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Tumor immune escape is a critical step in the malignant progression of tumors and one of
the major barriers to immunotherapy, making immunotherapy the most promising
therapeutic approach against tumors today. Tumor cells evade immune surveillance by
altering the structure of their own, or by causing abnormal gene and protein expression,
allowing for unrestricted development and invasion. These genetic or epigenetic changes
have been linked to microRNAs (miRNAs), which are important determinants of post-
transcriptional regulation. Tumor cells perform tumor immune escape by abnormally
expressing related miRNAs, which reduce the killing effect of immune cells, disrupt the
immune response, and disrupt apoptotic pathways. Consequently, there is a strong trend
toward thoroughly investigating the role of miRNAs in tumor immune escape and utilizing
them in tumor treatment. However, because of the properties of miRNAs, there is an
urgent need for a safe, targeted and easily crossed biofilm vehicle to protect and deliver
them in vivo, and exosomes, with their excellent biological properties, have successfully
beaten traditional vehicles to provide strong support for miRNA therapy. This review
summarizes the multiple roles of miRNAs in tumor immune escape and discusses their
potential applications as an anti-tumor therapy. Also, this work proposes exosomes as a
new opportunity for miRNA therapy, to provide novel ideas for the development of more
effective tumor-fighting therapeutic approaches based on miRNAs.

Keywords: tumor immune escape, miRNA-based tumor therapy, innate immune response, specific immune
response, tumor cell apoptosis, exosomes
1 INTRODUCTION

Cancer has become the leading cause of death, with a high incidence and low cure rate, and a major
impediment to extending life expectancy due to a lack of specific therapy worldwide (1). Given the
high degree of deregulation of the immune system during tumor genesis and progression, restoring
immune system balance is a potentially effective and specific anti-tumor therapy. Immunotherapy,
which represents a paradigm shift in oncology treatment, aims to overcome the immune
suppression caused by the tumor microenvironment and restore the immune system so that it
can target and kill tumor cells via immune response while also promoting tumor cell apoptosis (2).
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However, under the selective pressure of immune surveillance,
tumor cells undergo continuous remodeling at the genetic and
epigenetic levels and develop a series of escape mechanisms, for
example, influencing the immune response process or resisting
apoptosis, to escape from immune surveillance; this results in the
drawbacks and off-target of immunotherapy with low clinical
response and drugs susceptibility (3, 4). Immune escape is not
only a major cause of immunotherapy failure, but it is also a
necessary process for tumors to begin their malignant
progression (5). Considering that this process is characterized
by genomic instability (6), the escape mechanisms by tumor cells,
including immune response disruption, resistance to apoptosis,
or reduced immune recognition, may cause structural changes or
deregulated expression of genes/proteins in both tumor cells and
immune cells (7). Along with these genetic and epigenetic
changes, tumor immune escape is frequently associated with
small non-coding genome elements, known as miRNA.

miRNAs are small non-coding single-stranded RNAs of
approximately 22 nucleotides long, silencing targeted mRNAs at
the posttranscriptional or translational level by binding to the 3’
untranslated region (3’UTR) of the mRNA to inhibit the translation
process or directly cut it (8, 9). Tumor cells and the tumor
microenvironment (TME) are constantly reshaping themselves
directly or indirectly through an aberrant expression of specific
miRNAs, that have, tumor-promoting or tumor-suppressing effects.
In TME, miRNAs are thought to be an important molecular
mechanism for mutual interference between tumor cells and
immune cells. When the function of immune cells against tumors
is disrupted by specifically secreted miRNAs, the immune
responsive process fails to clear tumor cells (Figure 1).
Meanwhile, tumor cells may actively reprogram themselves to
escape apoptosis by expressing aberrant miRNAs, allowing tumor
cells to proliferate and deteriorate uncontrollably (6).

