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Cancer tissues are not just simple masses of malignant cells, but rather complex and
heterogeneous collections of cellular and even non-cellular components, such as
endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor
microenvironment (TME). These multiple players in the TME develop dynamic
interactions with each other, which determines the characteristics of the tumor.
Platelets are the smallest cells in the bloodstream and primarily regulate blood
coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a
status of an increased platelet number in the bloodstream, as well as the platelet infiltration
into the tumor stroma, which contributes to cancer promotion and progression. Thus,
platelets function as one of the important stromal components in the TME, emerging as a
promising chemotherapeutic target. However, the use of traditional antiplatelet agents,
such as aspirin, has limitations mainly due to increased bleeding complications. This
requires to implement new strategies to target platelets for anti-cancer effects. In oral
squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-
stromal ratio (high stroma) are strongly correlated with increased metastasis and poor
prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph
nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of
relatively easy access for visual examination of precancerous lesions in the oral cavity.
Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar
to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a
predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative
evidence supports that platelets can directly interact with PDPN-expressing cancer cells
via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and
metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit
interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will
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review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction,
and will assess their potentials as therapeutic targets for OSCC treatment.
Keywords: platelets, tumor cell-induced platelet aggregation (TCIPA), CLEC2, PDPN, ezrin/radixin/moesin (ERM),
oral cancer
INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most prevalent type
of head and neck malignancies that occur in oral cavity, salivary
gland, pharynx, larynx, nasal cavity, thyroid, and bone (1).
Unlike the other types of cancers, OSCC usually arises from
the body part that is easily accessible for visual examinations.
Despite this advantage in detection of precancerous lesions, most
of the OSCC patients are not diagnosed until the advanced stages
with metastasis, which is attributed to low overall survival rates
(2). Oral mucosa contains a connective tissue enriched with type
I collagen that is synthesized by stromal cells (3). Desmoplasia, a
status of the excessive growth of the stromal tissue, is closely
associated with OSCC (4, 5). In OSCC patients, stroma-rich
tumors are more aggressive and metastatic than stroma-poor
tumors, finally contributing to the poor survival rates (6, 7). The
activated tumor stroma can supply a variety of growth factors
and cytokines that induces cancer cell proliferation as well as
extracellular matrix (ECM) remodeling (5, 8). In support of the
tumor stroma, OSCC cells tend to invade adjacent tissues, such
as bones, and spread to the lymph nodes (9). This locoregional
characteristic of OSCC is the primary cause of treatment failure
(10). Thus, how to control the local and distal metastasis is
crucial for successful treatment and better prognosis in
OSCC patients.

Platelets, the smallest cells in blood circulation, play a major
role in blood coagulation and hemostasis (11–13). In addition to
their primary physiological functions, platelets are profoundly
involved in cancer promotion and progression (14, 15). Recently,
it has been reported that platelets can infiltrate into the tumor
stroma in colorectal and pancreatic cancer patients (16–18). As a
part of the tumor stromal components, platelets crosstalk with
cancer cells either directly or indirectly, promoting invasion and
metastasis (19–21). For the physical interaction, C-type lectin-
like receptor 2 (CLEC2) and podoplanin (PDPN) are suggested
as the key molecular links expressed in platelets and tumors,
respectively (22). Moreover, cancer cells activate and educate
platelets, thus the bilateral interaction between platelets and
cancer can further promote tumorigenesis, creating a positive
feedback loop (23). Notably, OSCC patients often show
increased platelet counts, which is strongly associated with
poor prognosis (24, 25). Thus, platelets are emerging as an
important target for chemotherapy in OSCC patients.

Aspirin, a representative antiplatelet agent, is well known to
protect against carcinogenesis (26–28). Aspirin irreversibly
inhibits both cyclooxygenase-1 (COX-1) and COX-2, reducing
synthesis of prostaglandins and thromboxanes responsible for
inflammation and platelet aggregation (27). Despite its
chemopreventive effect, a daily use of low-dose aspirin
frequently causes adverse complications, primarily increased
org 2
bleeding risk (29, 30). Thus, instead of using traditional
antiplatelet agents, the pinpoint targeting of the platelet-tumor
cell interaction would be a more precise and effective strategy for
OSCC treatment, avoiding undesirable harmful effects. In this
regards, we will highlight the role of platelets in carcinogenesis
and OSCC, particularly focusing on the physical interaction
between platelets and tumors via the CLEC2-PDPN axis.
ROLES OF PLATELETS IN CANCER

