw data, the normalized matrix files were
downloaded directly. For high-throughput RNA sequencing data
from the HMU-GC and TCGA-STAD datasets, raw read count
values were transformed into transcripts per kilobase million
(TPM) values, which are more similar to those generated from
microarrays and are more comparable between samples (26).

The Ensembl gene IDs and probe IDs were converted into an
official gene symbol using the biomaRt package (27). Multiple
probes (or Ensembl) IDs mapping were collapsed to a single
official gene symbol by keeping the probe (or Ensembl) ID with
the highest average expression. ComBat algorithm in the sva
package was to correct the batch effects from non-biological
technical biases among different datasets (28).
DDR Pathway Curation and Profiles
DDR gene list was assembled from relevant gene lists, including
the Molecular Signatures Database (MSigDB) (29), an online
catalog of DDR genes from recently published resources (https://
www.mdanderson.org/documents/Labs/Wood-Laboratory/
human-dna-repair-genes.html). Moreover, the DDR gene list
also knowledge-based curation of information on specific DNA
repair pathways from other published literature (12, 30–32).
Multiple gene sets for the same pathway were combined, being
identified a total of 490 DNA repair genes with documented roles
in the DDR process. The complete gene list is listed in Table S2.

The DDR pathway signature was defined as the sum of the
remaining 8 sub-pathways. The GSVA package (33) was used to
perform ssGSEA to generate individual patient DDR pathway
profiles of normalized enrichment scores (NESs). The ssGSEA
NESs were used to construct the DDR pathway profiles,
reflecting the activity level of the DDR pathways in each sample.
Associating DDR Pathway Profiles With
Prognostic Features
The samples from the patients with survival time lower than
three months were excluded, aiming to enhance the robustness
of downstream analyses (34, 35). Univariate and multivariate
Cox regression analyses were performed to calculate the hazard
ratios (HR) and 95% confidence interval (CI). To compare the
survival rates between different groups the Kaplan-Meier survival
analysis with log-rank test was used. Moreover, the subsets’
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prognostic differences were also compared by the restricted
mean survival time (RMST) analysis (36). To study the
interaction effect subgroup analyses were performed.

Additionally, the DDR pathway signature was integrated with
other independent prognostic factors to generate a composite
nomogram for model visualization and clinical application. The
nomogram’s predictive value was compared with the TNM
staging system by the C statistic. The performance of the
composite model was evaluated by the calibration curve, time-
dependent receiver operator characteristic (ROC) analysis, and
decision curve analysis (DCA) (37).
Functional and Pathway Enrichment
Analysis
Weighted correlation network analysis (WGCNA) was
performed using the WGCNA package, which aims to identify
the purity-related gene modules (38). The scale-free topology
fitting index of 0.85 was set as the threshold to construct the
signed weighted gene co-expression network. The minimum co-
expression module size was set to 30, and the merge cut
minimum module merge cut height was set to 0.25. A biweight
midcorrelation coefficient (bicor) > 0.4 and p-value < 0.05 were
selected as the thresholds to find gene modules significantly
associated with the DDR pathway ssGSEA scores.

Gene annotation enrichment analysis was performed using
the clusterProfiler package (39). Gene set enrichment analysis
(GSEA) was also performed to infer the biological processes
related to the DDR process (40). In addition, gene set variation
analysis (GSVA) was used (33) to explore the significantly
enriched pathways in different subsets. The well-defined
“hallmark gene sets” were selected for the enrichment
analysis (29).
Genomic Alterations and Mutations
Somatic mutation and copy number variation (CNV) data
from the TCGA-STAD cohort were collected using the
TCGAbiolinks package (41). The GSE62717 dataset from
GSE62254/ACRG cohort was also downloaded for the CNV
analysis. Mutation data were analyzed and summarized using
the maftools package with the initial removal of 100 frequently
mutated genes (42, 43). CNV events were detected by the GISTIC
2.0 approach using the segmented Affymetrix SNP 6.0
microarray data (44).
Estimation of Infiltrating Cells in the GC
Microenvironment
To quantify the infiltration level of stromal and immune cells for
each GC sample, the stromal and immune scores were calculated
using the ESTIMATE algorithm (45). MCPcounter algorithm
was used to quantify the proportions of specific immune and
stromal cells in the GC samples in agreement with the guideline
for transcriptome-based cell-type quantification methods (46,
47). Moreover, based on the H&E whole-slide images from the
TCGA-STAD cohort, a convolutional neural network approach
January 2022 | Volume 12 | Article 806324
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was used to identify the percent values of TILs in digitized H&E-
stained tissue specimens (48).
Estimation of the Potential Chemotherapy
Response
The most commonly used chemotherapeutic agents in GC
treatment (i .e. , 5-fluorouracil , cisplatin, oxaliplatin,
capecitabine, paclitaxel, docetaxel, irinotecan, and epirubicin),
were selected to predict the chemotherapeutic response. Based
on the two public drug sensitivity databases, Genomics of Drug
Sensitivity in Cancer (GDSC) (49) and Cancer Therapeutics
Response Portal (CTRP) (50), the oncoPredict package (51)
was implemented for chemotherapeutic response prediction
using ridge regression to estimate the half-maximal inhibitory
concentration (IC50) for each sample. The prediction accuracy
was evaluated by 10-fold cross-validation based on each training
set. Default values were selected for all parameters, including the
combat algorithm for removing batch effect and the mean value
for summarizing duplicate gene expression.
Estimation of the Potential Immunotherapy
Response
RNA-seq data of PRJEB25780 study from 45 GC patients who
received the anti-PD-1 therapy were downloaded for analyses
(9). The submap algorithm was used to evaluate the expression
similarity between the DDR-related subgroups and the patients
with different responses (52). Furthermore, the relationship
between the DDR-related subgroups and immunotherapy
response was predicted using the Tumor Immune Dysfunction
and Exclusion (TIDE) web tool (http://tide.dfci.harvard.edu/)
(53). Patients with higher TIDE scores have a higher chance of
anti-tumor immune escape, thereby exhibiting a lower
immunotherapy response rate.
Statistical Analyses
Mann-Whitney or Kruskal-Wallis tests were used to study the
existing differences between groups for continuous variables. Two-
sided Pearson’s chi-squared or Fisher exact tests were used to
analyze the categorical data. Associations between continuous
variables were tested using Spearman correlation analysis. All
the statistical analyses performed were conducted using R
software, and a two-sided p-value was tested. The p-value < 0.05
was considered statistically significant. The Benjamini-Hochberg
method was applied to control the false discovery rate (FDR) for
multiple hypothesis testing.
RESULTS