The potential role of miRNAs as tumor suppressors or
oncogenes (oncomiRs) to participate in tumor progression as
well as their heterogeneous functions across tumor types, make
them an appealing therapeutic tool for targeting immune escape
(10). Hence, therapeutics using miRNAs alone fall into two
categories: (i) restoring tumor suppressor miRNA levels,
including miRNA mimics and small molecule drugs; (ii)
blocking oncomiR functions, such as antagomiRs, locked
nucleic acids (LNA), and miRNA sponges (11). Based on the
foregoing, miRNAs emerge as a widely used therapeutic
candidate with a strong potential to become adjuvants for
several major immunotherapies currently in use, synergistically
improving immunotherapeutic efficacy and reducing off-target
effects (12). However, because naked miRNAs have a short half-
life in vivo and are easily degraded, it is urgent to seek a safe,
effective, and targeted vehicle to protect and deliver them to their
intended sites. Exosomes have emerged as the most promising
vehicles for miRNAs in recent years, owing to their high
permeability across biological barriers, the long half-life, and
natural ability to function as shuttle carriers for cargo transfer
under both physiological and pathological conditions (13).
Exosomes are typically recognized by the recipient cell via
antigen-antibody or receptor-ligand interactions, triggering a
Frontiers in Immunology | www.frontiersin.org 2
signaling cascade that activates the endocytic pathway,
allowing the exosomes to enter the recipient cell and release
contains via phagocytosis or pinocytosis (14).

In this paper, we first review the role of miRNAs in immune
escape on three aspects: innate immune response, specific
immune response, and tumor cell apoptosis. After that, we
summarize miRNA-based applications, either alone or in
combination with other immunotherapies, and highlight
exosomes as a promising carrier of miRNAs. This review aims
to suggest a critical role of miRNAs in tumor immune escape and
elucidate the precise mechanisms regulated by miRNAs, required
for a deeper understanding of immune escape, as well as provide
opportunities for their development as therapeutic targets,
thereby improving the efficacy of specific immunotherapy
on tumors.
2 MIRNA-REGULATED INNATE IMMUNE
RESPONSE THROUGH INNATE
IMMUNE CELLS

The innate immune response is the first stage of immune system
activation, and it is characterized by an immediate response
associated with non-specific recognition and killing of tumor
cells. Alterations in miRNA expression profiles in tumors may
result in altered or reversed functions and phenotypes of natural
killer cells (NK cells), macrophages and dendritic cells (DCs), all
of which are major components of the innate immune response.
With impaired or altered function of immune cells, tumor cells
may escape the surveillance of innate immunity. Table 1
summarizes the expression levels, targets, functions, and
clinical relevance of some miRNAs in different immune cell
populations (Table 1).

2.1 NK Cells
The most distinguishing feature of NK cells is that their ability to
kill without first recognizing tumor-specific antigens (41). Instead
of reprogramming themselves to be less immunogenic, tumor cells
could avoid clearance by altering the miRNA expression profile to
inhibit the activation of NK cells. Additionally, because the balance
between activation and inhibition of NK cell receptors determines
whether NK cells are activated (42), miRNAs can contribute to
tumor cells’ immune escape by affecting natural killer group 2
member D (NKG2D), one of the major activating receptors of NK
cells, or its 8 ligands (NKG2DL). NKG2DL contains major
histocompatibility complex (MHC) class I-chain related
molecules A (MICA), B (MICB) and the UL16 binding proteins
(ULBP)1-6 are included in NKG2DL.

The translation process of NKG2D and cytotoxicity of NK
cells would be significantly reduced in the cell lines of over-
expressing miR-1245 (43). Similarly, miRNAs can inhibit
NKG2DL translation. Research has demonstrated higher miR-
20a levels in ovarian tissues of ovarian cancer patients, than in
the normal group. In an in vitro model, miR-20a targets 3’UTR
of MICA/B, resulting in reduced activation signaling and
decreased NK cells cytotoxic activity. In addition, miR-20a
January 2022 | Volume 12 | Article 807895
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could also specifically inhibit MAPK1 (ERK2) which is upstream
of ULBP2 in breast cancer cells, and could similarly impair the
cytotoxicity of NK cells. In addition, miRNAs can also target
ULBP2 to involve this progress. For instance, ULBP2 can be
targeted by miR-34 as well as miR-449 family members to inhibit
translation, thereby affecting NK cell function (44).

2.2 Macrophages
Under different conditions, macrophages, as immune cells with
phagocytic functions in vivo, can polarize into two phenotypes
with opposite functions. There are two types of macrophages:
classically activated (M1) macrophages, which suppress tumors,
and alternatively activated (M2) macrophages, which promote
tumors (45). Because of this feature of macrophages, tumor cells
can convert macrophages gathered in tumor tissues to the M2
phenotype by expressing specific miRNAs, resulting in the
formation of immunosuppressive TME with a greater chance
of immune escape.