Thrombocytosis in Cancer Patients
Platelets are anucleated cells originated from megakaryocytes in
the bone marrow and abundant in healthy individual
150,000~400,000 per microliter of blood (11–13). In spite of
lack of genomic DNA, platelets release plenty of granular
ingredients, such as platelet-derived growth factor (PDGF),
transforming growth factor b (TGFb), stromal cell-derived
factor-1 (SDF-1), and serotonin, which contributes to signal
transduction in nearby cells (31). Cancer is often associated
with thrombocytosis, a status of an abnormal elevation of platelet
counts, which shows a positive correlation with worse outcomes
in many types of cancers (24, 32–34). High platelet counts are
involved with development of venous thromboembolism (VTE)
in cancer patients, the second leading cause of cancer death (35–
38). Besides an increased risk of VTE, thrombocytosis is
associated with cancer mortality by accelerating tumor
promotion and progression as well (39–41). In mice bearing
tumors, platelet transfusion induced the blood platelet counts as
well as tumor growth, while reducing the survival rates (37, 42).
Thus, the platelet counts have long been considered as a valuable
prognostic marker in cancer patients.

It has been reported that inflammatory cytokines, such as
interleukin-6 (IL-6), are highly associated with thrombocytosis in
cancer patients (33, 43). IL-6 can stimulate platelet production
through inducing thrombopoietin (33, 44). Inmurine colitismodel,
colitis-induced wild type (WT) mice showed thrombocytosis and
platelet aggregation, which were absent in IL-6-deficient mice (45).
Moreover, neutralization of IL-6 led to reduction of platelet counts
and tumor growth in the mouse ovarian cancer model (33). Thus,
IL-6 inhibitors might be utilized to mitigate cancer-associated
thrombocytosis (46). However, anti-IL-6 treatments need
meticulous assessment, regarding that IL-6 pleiotropically
functions in immune system (47, 48).

Platelets as a Part of Stromal Components
in Tumor Microenvironment
Tumor tissues are not just simple masses of malignant cells, but
rather complex and heterogeneous collections of cellular and
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even non-cellular components, referred to as tumor
microenvironment (TME) (49). The multiple players in the
TME develop dynamic interactions with each other, which
determines the characteristics of the tumor (50). The non-
cellular parts of the TME comprise primarily the ECM, a
three-dimensional scaffold that contains col lagens,
proteoglycans, and fibronectins (51). The acellular ECM is
crucial for providing mechanical (structural) and biochemical
(nutritional) supports to cellular components in the TME (52).
The cellular players in the TME can be largely divided into
stromal cells and tumor-infiltrating immune cells. The tumor
stroma is a heterogeneous population of distinct types of cells,
including fibroblasts and endothelial cells (53). Among them,
cancer-associated fibroblasts (CAFs) are the most abundant type
of the stromal cells in TME that display enhanced expression of
the signature proteins, including a-smooth muscle actin and
PDGF receptors (54). Moreover, the TME contains a broad
spectrum of immune cells, such as tumor-associated
macrophages, tumor-associated neutrophils, and regulatory T
cells. Notably, the infiltration of platelets into the tumor stroma
has been observed in cancer patients (18, 55, 56), along with
increased blood platelet counts (24, 32–34). Tumor-infiltrating
platelets can interact with other stromal players of TME,
contributing to tumor promotion and progression (57).
Miyashita et al. have found that CAFs were surrounded by
platelets in almost half of the pancreatic cancer patients (58).
Platelet-derived factors, like TGFb, PDGF, and SDF-1, can
stimulate recruitment and activation of CAFs in the TME (59–
62). Platelets also accommodate various angiogenesis regulators,
which can turn on local angiogenesis in the TME (63). Depletion
of tumor-infiltrating platelets showed impaired tumor blood
vessel structures in mice (64). Moreover, it has been reported
that fusion between platelets and endothelial cells promotes
cancer metastasis by facilitating adhesion of tumor and
endothelial cells (65). In consistent, the intratumoral
accumulation of platelets are related to tumor progression (18,
55, 56). These investigations support that platelets function as a
crucial stromal component in the TME through vigorous
interplay with other members.