Tumor and Normal Tissues Exhibited
Distinct Patterns of DDR Pathway Activity
To investigate the putative contribution of the DDR pathway’s
activity in GC, in this study ssGSEA method was used to analyze
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the activation level of the DDR pathway of samples in the HMU-
GC, ACRG, and GSE29272 cohorts. Principal component
analysis (PCA) determined that the DDR pathway profiles can
distinguish with precision between tumor and normal tissues for
GC patients (Figure 1A). A significant statistical difference was
found in the activation level of the DDR pathways between the
tumor and normal tissues in each cohort (Figure 1B). Apart
from the DR pathway, the pathway activity of the other 7 DDR
processes was consistently higher in GC tissues. These results
confirmed the critical role of the DDR process in GC.

Correlation of DDR Pathway Profiles With
Clinical and Biological Features
DDR pathway profiling was applied in all the 2,019 patients
included in this study. The results show significant correlations
among the 8 core DDR pathways (Figure 2A). An important
result to be mentioned is that the DR pathway gene sets cluster
distinctly, indicating that they might capture disparate
information. The correlation of DDR pathway profiles was
then analyzed with clinical variables (Figure 2B). There was a
significant but weak correlation with sex for 5 of 8 DDR
pathways (Spearman rho [r], range, 0.038 to 0.063) and with
age for 7 of 8 DDR gene sets (r, range, 0.023 to 0.146). The DDR
pathway activity was also weakly associated with the tumor,
nodes, metastases (TNM) stage (r, range, -0.1 to -0.063) and the
Lauren classification (r, range, -0.275 to -0.087). Thus, DDR
pathway profiles were generally weakly correlated with clinical
factors, indicating that DDR pathways might provide
independent information. Further, the prognostic information
that might be contained in the DDR pathway profiles was
analyzed. In univariate analysis, 7 of the 8 DDR pathways
demonstrated statistically significant associations with a higher
overall survival (Figure 2C). The age, TNM stage, and Lauren
classification were also significantly associated with overall
survival for GC patients (Table 1). To control for confounders,
the individual pathways in multivariate analysis were examined.
After adjusting by age, TNM stage, and the Lauren classification,
6 of 8 DDR pathways were found to be significantly associated
with these outcomes (Figure 2D).

Because DDR pathway profiles are closely related to patient
prognosis, the biological features associated with the DDR process
were analyzed. In this case, the DDR pathway ssGSEA score was
correlated with all robustly expressed mRNAs, generating a pre-
ranked list sorted by the Spearman correlation coefficient, and
performed GSEA (Figure 2E). In addition to the DNA repair-
related pathways (i.e., DNA_REPAIR, UV_RESPONSE_UP, and
UV_RESPONSE_DOWN), some proliferation- and metabolism-
related (i.e., E2F_TARGETS, G2M_CHECKPOINT, and
GLYCOLYSIS) pathways were significantly activated in GC
samples with higher DDR pathway ssGSEA scores. However,
invasion- and metastasis-related pathways, such as epithelial-
mesenchymal transition (EMT), hypoxia, and myogenesis, were
significantly enriched in GC samples with lower DDR pathway
ssGSEA scores. Furthermore, the activities of some immune-
related pathways (i.e., COMPLEMENT and COAGULATION)
were markedly higher in the low-score group than in the high-
January 2022 | Volume 12 | Article 806324
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score group. These findings confirmed that patient-level variation
in DDR pathways carried prognostic and biological information,
which might be investigated in vivo and at the individual patient
level for possible use in the clinical management of GC.