2.2.1 NF-kB
NF-kB is required for lipopolysaccharide (LPS) stimulated
macrophage polarization toward M1 (46). miRNAs can regulate
the direction of macrophage polarization by affecting transcription
factors in the NF-kB pathway. D’ Adhemar et al. demonstrated
thatmiR-21 and miR-146a can influence the regulatory role of
myeloid differentiation factor 88 (MyD88) in the toll-like receptor
4 (TLR4) pathway in ovarian cancer by inhibiting MyD88
translation (47). As a result, miRNAs regulation of MyD88
Frontiers in Immunology | www.frontiersin.org 3
affects downstream NF-kB activation, inhibiting the macrophage
polarization toward the M1 phenotype. CYLD is a deubiquitinase
that inhibits IKK activation by reducing TRAF2 and Nemo
ubiquitination, similar to an NF-kB inhibitor. Meanwhile, miR-
182 can target CYLD directly and inhibit its translation, activating
NF-kB (48). The data show that miR-182 is one of the key
regulators that promote M1 macrophage polarization.

2.2.2 STATs
STATs, a class of transcription factors that can bind to the promoters
of target genes, are grouped into 7 subtypes. Members of the STATs
protein family play critical roles in transcription factors mediating
M1/M2 polarization in macrophages. miR-21, a key regulator of
apoptosis and tumor progression, can be overexpressed in tumor-
stimulated macrophages and downregulate STAT1 and Janus kinase
2 (JAK2). Following a reduction in STAT1 and JAK2 levels,
macrophages are unable to form JAK2-catalyzed dimerized STATs,
as much, they enter the nucleus to bind to cis-acting elements in
target gene promoter regions, inhibiting M1 polarization and greatly
reducing antitumor capacity (21).

2.2.3 PPARs
PPARsarea familyofnuclear transcription factors, andmacrophages
can be induced to polarize towardM2upon activation of PPAR-g, an
isodorm of PPARs. This is because PPAR-g can directly binds to the
p65/p50 subunit of NF-kB, forming a transcriptional repressor
complex that inhibits the expression of NF-kB. miR-130a
expression was found to be decreased in patients with non-small
FIGURE 1 | miRNA biogenesis, identification and functions in regulating the immune response. miRNA biogenesis: The biogenesis of miRNA begins when miRNA
gene is transcribed into primary miRNA (pri-miRNA). It is then cleaved by Drosha, a RNase, to form pre-miRNA, which enters the cytoplasm from the nucleus with
the help of exportin 5 and the RAN-GTP complex. There, after Dicer and TAR RNA binding protein (TRBP) bind to the pre-miRNA, one of the strands is incorporated
into the RNA-induced silencing complex (RISC) to form a mature miRNA that performs its functions. miRNAs target mRNAs with complementary sites in the 3’UTR
and cause either translation inhibition or mRNA cleavage. miRNA identification: There are two main ways to identify miRNAs, RNAseq and miTRAP. miTRAP analysis
is a technique for sequencing miRNAs using high-throughput sequencing technology to reflect their expression levels. [miTRAP analysis is a technique that captures
miRNAs by in vitro affinity purification of posterior RNA. miRNAs in the cytoplasm can also be delivered out of donor cells via exosomes and become a tool for
intercellular communication. Functions of miRNAs in regulating immune responses: Tumors can influence the activation, differentiation, maturation, and function of
various types of immune cells through the secretion of specific miRNAs, thereby regulating immune response. The red miRNAs represent a promoting role, while the
blue miRNAs play an inhibiting role.
January 2022 | Volume 12 | Article 807895
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cell lung cancer, and the expression of miR-130a in M1 was higher
than that in M2. Further findings showed that miR-130a inhibits
macrophage polarization toward M2 and enhances M1 polarization
by reducing PPAR-g expression (49).

2.3 DCs
DCs are the most powerful antigen-presenting cells in the body,
serving as a link between innate and adaptive immunity.
However, in TME, dysregulated miRNAs frequently affect their
maturation and function. In this case, DCs are frequently
transformed into immune negative regulators, which aid
tumors to escape immune surveillance (50).