Platelets in Cancer Invasion and
Metastasis
Metastasis is a multi-step process, including local invasion,
intravasation, and colonization at the distal sites (66). Invading
cancer cells undergo dramatic alterations in their morphology
and phenotypes, such as epithelial-to-mesenchymal transition
(EMT), which is accompanied by remodeling of the ECM (66).
As a poor prognostic indicator, thrombocytosis is associated with
lymph node metastasis and invasion in cancer patients (24, 67).
In consistent, platelet transfusion significantly enhanced
metastasis of cancer cells in the murine experimental models
(15, 68). However, platelet decoys bound to tumor cells as
effectively as normal intact platelets and inhibited thrombosis
and metastatic tumor formation, further supporting the role of
platelets in metastasis (69). Of note, platelets are frequently
detected at the invasive front where both EMT and ECM
remodeling occur actively (70). Platelets contain about 40% of
Frontiers in Immunology | www.frontiersin.org 3
TGFb found in the peripheral blood plasma, which plays a
crucial role in cancer cell invasion (71). Co-culture with
platelets remarkably enhanced invasiveness and EMT process
of cancer cells in a TGFb-dependent manner (72, 73). Platelet-
specific Tgfb1-deficient mice showed reduction in tumor growth
and platelet extravasation, compared to WT mice (74).
Moreover, various types of matrix metalloproteinases (MMPs)
responsible for ECM degradation are stored in the resting
platelets and released upon stimulation, such as cancer cell-
induced aggregation (35, 75, 76). Platelets upregulate production
of MMPs in cancer cells as well as fibroblasts, accelerating
invasion of cancer cells (77–79). These data suggest that
platelets can change TME through their releasates, such as
TGFb and MMPs, conferring cancer cells invasive capability
and metastatic potential. In addition, direct contact with platelets
can promote invasion and metastasis of cancer cells in vitro and
in vivo (19, 80).

Platelets can promote metastasis through interaction with
other cells in the bloodstream as well, like in the TME. Platelets
rapidly adhere to circulating cancer cells in the blood, protecting
tumors from immune surveillance (41, 81). Natural killer (NK)
and CD8 T cells are cytotoxic lymphocytes that play a central
role in cancer immunosurveillance (82). Once tumors are coated
by platelets, platelets inhibit NK cell-mediated antitumor activity
through downregulating tumor cell NK2D expression by TGFb
and inducing pseudoexpression of immunomodulating
molecules, such as MHC I and GITR (83–85). Moreover,
platelet-derived factors, such as TGFb and programmed death-
ligand 1 (PD-L1), suppressed the cytotoxic antitumor T cell
immunity in the mouse cancer models (86–88). Taken together,
these data suggest that platelets facilitate tumor immune escape
by surrounding cancer cells in the bloodstream, thus, the
platelet-camouflaged cancer cells safely migrate to the
metastatic sites. Of note, co-incubation with platelets protected
cancer cells against anoikis, implying that platelets enhance
anchorage-independent survival of circulating tumor cells in
the bloodstream (15).

Platelets as a Potential Target for OSCC
Treatment
Similar to other types of cancer patients, increased platelet
counts are significantly correlated with poor prognosis in
OSCC patients (25, 89). Based on the analysis of relationship
between platelet counts and disease progression in a total of 253
OSCC patients, thrombocytosis was associated with lymph node
metastasis as well as distant metastasis (90). Along with
metastasis, advanced OSCC often shows invasion into the
facial bones, due to close anatomical relationship (91, 92). The
bone invasion causes severe pains, greatly lowering the quality of
life and the survival rates in OSCC patients (91, 93). Notably,
platelet aggregation plays a critical role in tumor-associated bone
destruction (94). In line with that, the pharmacological
inhibition of platelet aggregation reduced bone metastasis in
the murine cancer model (95). Platelet-secreted lysophosphatidic
acid is thought to be one of the primary mediators in platelet-
promoted bone invasion and metastasis (96, 97). Taken together,
platelets can facilitate bone invasion through direct contact with
December 2021 | Volume 12 | Article 807600
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tumor as well as their releasates. In OSCC, bone destruction and
invasion are closely related to TGFb signaling pathway (98, 99).
Considering that platelets store most of the plasma TGFb, it is
plausible that platelets aggravate invasion of OSCC, and thus
further pre-clinical and clinical investigations will shed light on a
noble would be novel strategies for OSCC treatment.
INTERACTION BETWEEN PLATELETS
AND CANCER: CLEC2-PDPN-ERM AXIS

PDPN in Cancer and Platelet Aggregation
PDPN is a type I transmembrane glycoprotein expressed in kidney
podocytes, skeletal muscles, lungs, hearts, myofibroblasts,
osteoblasts, mesothelial cells, and lymphatic endothelial cells
(100). PDPN knockout mice die shortly after birth due to an
impaired respiratory system (101). These mice also show defects
in the lymphatic vasculature, disorganization of spleen, and lack of
lymphnodes (102, 103). PDPN is thus an important regulator in the
normal organogenesis and development processes.