Identification of DDR Pathway Signature
This study intended to develop a prognostic signature biomarker
based on combining the DDR sub-pathway gene sets since DDR
pathway profiles are strongly associated with different clinical
outcomes and biological functions. This DDR pathway signature
was significantly associated with overall survival (Table 1). GC
Frontiers in Immunology | www.frontiersin.org 5
patients were further stratified into two subgroups, using the
optimal cut-off values (0.525) determined by the X-tile software
(54). Kaplan-Meier survival analysis showed that patients with
high DDR pathway signature scores had significantly longer
overall survival than those with low scores (HR, 0.694; 95% CI,
0.608 to 0.792) (Figure 3A). RMST difference also determined a
benefit of DDR pathway signature scores at various time points,
and the prognostic benefit increases over time (Table 2). For
example, RMST differences for overall survival between the two
subgroups were two months in the third year, five months in the
fifth year, and even 14 months in the tenth year.
A

B

FIGURE 1 | DDR pathway profiling between tumor and normal tissues. (A) Principal component analysis (PCA) plots to show distinct patterns of DDR pathway
profiling between tumor and normal tissues in the HMU-GC, ACRG, and GSE29272 cohorts. (B) Violin plots show the significant differences of DDR pathway profiles
between tumor and normal tissues in the HMU-GC, ACRG, and GSE29272 cohorts.
January 2022 | Volume 12 | Article 806324
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All relevant clinical variables were included in a multivariate
analysis and the results point that this DDR pathway signature
was independent of standard clinicopathological variables
(Table 1). Subgroup analyses were performed according to age,
sex, Lauren classification, and TNM stage to explore the
interaction effect between the DDR pathway signature and
Frontiers in Immunology | www.frontiersin.org 6
clinical factors. No significant interaction effect was observed
(Table 3), indicating that the DDR pathway signature is a robust
prognosticator, retaining its prognostic relevance even after
consideration of classic clinicopathologic features.

To support the clinical potential use of these findings, a
nomogram was constructed for predicting overall survival
A B

C

D

E

FIGURE 2 | Association of DDR pathway profiles and clinical and biological features. (A) The correlation network plot shows the relationship among the 8 DDR sub-
pathways. (B) Heatmap shows the correlation of DDR pathway profiles and clinical features. (C) The Forest plot shows the univariate Cox analysis for the 8 DDR
sub-pathways. (D) The Forest plot shows the multivariate Cox analysis for the eight DDR sub-pathways, adjusting by age, TNM stage, and the Lauren classification.
(E) Heatmap shows the GSEA normalized enrichment scores. Grey cells mean non-significant results.
January 2022 | Volume 12 | Article 806324
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based on the DDR pathway signature and other clinical
prognostic variables (Figure 3D). The composite nomogram
(C statistic, 0.695; 95% CI, 0.673 to 0.716) achieved significant
improvement for assessing overall survival than the TNM
classification (C statistic, 0.675; 95% CI, 0.654 to 0.696), which
further increased the C statistic by 0.02 (95% CI, 0.008 to 0.028).
The time-dependent receiver operating characteristic (ROC)
curve also showed that the composite nomogram had a larger
area under curve (AUC) value than the TNM classification and
DDR pathway signature for predicting GC prognosis
(Figure 3B). The calibration curve detected an optimal
prediction between the nomogram prediction and actual
observations (Figure 3C). A good calibration was obtained as
well as discrimination for the composite model.

Finally, the net clinical benefit of the composite nomogram
was compared with that of the other two models through DCA
curves. The composite nomogram demonstrated a larger net
benefit in comparison with the TNM classification and DDR
pathway signature within most of the above threshold
probabilities (Figure 3E), indicating that the composite
nomogram had better clinical utility for predicting overall
survival in patients with GC.

Biological Insights of the DDR Pathway
Signature
GSEA was first performed to explore the possible mechanism of
the DDR pathway signature (Figure 4A). The results indicated
that pathways related to DNA repair, proliferation, and
metabolism hallmarks were significantly enriched in GC
samples with higher DDR pathway signature scores. In
contrast, stromal and immune-related pathways were activated
considerably in GC samples with lower DDR pathway signature
scores. Further, GSVA confirmed significant differences in
biological functions between the high-score and low-score
groups (Figures 4B, C). Moreover, some DDR-related,
proliferation-related, and metabolism-related pathways were
Frontiers in Immunology | www.frontiersin.org 7
found to be significantly activated in the high-score group
compared with the low-score group. However, the activation
level of some stromal and immune pathways was markedly
higher in the low-score group than in the high-score group.