It has been reported that miR-155 is a key gene in the
maturation of breast cancer DCs. Since c-Fos and arginase-2, two
transcription factors essential for DCmaturation and function, were
shown to be targets of miR-155. In addition, miR-155 also
epigenetically regulates CCR7 in DCs, which is key to induce the
migration of mature DCs to the T cell zone of draining lymph nodes
(51). RT-PCR and deep sequencing show that miRNAs are indeed
abnormally expressed in plasma and tissues of gastric cancer
patients, with only miR-17-5p exerting an oncogenic effect in
gastric cancer. Gastric cancer-derived miR-17-5p could be taken
up by immature DCs, inhibiting LPS-induced DCs maturation and
endocytosis activity, promoting gastric cancer development in two
ways (52).
Frontiers in Immunology | www.frontiersin.org 4
3 MIRNA-REGULATED SPECIFIC IMMUNE
RESPONSE VIA AFFECTING NAIVE T CELLS

The specific immune response begins gradually, but it shows
high specificity and plays an important role in the immune
mechanism against tumors. The normal activation and
proliferation of T cells, in particular, is a complex process of
signal stimulation and transduction that is required for the body
to clear tumor cells via specific immunity. miRNAs, as an
important regulator involved in the majority of physiological
activities of the body, are also key factors for T cell activation.
miRNAs can participate in the signal transduction process of
TCR and costimulatory molecules, separately or simultaneously,
through various mechanisms that influence the activation
process of naive T cells; this consequently, regulates the
initiation of cellular immunity (Table 1). Correspondingly,
when T cells are not sufficiently activated and differentiated to
initiate cellular immunity, tumor cells can escape immune
surveillance and rapidly proliferate and deteriorate.

3.1 T-Cell Receptor (TCR)
The first step toward full T cell activation is the binding of
pMHC (a complex of antigenic peptide and MHC) to the TCR
and its delivery to the cell. The TCR and its proximal signaling
molecule can be considered as a “signal integrator”, receiving and
TABLE 1 | Summary of miRNAs expression levels, targets, functions, and clinical relevance of different immune cell populations.

Immune cell
Populations

miRNA Expression
Level

Target genes Functions Clinical relevance References

NK cell miR-182 UP NKG2D ↑NK killing activity Hepatocellular Carcinoma (15)
miR-155 UP INPP5D/

SHIP1
↓Cell survival and Cell-cycle progression Lymphoma (16)

miR-21 UP PTEN ↓Cell survival Lymphoma (16)
miR-342-
3p

DOWN Bcl-2 ↑Cell apoptosis Non-small Cell Lung Cancer (17)

miR-30b DOWN CCL22 ↑Cell apoptosis Lymphoma (18)
miR-218-
5p

UP SHMT1 ↓IFN-g and TNF-a expression
↓Cytotoxicity

Lung Adenocarcinoma (19)

M1
Macrophage

miR-21 UP STAT3 ↓M2 polarization Inflammation (20)
IFN-g/
STAT1

↓PD-L1 expression
↓M1 polarization

Melanoma (21)

miR-342-
5p

UP Bmpr2, Akt1 ↑Inflammatory stimulation Atherosclerosis (22)
CXCL12 ↓Recruitment of macrophages, ↓tumor

angiogenesis
Tumor (23)

M2
Macrophage

miR-195 UP Notch2 ↓M2 polarization colorectal cancer (24)
miR-101 UP C/EBPa, KLF6 ↓M1 polarization

↑Proliferation and invasion
Breast Cancer
Ovarian Cancer

(25)

DC miR-5119 DOWN PD-L1, IDO2 ↓T cell exhaustion Breast Cancer (26)
miR-155 UP c-Fos ↓Proinflammatory cytokine production (27)
miR-564 UP TP53 ↑Proliferation and migration of DC Systemic lUPus

erythematosus
(28)

miR-320 UP EGR3 ↓Invasion and metastasis Glioblastoma (29, 30)
TWIST1 ↑Cell proliferation and invasion Ovarian Cancer (29, 31)

T Cell
naive

miR-150 UP LKB1 ↑Proliferation and migration; ↓Apoptosis Non-small Cell Lung Cancer (32, 33)
miR-16 UP ETS1 ↑Proliferation, migration and invasion Melanoma (34, 35)
miR-142-
3p