Upregulation of PDPN has been observed in a variety of
human cancers, including brain cancer, breast cancer, lung
cancer, and mesothelioma, which is associated with poor
prognosis (104–107). In athymic nude mice, injection of
PDPN-overexpressing cancer cells generated bigger tumors,
while silencing of PDPN suppressed tumor growth (108).
Moreover, PDPN-high tumors exhibited increased peritumoral
lymphangiogenesis, invasiveness, migratory ability, and
metastasis, implying a pro-tumorigenic role of PDPN (109–
112). Notably, it has been reported that PDPN expression is
elevated at the leading edge of tumor tissues, which promotes cell
surface extension and cell motility in keratinocytes (111, 113). In
the two-stage skin carcinogenesis model, epidermal ablation of
PDPN reduced tumor growth and invasion (109). Overall, these
data suggest that PDPN confers cancer cells survival benefits,
promoting tumor growth, invasion, and metastasis.

Interestingly, PDPN-overexpressing cancer cells evoke
platelet aggregation, also known as tumor cell-induced platelet
aggregation (TCIPA) (108, 114). PDPN-positive human
glioblastoma Gli16 cells were able to markedly induce platelet
aggregation, whereas not detected by PDPN-negative cells (115).
In tumor-bearing mouse models, either ablating PDPN gene or
blocking PDPN by monoclonal antibody (mAb) injection
effectively suppressed platelet aggregation, supporting that
PDPN is crucial for TCIPA formation (116, 117). The PDPN-
mediated TCIPA was strongly associated with an increased
incidence of VTE in cancer patients (115, 118). Moreover,
PDPN overexpression is also involved in TCIPA-induced
tumor promotion and progression. The platelet-tumor
aggregates are readily arrested in the microvasculature,
facilitating tumor metastasis (20). PDPN neutralization
significantly inhibited TCIPA occurrence, tumor growth, and
metastasis in nude mice injected with human melanoma or lung
cancer cell lines (108, 116, 119). Moreover, platelet-derived
TGFb upregulated PDPN expression in human bladder cancer
cells, which induced EMT process and cancer cell invasion (120).
Frontiers in Immunology | www.frontiersin.org 4
Taken together, PDPN is considered as a ‘pinpoint’ that
interconnects between tumor and platelets, regulating VTE as
well as tumor progression.

Platelet CLEC2-PDPN Axis: A Pinpoint of
Platelet-Tumor Cell Interaction
PDPN consists of an extracellular domain, a transmembrane
domain, and a cytoplasmic domain (121). The extracellular
domain of PDPN carries four platelet aggregation-stimulating
(PLAG) domains with a plenty of potential O-glycosylation sites,
crucial for interaction with platelets (121). The PLAG domain of
PDPN has been reported to bind to CLEC2 that is abundantly
expressed on the surface of platelets (122). Interestingly, CLEC2-
deficient mice phenocopy PDPN-knockout mice, like prenatal
lethality and impaired lymphatic vasculature (123). Either
platelet-specific deletion of CLEC2 or inhibition of PDPN was
associated with reduced thrombosis in a murine deep vein
thrombosis model of inferior vena cava stenosis (124).
Similarly, cancer cell lines with high endogenous PDPN
expression levels, such as LN319 and Colon-26, showed
induced platelet aggregation, which was attenuated by pre-
incubation with an anti-CLEC2 antibody (125). Tsukiji et al.
have found that cobalt hematoporphyrin (Co-HP) directly binds
to PDPN-binding sites of CLEC2, functioning as an inhibitor of
the CLEC2-PDPN axis (126). Both Co-HP administration and
CLEC2 neutralization significantly inhibited CLEC2-dependent
platelet aggregation in tumor-bearing mice (126, 127). Taken
together, these data support that PDPN is interdependent with
CLEC2, thus, the platelet CLEC2-PDPN axis is crucial for
platelet-tumor cell interaction (Figure 1).