Additionally, WGCNA was used to obtain the DDR pathway
signature-related modules. The top 5000 most variant genes,
measured by the median absolute deviation (MAD), were
selected for the WGCNA. The cluster dendrogram was
constructed according to the optimal soft threshold power of 8
(Figure S1A), and 9 color modules were identified (Figure S1B).
Genes that could not be included in any module were placed in
the grey module and removed. Later, the eigengene of the
selected traits and modules to evaluate the module-trait
relationships were then correlated. Three modules (i.e.,
turquoise, green, blue) were highly significantly associated with
the DDR pathway signature (|R| > 0.4) (Figure 4D). Gene
significance significantly correlated with module membership
in each module (Figure S1C), suggesting that genes in these
modules might play essential biological roles related to the
DDR process.

Module enrichment analyses were further performed to
explore the DDR pathway signature-related modules’
functional features (Figure 4E). Genes in the blue module were
significantly enriched in the proliferation- and metabolism-
related pathways, which is in full agreement with the above
results. The top enriched terms for genes in the green and
turquoise modules were involved invasion, metastasis, and
immune response. These findings implied that the DDR
pathway profiles reflected the expression alterations of genes
involved in GC’s multiple vital hallmarks.

Genomic Mutations and Alterations
Underlying the DDR Pathway Signature
Genomic data, including mutation profile and somatic copy
number alteration (SCNA) data from the TCGA-STAD
dataset, were first analyzed to explore the possible genomic
TABLE 1 | Univariate and multivariate cox regression analysis of the DDR pathway signature.

Univariate analysis (n = 1896) Multivariate analysis (n = 1248)

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Age
Increasing years 1.013 (1.007, 1.019) <0.001 1.019 (1.011, 1.026) <0.001
Gender
Female 1 [Reference]
Male 1.069 (0.929, 1.230) 0.352
Lauren classification
Intestinal 1 [Reference] 1 [Reference]
Mixed 1.494 (1.165, 1.914) 0.002 1.409 (1.081, 1.837) 0.006
Diffuse 1.388 (1.174, 1.642) <0.001 1.289 (1.075, 1.546) 0.011
TNM stage
Stage I 1 [Reference] 1 [Reference]
Stage II 2.016 (1.372, 2.963) <0.001 1.771 (1.181, 2.657) 0.006
Stage III 4.268 (3.006, 6.060) <0.001 3.855 (2.664, 5.580) <0.001
Stage IV 8.836 (6.157, 12.679) <0.001 8.001 (5.462, 11.721) <0.001
DDR pathway signature
Increasing values 0.098 (0.040, 0.240) <0.001 0.207 (0.068, 0.630) 0.006
January 2022 | Volume 12 | Articl
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A

D

E

B

C

FIGURE 3 | Identification of DDR pathway signature. (A) Kaplan-Meier overall survival curve for patients in the low and high DDR signature score groups. The
survival difference was detected by log-rank test. (B) Time-dependent ROC curves for the composite model, DDR pathway signature model, and TNM classification
model. (C) Calibration curves of observed and predicted probabilities of the composite model for 3-year, 5-year, and 10-year overall survival. (D) Composite
nomogram prediction of 3-year, 5-year, and 10-year overall survival. (E) DCA curves of the composite model, DDR pathway signature model, and TNM classification
model for 3-year, 5-year, and 10-year overall survival.
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features underlying the DDR pathway-related prognostic
signature. A significantly higher TMB was detected in the high
DDR signature score group (Figure 5A). Since more mutations
often caused more neoantigens (55), we also determined that
neoantigens positively correlated with the DDR pathway
signature scores (Figure 5B).

Regarding the mutation frequencies, after filtering out genes
with low-frequency mutations (i.e., less than 5% of all GC
samples), 244 significantly mutated genes were found between
the two subgroups (all FDR < 0.05) (Table S3). As shown in the
oncoprint plot (Figure 5C), most genes, including TP53,
CSMD3, and PIK3CA, were found to be significantly more
mutated in the high-score subgroup. In contrast, the mutation
rates of CDH1 were more frequent in the low-score subgroup.

The CNV data were then investigated, showing distinct
chromosomal alteration patterns between the low-risk and
high-risk groups in the TCGA cohort (Figure 5D). A
significantly higher fraction of genome alteration, both the
fraction of genome lost and genome gained, was detected in
the high-score subgroup than in the low-score subgroup
(Figure 5E). The distinct chromosomal alteration patterns
were further confirmed by the data from the ACRG cohort
(Figure S2).

The association between the DDR signature and chromosome
instability was further investigated since the dysfunction of the
DDR process is closely related to chromosome instability (11),
The TCGA classification showed that the genomically stable
(GS) subtype was characterized with the lowest DDR pathway
signature scores (Figure 5F). Moreover, the aneuploidy scores
Frontiers in Immunology | www.frontiersin.org 9
also significantly correlated with the DDR signature score in the
TCGA and ACRG cohorts (Figure 5G). These results suggested
that the high activity level of the DDR pathway was strictly
related to genome and chromosome instability.