UP HMGA2 ↑Apoptosis
G2/M cell cycle arrest

Breast Cancer (34, 36)

let-7f UP Integrin b1 ↓Viability, migration and invasion; ↑Apoptosis Non-small Cell Lung Cancer (34, 37)
T Cell
exhausted

miR-155 UP CTLA-4 ↓T cell proliferation Atopic Dermatitis (38, 39)
miR-26 DOWN PD-1 ↓T cells exhaustion Melanoma (39, 40)
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integrating positive and negative signals induced by the stimulus
and thus determining the role of TCR. Mounting evidence in
recent years has shown that some stage-specific expression of
miRNAs may act as fine-tuners for T cell development by
influencing signal transduction downstream of the TCR (53).
Positive stimulation is generally provided by the pMHC in
conjunction with the TCR, whereas negative signaling is
controlled in part by multiple phosphatases downstream of the
TCR; this set an activation threshold for T cells where negative
regulation may occupy a dominant position. A negative signal is
inhibited when tumor- secreted miRNAs target these
phosphatases, causing an increasing in TCR signal intensity.

Mounting evidence has shown a role for miR-20a in
inhibiting transcriptional activation in T cell lines and that
miR-20a is specifically upregulated during T cell activation.
TCR stimulation was found to rapidly induce miR-20a
expression. Following specific overexpression in some tumor
tissues, miR-20a negatively regulates TCR signaling by inhibiting
the phosphorylation of ZAP70, LAT, PLC-g, and Erk as well as
the expression of CD96. Additionally, miR-20a can regulate
cellular immunity by inhibiting the expression of cytokines
such as IL-10, IL-2, and IL-4 (54). However, the mechanism is
still unknown, and it may be related to the fact that interleukin
secretion is dependent on TCR-mediated ERK1/2 and Ca++
signaling pathways (55). Also, miR-181a can regulate TCR
signaling intensity at the post-transcriptional level. miR-181a
increases TCR signaling intensity by inhibiting several
phosphatases, including dUSP5, dUSP6, SHP2 as well as
PTPN2, that negatively regulate the TCR signal network (56).

3.2 Costimulatory Molecules
T cell costimulatory signals in addition the first signal provided by
the bindingof theTCR topMHC, are required to fully activatenaive
T cells and initiate specific immunity (57). T cells will become an
anergic state or even apoptotic if a costimulatory molecule is not
present to provide the second signal. T cell surface receptors that
bind to specific ligands on the APC provide costimulatory signals
that include both activating (CD28) and inhibitory (PD-1 and
CTLA-4) signals (58). Unfortunately, tumor cells frequently
suppress the expression of co-stimulatory molecules on their
surface by aberrantly expressing miRNAs, causing naive T cells to
fail to fully activate and efficiently initiate specific immune
responses, resulting immune escape (59). Costimulatory signal
pathways primarily include the CD28/B7 pathway and CD40/
CD40L pathway. Of note, the CD28/B7 pathway is one of the
most distinctive costimulatory signaling pathways. CD28 binding
to its ligand CD80/CD86, or CD40 binding to CD40L, can send
critical second signals that fully activate naiveT cells. CD40 binding
to CD40L promotes the expression of CD80, CD86 on APCs,
whereas CD28 binding to CD80/CD86 upregulates CD40L,
resulting in a positive feedback effect that increases the activation
efficiency of naive T cells (60).

Compelling evidence shows that miRNAs almost always
regulate costimulatory molecules directly or indirectly in
various pathological conditions (61). miR-134 acts as an
immune escape facilitator in melanoma cells, not only directly
Frontiers in Immunology | www.frontiersin.org 5
targeting B7-2 to reduce its expression, but also mediating the
reduction of interferon-g (IFN-g) and tumor necrosis factor-a
(TNF-a) levels produced by lymphocytes (62). Also, miR-145
can target CD28, resulting in decreased CD28 expression.
4 MIRNA-REGULATED APOPTOTIC
PROCESS OF TUMOR CELLS

Apoptosis is an autonomous mode of death regulated by genes,
and the ability of tumor cells to escape apoptosis is their
distinguishing feature (63). Tumor cells can mediate immune
escape by inhibiting various proteins involved in the apoptotic
process via the inhibitory effects of miRNAs. miRNAs, for
examples, can resist apoptosis by increasing the expression of
anti-apoptotic molecules, including B-cell lymphoma-2 (Bcl-2),
and inhibiting pro-apoptotic molecules such as death receptors.
The mechanisms involved in the regulation of apoptosis by
miRNAs from death receptors and mitochondrial apoptosis
pathways will be reviewed below (Figure 2).