In conjunction with TCIPA formation, the platelet CLEC2-
PDPN axis mediates cancer promotion and progression. In mice
inoculated with PDPN-expressing B16F10melanoma cells, CLEC2
depletion by anti-CLEC2 mAb 2A2B10 injection reduced plasma
levels of inflammatory cytokines and lung metastasis, resulting in
prolongedsurvival compared tocontrolmice (127). Treatmentwith
a CLEC2 inhibitor Co-HP suppressed lung metastasis of PDPN-
expressing melanoma cells, but not that of PDPN-negative lung
cancer cells (126). In platelet-depleted mice, platelet transfusion
inducedmuchmore lung colonization as well as bonemetastasis of
PDPN-expressing osteosarcoma cells, while CLEC2mAb injection
reduced lung colonization (68). Likewise, injection of PDPN mAb
(MS-1) remarkably suppressed platelet aggregation as well as lung
metastasis in the murine cancermetastasis model (128). Therefore,
the platelet CLEC2-PDPN axis is considered as a pinpoint for
platelet-tumor interaction that promotes tumor progression
(Figure 1). It has been demonstrated that CLEC2 deficiency is
not significantly related to bleeding tendency (123, 129). In this
regard, the platelet CLEC2-PDPN axis could be a promising target
to inhibitTCIPA-induced tumorprogressionwithout bleeding risk,
a major complication of the traditional antiplatelet agents.

PDPN-ERM Axis: An Executor in Cancer
Progression
PDPN has a short cytoplasmic tail associated with ezrin/radixin/
moesin (ERM) proteins that primarily bridge between plasma
December 2021 | Volume 12 | Article 807600
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membrane proteins and F-actin filaments of the cytoskeleton
(100, 130). It is well documented that cells and tissues utilize this
ERM crosslink system to maintain the architectures necessary for
their own biological functions (131). In particular, ERM proteins
are crucial regulators for epithelial morphogenesis and integrity,
mitosis, cell polarity, and cell adhesion (132, 133). Among the
ERM protein members, ezrin-null mice displayed much more
severe phenotypes compared to moesin- or radixin-deficient
mice (134). Ezrin-deficient mice showed defects in intestinal
villus morphogenesis and epithelial cell organization (135). In
addition, ERM proteins regulate the cell-cell and cell-matrix
interactions, particularly in cancer cells (136). Thus, PDPN is
engaged in cell adhesion, migration, and invasion through
association with the ERM proteins, as illustrated in Figure 1
(113, 133).
Frontiers in Immunology | www.frontiersin.org 5
PDPN expression is upregulated peculiarly in the growing
edge of tumors and commonly co-localized with ERM proteins
(100, 106). Similar to PDPN, overexpression of ERM proteins
has been detected in various types of cancers: ezrin
overexpression in breast, hepatocellular, colon, ovarian, and
pancreatic cancers (137–141); radixin overexpression in
pancreatic cancer with lymph node metastasis (142); moesin
overexpression in skin cancer, colorectal carcinoma, endometrial
adenocarcinoma, and glioma (143–146). Moreover, upregulation
of ERM proteins is associated with poor prognosis in cancer
patients (140, 147–150). In athymic nude mice, intracranial
injection of moesin-overexpressing glioblastoma cells
significantly reduced the survival rates compared to the control
group (146). Moreover, ERM proteins were frequently
mislocalized during tumor progression, from plasma
FIGURE 1 | Interaction between platelet and tumor cell. Platelets can physically interact with tumor cells via the CLEC2-PDPN axis. PDPN is associated with ERM
proteins that promote cancer cell migration and invasion through modulating actin cytoskeleton, RhoA, and EMT process. Thus, the CLEC2-PDPN-ERM axis is a
crucial target for chemotherapy.
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membrane to cytoplasm (136). Thus, dysregulation of ERM
proteins takes part in cancer promotion and progression,
possibly in an interdependent manner with PDPN.

It has been reported that PDPN mediated TCIPA-induced
EMT process in human cancer cell lines (120). In non-cancerous
experimental settings, PDPN can bind to ERM proteins through
its cytoplasmic domain, promoting the EMT process as well as
cell migration (130, 151). Silencing of radixin, one of the ERM
protein members, suppressed the EMT process as well as
migration and invasion in human gastric carcinoma SGC-7901
cells (152). Moreover, PDPN can induce migration ability in
cancer cells that bypass the EMT process via filopodia formation
(106). Instead of the EMT process, PDPN recruits ERM proteins
to modulate the actin cytoskeleton in a RhoA-dependent
manner, consequently promoting cancer cell migration and
invasion. Taken together, the PDPN-ERM axis can promote
migratory capability and invasiveness of tumor cells, through
either EMT process or cytoskeletal rearrangement.