Association of DDR Pathway Signature
and Immune Microenvironment
The relationship between the tumor microenvironment (TME)
status and the DDR pathway signature to characterize their
immune heterogeneity was investigated since GC cases with
lower DDR pathway signature scores were markedly enriched
in stromal and immune activation pathways. The results
demonstrate that both the stromal and immune scores,
representing respectively, stromal and immune cell infiltration
in tumor tissue were inversely correlated with the signature
scores and were significantly higher in the low-score group
(Figures 6A, S3A). These results strongly suggested that
patients with a higher DDR signature score were characterized
by a high level of tumor purity (Figure S3A). Contrastingly,
patients with decreased signature scores had a significantly
increased stromal and immune cells infiltration. Later, the
MCPcounter algorithm was applied, aiming to gain insight
into the relative abundances of stromal and immune
infiltrating cell subpopulations against the DDR pathway
signature (Figure 6A). Consistent with the ESTIMATE
outcomes, fibroblasts, and endothelial cells, representing
stroma components, exhibited a consistent negative correlation
(r < -0.4) with the DDR pathway signature score. Meanwhile,
most immune cells, such as T cells, B cells, neutrophils, and
TABLE 2 | Restricted mean survival time (RMST) between different DDR pathway signature subgroups in different time points.

Timepoint High purity (n = 976) Low purity (n = 920) RMST difference#

RMST 95%CI RMST 95%CI Effect size 95%CI P-value

12 months 11.412 11.301 11.524 11.225 11.094 11.355 0.188 0.016 0.359 0.032
36 months 29.071 28.379 29.763 26.966 26.209 27.723 2.105 1.079 3.131 <0.001
60 months 43.613 42.231 44.995 38.599 37.141 40.058 5.014 3.005 7.023 <0.001
84 months 57.169 55.042 59.296 48.512 46.325 50.699 8.657 5.607 11.707 <0.001
120 months 75.61 72.314 78.905 61.848 58.51 65.186 13.761 9.071 18.452 <0.001
Januar
y 2022 | Volume 12 | Article
RMST, restricted mean survival time; CI, confidence interval; #, RMST difference = RMSThigh DDR signature score - RMSTlow DDR signature score.

The bold values mean that the P value is statistically significant.
TABLE 3 | Subgroup analysis for the DDR pathway signature among different clinical features.

Samples Hazard ratio (95% CI) P-value for interaction

Gender
Female 636 0.048 (0.010, 0.233) 0.299
Male 1260 0.131 (0.044, 0.391)

Age
< 65 1071 0.078 (0.023, 0.266) 0.943
≥ 65 820 0.075 (0.019, 0.292)

Lauren type
Intestinal 716 0.192 (0.040, 0.912) 0.763
Mixed 143 0.252 (0.012, 5.125)
Diffuse 473 0.099 (0.019, 0.515)

TNM stage
Early (Stage I and II) 537 0.061 (0.006, 0.602) 0.178
Advance (Stage III and IV) 849 0.371 (0.116, 1.181)
CI, confidence interval.
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FIGURE 4 | Function analysis of genes correlated with the DDR pathway signature. (A) Gene set enrichment analysis (GSEA) of the hallmark gene sets for the DDR
pathway signature scores. (B) Heatmap shows gene set variation analysis (GSVA) enrichment scores of the hallmark gene sets. (C) The bar plot shows the different
analysis outcomes for GSVA scores of hallmark gene sets between the high and low DDR score groups. (D) Module-trait relationships. Each row shows a module
eigengene; each column corresponds to a clinical trait. Each cell contains the corresponding correlation (upper number) and p-value (lower number). (E) Functional
enrichment analysis of the hallmark gene sets for genes in the blue, green, and turquoise modules.
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myeloid dendritic cells, also showed a significant negative
association with the signature scores. However, cytotoxic T
cells were positively correlated to the DDR pathway signature
scores. In addition, significant differences for most TME-related
Frontiers in Immunology | www.frontiersin.org 11
cells were detected between the two subgroups (Figure S3B).
Based on the pathology whole-slide images, the positive
relationship between the tumor purity and the DDR pathway
signature score was confirmed (Figures 6B, C). Consistent with
A C

B

D

E F

G

FIGURE 5 | Distinct genomic features associated with the DDR pathway signature. (A) The scatter plot shows the different distribution of tumor mutational burden
(TMB) in the high and low DDR pathway signature score groups. (B) The scatter plot shows the correlation between the DDR pathway signature scores and
neoantigen counts. (C) The mutational landscape between the high and low DDR score groups in the TCGA cohort. (D) The distinct copy number variation (CNV)
profile between the high and low DDR score groups in the TCGA cohort. The vertical axis represents the GISTIC score of chromosomal deletion (blue) and
amplification (red). (E) Bar plots show the different fractions of the genome altered, genome lost, and genome gained between the high and low DDR score groups in
the TCGA cohort. (F) Violin plots show the different distribution of the DDR pathway signature scores in the four TCGA subtypes. (G) Scatter plots show the
correlation between the DDR pathway signature scores and the aneuploidy scores in the TCGA and ACRG cohorts.
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the MCPcounter outcomes, samples with high signature scores
also had a higher percentage of TILs (comprised primarily of
cytotoxic T cells and NK cells) than those with low signature
scores (48).