4.1 Death Receptors Pathways
Apoptosis mediated primarily by death receptors on the cell
membrane is referred to as the death receptor pathwys. Death
receptors are tumor necrosis factor superfamily cell surface
markers, and Fas/Fas ligand (FasL) is a well-known combination.
And tumor cells secrete miRNAs that can affect Fas or FasL, which
results in a downstream cascade response caused by Fas and FasL
binding that fails to activate effector caspases, such as Caspase-3,
which inhibits apoptosis in tumor cells.

Fas has been found to be frequently downregulated during
tumor development, causing tumor cell resistance to apoptosis.
miRNAs that are abnormally expressed in most tumor tissues
serve as important regulators involved in the downregulation of
Fas. The expression of miR-23a, miR-23b, and miR-467a is
upregulated in radiation-induced thymic lymphoma (64, 65).
Fas is the direct target of miR-23a/b and miR-467a. Studies
showed decreased levels of Fas following overexpression of
miR-23a/b, inhibiting apoptosis; however, miR-23a inhibited
Fas more strongly than miR-23b. Furthermore, in rectal
cancer, both the lowly expressed miR-19a-3p, and the highly
expressed miR-196b, can directly regulate expression by directly
targeting Fas, thereby participating in the apoptotic process of
tumor cells (66, 67). miRNAs, which are known for their ability
to target Fas, can also target Caspases to participate in regulating
the extrinsic apoptosis pathway. Overexpression of miR-582-5p
and miR-363 in glioblastoma directly targets Caspase-3 and
Caspase-9, impacting apoptosis (68).

4.2 Mitochondrial Apoptosis Pathway
The permeability of the outer membrane increases when
mitochondria receive signals from intracellular stimuli, allowing
the membrane gap protein component cytochrome C (cyt-C) to
enter the cytoplasmicmatrix; this triggers apoptosis.Mitochondrial
membrane permeability is greatly regulated bymiRNAs aberrantly
secreted by tumor cells through the Bcl-2 protein family.
January 2022 | Volume 12 | Article 807895
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Bcl-2 is a key regulator of mitochondrial outer membrane
permeability, which takes part in tumor cell apoptosis by
regulating cyt-C release and Caspase activation. miRNAs
abnormally overexpress Bcl-2 in multiple malignancies, including
prostate cancer, osteosarcoma cancer, and breast cancer. For
example, miR-204-5p expression is abnormally downregulated in
various cancers, particularlyprostate cancer. Lin et al. demonstrated
that the direct target of miR-204-5p in prostate cancer was Bcl-2,
and inhibiting Bcl-2 expression levels decreased tumor cell viability
and induced apoptosis, demonstrating that miRNA could regulate
apoptosis by regulating Bcl-2 expression levels (69). By directly
targeting Bcl-2, miR-143 can downregulate its expression, which is
aberrantly downregulated in osteosarcoma carcinoma.Meanwhile,
miR-143 can activate Caspase-3, a downstream signal of Bcl-2, and
is associated with increased expression of pro-apoptotic genes
PARP, Bcl-2-associated X protein (Bax), Bcl-2 antagonist killer
(Bak), and Bcl-2 cell death agonist (Bad), all of which induce
apoptosis in tumor cells (70).
5 POTENTIAL APPLICATIONS OF MIRNAS
IN TUMOR IMMUNE ESCAPE

miRNA regulation has emerged as one of the central elements
in the complicated multistep process of immune escape.
Frontiers in Immunology | www.frontiersin.org 6
Since tumors are typically caused by mutations in multiple
genes, the ability of miRNAs to simultaneously target more
than one gene involved in tumor development or escape is the
primary advantage of miRNA-based therapeutic approaches.
That is, one of the most attractive and specific strategies for
their use as a therapeutic agent is their ability to achieve
widespread silencing of pro-tumoral pathways with a small
number of miRNAs (11). In addition, miRNAs are endogenous
antisense nucleotides with lower toxicity and immunogenicity
than protein-based drug complexes or plasmid DNA-based gene
therapies. In this context, miRNA-based applications are being
developed either alone or in conjunction with ongoing
immunotherapies, which could significantly contribute to the
success rate of future tumor treatments (11, 71).