It has been reported that the CLEC2-PDPN axis can regulate
cell contractility and migration through activation of ERM
proteins in non-cancerous settings (153–155). In this regard, it
is plausible that the PDPN-ERM axis could be recruited by
tumors bound to platelets via CLEC2-PDPN interaction,
conferring cancer cells metastatic potentials (Figure 1). Further
investigation is necessary to clarify the role of the platelet
CLEC2-PDPN-ERM axis in cancer progression.

Platelet CLEC2-PDPN and PDPN-ERM
Axes in OSCC
According to the Cancer Genome Atlas analysis, head and neck
cancer patients present much higher PDPN expression levels
compared to other types of cancer patients. While PDPN
expression is rarely detected in normal oral epithelial cells,
OSCC patients show upregulation of PDPN in tumors, which
contributed to poor prognosis (156–159). In the xenograft mouse
model, PDPN-overexpressing OSCC cells promoted tumor
growth and intratumoral platelet accumulation, implying that
PDPN mediates TCIPA formation in OSCC (160). Similar to
high platelet counts (90), elevated PDPN expression was often
found at the invasive front and correlated with lymph node
metastasis in OSCC patients (156, 161). In line with that,
silencing of PDPN gene expression attenuated migration and
invasion in human OSCC cell lines (160, 162–164). Considering
that platelet CLEC2 is crucial for PDPN-dependent TCIPA
formation, the platelet CLEC2-PDPN axis would be a feasible
target for successful local control in OSCC patients.

In OSCC patients, overexpression of ezrin and moesin has
been detected in advanced staged tumors and significantly
associated with worse overall survival rates (149, 164, 165).
Kobayashi et al. have reported that cytoplasmic expression of
moesin shows a strong correlation with lymph node metastasis in
OSCC patients (166). Of note, PDPN expression was positively
related to ezrin expression, particularly in the cytoplasm of the
odontogenic tumors (167). Moreover, this co-expression
between PDPN and ezrin was frequently detected in the
invasive front and possibly involved with lymph node
Frontiers in Immunology | www.frontiersin.org 6
metastasis in the lip cancer (168). These data suggest that the
PDPN-ERM axis may contribute to increased metastatic
potential in OSCC. In consistent, PDPN has been reported to
enhance cell motility and invasiveness through interaction with
ERM binding partners, such as membrane type 1 MMP, Cdc42,
and CD44, in humans OSCC cell lines (162, 164). These data
suggest that ERM proteins function as an intracellular executor
of the CLEC2-PDPN axis in invasion and metastasis of OSCC.
TARGETING PLATELET-TUMOR
INTERACTION FOR CHEMOTHERAPY

Aspirin
Considering pro-tumorigenic activities of platelets, antiplatelet
agents could be promising chemotherapeutics, as shown in
Table 1. A classical antithrombotic drug aspirin has been used
for chemoprevention. The meta-analysis and retrospective
cohort study showed that a regular use of aspirin is associated
with reduced risk of cancers in liver, stomach, colorectum, lung,
pancreas, and oesophagus (26, 169). In head and neck cancer
patients, evaluation of aspirin as a chemopreventive agent is still
controversial. A hospital-based case control study revealed that
aspirin use can reduce head and neck cancer risk (170), whereas
the other investigations demonstrated that there was no
significant correlation between aspirin intake and head and
neck cancer (171, 172). Moreover, the risk of gastrointestinal
bleeding could limit the use of aspirin for cancer prevention and/
or treatment (29, 30).

Platelet P2Y12 Receptor Antagonists
Platelet P2Y12 receptor is involved in ADP-stimulated activation
of glycoprotein IIb/IIIa (GPIIb/IIIa) responsible for platelet
aggregation (197). It has been reported that GPIIb/IIIa
mediates platelet-tumor interaction and cancer metastasis
(198–200). In conjunction with GPIIb/IIIa, stimulation of
P2Y12 receptor can promote platelet-tumor crosstalk and
cancer metastasis (Figure 2), suggesting P2Y12 receptor
antagonists as anticancer drugs (73, 201). Clopidogrel, the
most widely used P2Y12 receptor antagonist, markedly
inhibited tumor growth in mouse ovarian and liver cancer
models (176, 177). Another P2Y12 inhibitor ticagrelor
suppressed proliferation of ovarian cancer cells in vivo and in
vitro, which was not detected in absence of platelets (176).
Moreover, treatment with ticagrelor attenuated TCIPA
formation and cancer metastasis in the murine experimental
models (178–180). These pre-clinical data suggest platelet P2Y12
receptor as a target for cancer treatment by controlling platelet-
tumor aggregation. However, a population-based cohort study
showed that the use of clopidogrel has no huge impact on cancer
mortality in colorectal, breast, and prostate cancer patients (181).
Even worse, the clinical trial-based analyses revealed that
ticagrelor increased cancer risks (183, 184). In another patient-
level meta-analysis of randomized clinical trials, a long-term intake
of clopidogrel was associated with bleeding risk and hemorrhage
(182). Overall, the use of P2Y12 receptor antagonists for
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chemotherapy is controversial, in spite of the compelling pre-
clinical evidence.