Finally, the prognostic implications of these microenvironment
features in GC were also investigated (Figure 6D). Survival
Frontiers in Immunology | www.frontiersin.org 12
analyses showed that high tumor purity was associated with a
good prognosis. For the specific cells, fibroblasts and endothelial
cells were consistently associated with worse overall survival.
Nevertheless, T cells and NK cells were consistently associated
with better overall survival. Taken together, these results indicate
that stromal components and the activated oncogenic pathways
A

B

C D

FIGURE 6 | Identification of the tumor microenvironment features underlying the DDR pathway signature. (A) Heatmap shows the infiltration level of stromal and
immune cells against the DDR pathway signature scores. (B) Representative slides (top) and tumor-infiltrating lymphocyte (TIL) maps (bottom) of GC tissues between
high and low DDR pathway signature score groups. Red represents a positive TIL patch, blue represents a tissue region with no TIL patch, while black represents no
tissue. (C) The scatter plot shows the correlation of the DDR pathway signature scores with TILs and tumor purity. (D) Heatmap shows survival outcomes of tumor
microenvironment features (top) and their correlation with the DDR pathway signature scores (bottom).
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based on the proposed DDR pathway signature likely contribute
to the worse prognosis in patients with low DDR pathway
signature scores.
Potential Response to Chemotherapy and
Immunotherapy
Chemotherapy is the main treatment option for patients with
advanced GC (56). However, chemotherapy resistance is the
primary cause of treatment failure. Given the clinical, biological,
and microenvironmental features varied against the DDR pathway
signature scores, the relationship between the identified DDR
pathway signature and chemotherapy response was investigated,
aiming to promote personalized chemotherapy regimens. First,
ridge regression was conducted to predict the drug susceptibility
outcomes (IC50 value) for each sample. The analyses were
performed using, respectively GDSC- and CTRP-derived drug
response data (Figure 7A). Two approaches were used to identify
the association of IC50 values and DDR pathway ssGSEA scores.
First, Spearman correlation analysis was performed to select
chemotherapeutic agents with a significant correlation coefficient
(|R| > 0.2, p-value < 0.05) (Figure 7B). Second, differential analysis
among the high and low DDR pathway signature score subgroups
was conducted to identify drugs with lower estimated IC50 values
in each subset (Figure S3). These analyses yielded 5 GDSC-
derived compounds (i.e., fluorouracil, cisplatin, oxaliplatin,
paclitaxel, and docetaxel) and 4 CTRP-derived compounds (i.e.,
fluorouracil, carboplatin, paclitaxel, and irinotecan). Except for
carboplatin, all the other drugs had lower estimated IC50 values in
the high DDR score subgroup and a negative correlation with the
DDR signature scores. These results suggest resistance to
chemotherapy of these drugs in GC patients with low DDR
signature scores.

As above-described, the DDR pathway signature score
presented a significantly positive correlation with TMB and
neoantigens load (Figures 5), which suggests that the patients
with high DDR signature scores might benefit from ICI
treatment. In full agreement with the idea, a significant
negative association was found between the TIDE scores and
the DDR pathway signature scores (r, -0.260; 95% CI, -0.302 to
-0.218) (Figure 7C). Besides, the TIDE algorithm determined
that patients with high DDR scores (47.38%, 497/1049) might be
more likely to respond to immunotherapy than those with low
DDR scores (32.37%, 314/970) (odds ratio [OR], 0.532; 95% CI,
0.441 to 0.640) (Figure 7D). According to the response to
treatment, GC patients in the PRJEB25780 cohort were divided
into responder (complete or partial response, CR or PR) and
non-responder (stable or progressive disease, SD or PD) groups.
The DDR pathway signature scores were significantly higher in
the responder group (Figure 7E), indicating that patients with a
high DDR signature score might show better anti-tumor
immune response. The activation of other DDR-related
pathways, such as NER, MMR, and FA, might also improve
patient response to ICI therapy. The submap algorithm further
confirmed that the high DDR pathway signature scores group
was more likely to respond to anti-PD-1 treatment (Bonferroni-
corrected, p-value = 0.012) (Figure 7F).
Frontiers in Immunology | www.frontiersin.org 13
DISCUSSION

The high-throughput sequencing technology offers an
unprecedented view into tumor biology and the promise of
personalized healthcare. Unbiased expression researches have
been used to identify prognostic and predictive biomarkers in the
form of individual signatures (57–59). However, these studies
generally waste a large amount of signaling pathway knowledge
that has been accumulated over decades of academic research
(60). And even more important is that most gene signatures are
not being widely used in clinical practice. This may be explained
by reproducibility concerns stemming from computer-based
algorithms that do not incorporate biological rationale during
gene selection (32). In these published studies, the biological
importance of the selected genes is retrospectively discussed
rather than prospectively examined. Several hypothesis-driven
attempts have been made to develop biomarkers or signatures
with guidance from pathway knowledge to improve
reproducibility (14, 32, 60). Notwithstanding, this approach
has not been pursued in GC, in which long disease outcome
intervals determine that few cohorts with the most meaningful
outcome, overall survival, are available.

The current study presents a hypothesis-driven pathway
profiling approach in a large GC meta-cohort with follow-up
long enough to acquire robust outcomes. A study flow chart is
displayed in Figure S5. The approach proposed in this study is
based on a well-established bioinformatics algorithm, i.e.
ssGSEA, providing a novel method to build a pathway-based
signature. This study focused on DDR pathways because of their
central role in genome stability and potential response to
chemotherapy and immunotherapy. The DDR pathway profiles
determined were clearly distinguished between tumor and
normal tissues. Indeed, there was a significantly higher ssGSEA
pathway score in the tumor group than in the normal group.
This is consistent with the fact that tumors tissues have higher
DDR process activity than normal samples. Moreover, these
DDR pathway patterns are less correlated with the clinical factors
(e.g., sex, age, TNM stage, and Lauren classification), indicating
that the DDR pathway profiles could provide additional
information independent of the clinical variables.

Most individual sub-pathways (7 of 8) and the identified DDR
pathway signature have a statistically significant prognostic
association with overall survival, even after adjusting the
clinical variables. These findings suggested that the DDR
pathway profiles are an excellent resource to improve the
prognosis prediction for patients with GC. This study found
that GC patients with a high activation level of the DDR
pathways often characterized good clinical outcomes. The
results were in agreement with a previous study in urothelial
carcinoma (61). Then, a composite model was constructed by
combining the DDR pathway signature with other clinical
predictors. This statistical model outperforms each predictor
alone in discrimination, calibration, and net clinical benefit. A
nomogram to simplify its use was then built.

By integrating multidimensional genomics, the DDR pathway
profiles also yielded interesting tumor biology insights into
malignant progression. Specifically, tumors with low DDR
January 2022 | Volume 12 | Article 806324
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FIGURE 7 | Identification of potential response to chemotherapy and immunotherapy. (A) Heatmap shows each patient’s predicted IC50 values of the selected
chemotherapeutic agents based on GDSC V1, GDSC V2, and CTRP V2 databases. (B) Heatmap shows Spearman’s coefficients for the correlation of the DDR pathway
signature scores and the predicted IC50 values of the selected chemotherapeutic agents. (C) The scatter plot shows the correlation between the DDR pathway signature
scores and the TIDE scores. (D) The bar plot shows the distribution of the DDR pathway signature scores in the response and non-response groups. (E) Violin plots
show the different distribution of the DDR pathway profiles in the response and non-response groups. (F) Heatmap shows the high DDR pathway signature score could
be more sensitive to the anti-PD-1 therapy (Bonferroni-corrected p-value = 0.012).
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pathway signature scores were enriched in pathways correlated
with invasion and metastasis, such as EMT, myogenesis,
angiogenesis, and hypoxia. However, proliferation and
metabolism pathways (e.g., G2M checkpoint, MYC targets, and
oxidative phosphorylation) were significantly activated in
tumors with high ssGSEA scores. Notably, TMB and
neoantigens showed a positive correlation with the DDR
pathway profiles (Figure 5). A high degree of genomic
instability, especially chromosome instability, was detected in
tumors with high DDR pathway signature scores. This finding
might partially explain the poor prognosis of patients with low
signature scores since the GS subtype was associated with the
worst prognosis among the four TCGA molecular subtypes (62).
This study elucidates that only CDH1 mutation rates were more
frequent in the low signature scores subgroup. CDH1 mutation
leads to the aberrant expression of E-cadherin, disturbing the
normal cell and cell adhesion, thus contributing to the metastasis
and invasion phenotypes in tumors (63).

Tumors characterized by high genome instability and large
numbers of neoantigens often had a higher degree of
proinflammatory activity in comparison with tumors without
these extensive changes (64–66). Therefore, tumors with
different signature scores might have different immune
microenvironment statuses (Figure 6). A previous study
suggested that TP53 mutations were associated with higher
levels of leukocyte infiltration (67). Accordingly, increased
levels of TLS, especially infiltration of CD8+ T cells, were
related to the high DDR signature scores. The increased
lymphocyte infiltration usually means a superior prognosis and
a potent anti-tumor immune response (68), indicating the
immune-hot status in tumors with high signature scores.
However, tumors with low DDR pathway signature scores
were enriched with fibroblasts and endothelial cells, together
with the TGF-b signaling pathway activation, corresponding to
an immune-cold phenotype (69, 70).