Platelet GPVI Antagonism
GPVI is the major platelet-activating receptor exclusively
expressed on platelets and megakaryocytes (202). GPVI-null
mice showed lack of thrombus formation and defective platelet
activation without severe bleeding tendency (203, 204).
Moreover, these GPVI-deficient mice developed less metastatic
tumors by injection of lung cancer or melanoma cells than WT
mice (205). Notably, platelet GPVI can bind to galectin-3 on
tumor cells, provoking platelet-tumor cell interaction and
metastasis (Figure 2) (186, 189). These pre-clinical data
suggest that GPVI antagonism is a conceivable strategy to
block TCIPA-mediated tumor progression without adverse
effects. In line with this notion, platelets preincubated with an
anti-GPVI antibody (JAQ1) were less able to form aggregates
with human breast cancer cells and eventually reduced cancer
cell extravasation in the transendothelial migration assay (187).
Moreover, treatment with JAQ1 reduced tumor metastasis in the
murine lung metastasis models, further supporting antitumor
effects of GPVI antagonism via blocking TCIPA formation (186).
Interestingly, JAQ1 Fab2 fragment induced intratumoral
hemorrhage that led to accumulation of co-administrated
chemotherapeutics without systemic bleeding complications,
Frontiers in Immunology | www.frontiersin.org 7
thus allowing to maximize anticancer effects (188). Revacept, a
competitive GPVI inhibitor comprising a soluble Fc fusion
protein, decreased platelet-tumor interaction and metastatic
potential in vitro (189). In atherosclerotic mice and healthy
human subjects, Revacept reduced platelet aggregation with no
impact on bleeding times (190, 191). Based on this drug safety
assurance, the antitumor efficacy of GPVI antagonists must be
further evaluated in human cancer patients.

Targeting Platelet CLEC2-PDPN Axis
As described in Figure 1, the platelet CLEC2-PDPN axis is
emerging as a pinpoint to control the platelet-tumor interaction
and subsequent tumor progression. In order to disconnect the
platelet CLEC2-PDPN axis, diverse approaches have been made,
including mAbs against CLEC2 or PDPN and pharmacological
inhibitors. PDPNmAbs, such as NZ-1 and MS-1, can bind to the
PLAG domain of PDPN and neutralize interaction with platelet
CLEC2 (Figure 2) (192, 193). These PDPN mAbs specifically
inhibited PDPN-mediated platelet aggregation and cancer
metastasis in the murine experimental models (128, 192, 193).
Moreover, anti-PDPN antibody SZ-168 reduced the incidence
of VTE in mice (194). Similar to PDPN mAbs, anti-
CLEC2 antibody 2A2B10 suppressed intratumoral thrombus
formation as well as metastasis in mice (68, 127). These
investigations suggest that mAbs neutralizing either CLEC2 or
TABLE 1 | Strategies to target platelet-tumor interaction for chemotherapy.

Agent TCIPA Cancer risk/metastasis Bleeding References

Classical antiplatelet drug
Aspirin Inhibit TCIPA in vitro and in

vivo
Inhibit metastasis in vivo Increased gastrointestinal bleeding (26, 29, 30,

169–175)Cancer preventive effect in human subjects
(controversial in head and neck cancer)
Reduce metastasis in cancer patients

P2Y12 receptor antagonism
Clopidogrel Inhibit TCIPA in mice Inhibit tumor metastasis in mice A long-term use can increase

bleeding risk
(176–182)

No impact on cancer motility in human
colorectal, breast, and prostate cancer
patients

Ticagrelor Inhibit TCIPA Increase cancer risks in human More major bleeding compared to
clopidogrel in patients with acute
coronary syndrome