Looking beyond the clinical and biological implications of the
DDR pathway profiles, the results presented herein might also
have important inferences to personalized medicine. A previous
study suggested that GC patients with the chromosome
instability (CIN) subtype most benefitted from adjuvant
chemotherapy. However, GC patients of the GS subtype are
resistant to chemotherapy (62). Moreover, the tight correlation
between the DDR pathway signature scores and TMB and
neoantigens load suggested the activation of the DDR pathway
could serve as a biomarker for ICI treatment (10), predicting
the efficacy of anti-PD-1 therapy in patients with GC. In
good agreement with previous observations, high DDR
pathway signature scores could identify tumors that respond to
PD-1 blockers and hypersensitivity to specific classes of
chemotherapeutic agents (Figure 7), indicating that the DDR
pathway signature could potentially be used to guide the
oncologic treatments that are best suited for individual patients.

The present study demonstrates the specific clinical
translational value of patient-level DDR pathway profiles in
GC. To the best of our knowledge, this is the first study that
Frontiers in Immunology | www.frontiersin.org 15
investigated the role of DDR pathway activity in a large GC
cohort. Compared with previous studies that mainly focused on
mutations of a given gene in the DDR pathway (12), this study
was based on the complete signaling pathway from the view of
the transcriptome, which provides a new perspective.
Considering that the high costs and technical challenges may
limit the use of whole-genome sequencing in clinical practice,
clinical management from the overall activation level of the DDR
pathway has unique advantages.

Although pathway profiling represents a novel approach, this
study also has some limitations that need to be mentioned. Thus,
the exact meaning of pathway ssGESA score is ambiguous and is
not a direct marker of pathway activity. Moreover, there may be a
significant discrepancy between DDR gene expression and
enzymatic activity, but a high-throughput analysis of
enzymatic activity is not yet possible. On the other hand, there
are also limitations of the retrospective cohorts, which do not
have complete phenotypic data, randomized treatment, or
uniform follow-up. Since this study was mainly based on
bioinformatics and statistical analyses, the in silico outcomes
still need in vivo and in vitro validations. In the future,
corresponding cell experiments and animal experiments will be
performed to determine the influence of the activation level of
the DDR pathway in GC, aiming to confirm the outcomes
presented in the present study.
CONCLUSIONS

This study identified a novel patient-level DDR pathway
profiling approach that revealed distinct DDR pathway clusters
and demonstrated that the DDR pathway profiles have broad
implications for cancer biology and oncologic patient care of GC.
With additional prospective validation in clinical and
mechanistic studies, the identified DDR pathway signature
could become a powerful tool to be useful in stratifying
advanced-stage GC patients toward personalization treatments
incorporating chemotherapy and immunotherapy.
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Supplementary Figure 1 | Weighted correlation network analysis (WGCNA) for
the DDR pathway signature-related gene modules. (A) Identification of the soft
threshold according to the standard of the scale-free network. The red line
represents the threshold line of 0.85. (B) Hierarchical dendrogram of the co-
expression modules identified by WGCNA. (C) Intra-modular analysis for the
Frontiers in Immunology | www.frontiersin.org 16
signature-related modules. The scatterplot shows gene significance vs. module
membership in the blue, green, and turquoise modules.

Supplementary Figure 2 | Copy number variation (CNV) profile underlying the
DDR pathway signature. (A) Distinct CNV profile between the high and low DDR
score groups in the ACRG cohort. The vertical axis represents the GISTIC score of
chromosomal deletion (blue) and amplification (red). (B) Bar plots show the different
fractions of the genome altered, genome lost, and genome gained between the high
and low DDR score groups in the ACRG cohort.

Supplementary Figure 3 | Tumor microenvironment features underlying the
DDR pathway signature. (A) Violin plots show the different distribution of stromal
score, immune score, and tumor purity between the high and low DDR signature
score groups. (B) Violin plots show the different distribution of stromal and immune
cells infiltration levels between the high and low DDR signature score groups.

Supplementary Figure 4 | Potential response to chemotherapy. Violin plots
show the different distribution of the IC50 values for the selected chemotherapeutic
agents in the high and low DDR signature score groups based on (A) GDSC V1,
(B) GDSC V2, and (C) CTRP V2 database.

Supplementary Figure 5 | The research workflow of this study.

Supplementary Table 1 | The basic information of samples in the 12 public
datasets.

Supplementary Table 2 | A total of 490 genes annotated as DDR process-
related factors and acquired from published resources.

Supplementary Table 3 | Gene mutation rates between the high and low DDR
signature score groups in the TCGA cohort.
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