(180, 183–185)

GPVI antagonism
Anti-GPVI mAb (JAQ1) Inhibit TCIPA Inhibit cancer cell extravasation in vitro No impact on bleeding time (129, 186–188)

Inhibit metastasis in mice
Induce intratumoral hemorrhage and
accumulation of co-administrated
anticancer drugs in mice

Revacept Inhibit TCIPA in mice and
human

Inhibit EMT marker expression in vitro No impact on bleeding time in mice
and human

(189–191)

Targeting CLEC2-PDPN axis
Anti-CLEC2 mAb (2A2B10 and
INU1)

Inhibit intratumoral thrombus
formation in mice

Inhibit metastasis in mice No impact on bleeding time (68, 127, 129)

Anti-PDPN mAb (NZ-1, MS-1,
and SZ-168)

Inhibit platelet aggregation in
mice

Inhibit metastasis in mice (119, 128, 192–
194)Inhibit VET in mice

2CP Inhibit TCIPA in mice Inhibit metastasis in mice No impact on bleeding time (195)
Co-HP Inhibit platelet aggregation Inhibit metastasis in mice No impact on bleeding time (126)

Inhibit VET in mice
Polysaccharide extracted from
Artemisia argyi leaves

Inhibit TCIPA (196)
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PDPN specifically inhibit platelet-tumor interaction and tumor
metastasis. Although the influence of CLEC2 deficiency on
bleeding is conflicting in CLEC2-null mice, CLEC2 mAb-
treated mice had no sign of prolonged bleeding compared to
control mice (123, 129, 206, 207). Overall, CLEC2 neutralization
seems not to affect bleeding time profoundly.

In addition to neutralizing antibodies, pharmacological
inhibitors display potent inhibitory effects on the CLEC2-
PDPN axis. Chang et al. have newly synthesized a non-
cytotoxic 5-nitrobenzoate compound 2CP that specifically
inhibits the CLEC2-PDPN interaction (195). 2CP selectively
blocked PDPN-induced TCIPA formation and lung metastasis
in the xenograft model, whereas bleeding time was not affected
by 2CP (195). Co-HP can directly bind to CLEC2 at PDPN-
binding sites and potently block CLEC2-PDPN interaction (126).
Co-HP injection significantly reduced tumor metastasis and the
incidence of VTE in mice, but not affecting the bleeding time
(126). Moreover, a bioactive polysaccharide extracted from
Artemisia argyi leaves inhibited CLEC2-PDPN interaction and
PDPN-dependent TCIPA formation (196).

Taken together, inhibition of the platelet CLEC2-PDPN axis
is a promising chemotherapeutic strategy by suppressing TCIPA
formation and metastasis (Table 1). In particular, targeting the
CLEC2-PDPN axis seems to be a relatively safer approach to
block platelet-tumor interaction without severe adverse effects,
Frontiers in Immunology | www.frontiersin.org 8
such as increased bleeding risk. Further clinical studies are
needed to validate their anti-thrombotic and anti-metastatic
effects in human subjects. Although targeting the CLEC2-
PDPN axis is relatively harmless, it still requires caution to be
clinically applied, since CLEC2- or PDPN-deficient mice showed
abnormal lymphatic vessel formation (123).
CONCLUSION

Despite advances in surgical techniques and therapeutic strategies
including radiotherapy and immunotherapy, the survival rate of
OSCC has not been improved for the past decade due to failure of
local control of primary tumor (2, 208). Currently, platelets are well
recognized as a stromal member of the TME and an important
prognostic index in OSCC patients (25, 57, 89). In particular,
platelets directly interact with cancer cells via CLEC2-PDPN
binding, fortifying metastatic potentials of cancer cells. Regarding
that PDPN is the only known endogenous ligand for CLEC2, the
platelet CLEC2-PDPN axis is a pinpoint target to control TCIPA
formation-mediatedmetastasis without undesirable complications.
Thus, blockade of the CLEC2-PDPN axis could be a prospective
strategy for successful local control and improvement of survival in
OSCC patients, which merits further pre-clinical and
clinical investigations.
FIGURE 2 | Platelet receptors involved in platelet-tumor interaction. Platelets contain various types of receptors on the cell surface for diverse physiological
functions, including cell adhesion and aggregation. Some of the surface molecules, such as CLEC2, P2Y12, and GPVI, can promote the interaction between
platelets and cancer cells, which could be plausible targets for blocking TCIPA formation.
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