5.1 Therapeutics Using miRNAs Alone
miRNAs function as tumor suppressors or oncomiRs, and their
dysregulation can promote tumor development and escape. As a
result, therapeutics based solely on miRNAs are classified into
two approaches: (i) restoring the expression of tumor suppressor
miRNAs via small molecules or miRNAmimics; (ii) blocking the
function of oncomiRs via miRNA antagonists, such as
antagomiRs, LNA, and miRNA sponge (72).

5.1.1 Restoring Tumor Suppressor miRNA Levels
Restoring tumor suppressor miRNAs can be accomplished either
indirectly through small molecule drugs, or directly by
administering miRNA mimics to affect the molecular pathways
of miRNA biogenesis (71).

Hypermethylation of CpG island promoters, which leads to
transcriptional silencing of tumor suppressor genes, has become
a hallmark phenomenon in cancer cells (73). Furthermore,
because the same epigenetic interference is seen in tumor
suppressor miRNAs, it is possible to reverse the epigenetic
silencing of miRNAs using hypomethylating agents.
Commonly used hypomethylating agents in the clinic such as,
decitabine and azacitidine, can re-induce miRNAs expression
(74). Furthermore, tumor suppressor miRNAs can be restored by
enhancing miRNAs biogenesis. Enoxacin, a small-molecule
antibacterial agent, has been shown to bind to the miRNA
biosynthesis protein TARBP2 and promote the production of
miRNAs (75).

miRNA mimics are more targeted than broad-spectrum
miRNA restoring small molecules because they enhance the
designated miRNAs. miRNAs mimics are double-stranded
oligonucleotides of approximately 22-mer length, containing
the same endogenous mature miRNA or its precursor
sequence. Once transfected into cells, miRNAs are converted
to a single-stranded form and participate in various physiological
processes through miRNA-like functions (76). MRX34, a
liposomal formulation of miR-34a, was the first miRNA
therapy to enter the clinic and is mainly used in advanced or
metastatic hepatocellular carcinoma. miR-34a acts as a tumor
suppressor, regulating the downregulation of various genes
involved in tumor immune escape. Evidence from preclinical
studies showed that tumor growth was significantly inhibited in
mice after tail vein injection of MRX34, with a great
FIGURE 2 | The two major apoptotic pathways with their regulating microRNAs
in various types of cancers. The red miRNAs represent a promoting role, while the
blue miRNAs play an inhibiting role. Left: In the extrinsic pathway of apoptosis,
death-inducing factors such as FAS ligand (FASL) bind to its receptor (FAS) and
recruit FAS-associated death structural protein (FADD) and pro-caspase-8.
Cleavage and activation of pro-caspase-8 then activates the downstream
caspase cascade, leading to sequence activation of caspases-3, -6 and -7.
Right: In the intrinsic pathway of apoptosis, some stimuli disrupt the balance
between pro-apoptotic proteins and anti-apoptotic proteins, which stimulates
the release of cytochrome c in mitochondria. Cytochrome c forms an apoptotic
complex with caspase-9, which is then cleaved by mature caspase-9 produced
by the complex to form mature active caspase-3. Thus, both extrinsic and
intrinsic apoptotic pathways lead to the activation of caspase-3, which cleaves
more than 500 cytoplasmic proteins to induce apoptosis.
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improvement in the survival rate (77). However, it was
subsequently closed due to severe immune-mediated adverse
events (78). Although the clinical trial was closed, the results of
pharmacodynamics and efficacy might provide proof of concept
for miRNA-based therapy.

5.1.2 Blocking oncomiR Functions
The current strategy for inhibiting oncomiR function is primarily
based on antisense miRNAs, which specifically suppress
miRNAs that are aberrantly upregulated in tumor cells such as
antagomiRs, LNA, miRNA sponges, etc. (71, 79, 80).

AntagomiRs are synthetic RNAs that have been chemically
modified with 2’-O-methyl bonds and are coupled with
cholesterol. AntagomiRs can function as anti-miRNAs that are
completely complementary to the target miRNA sequence,
preventing them from binding to target mRNAs (81).
Although AMO and antagomiRs have similar anti-miRNA
mechanisms, they differ in length and chemical modification,
and both strategies have been studied preclinically in animal
models (82).

LNAs have the highest affinity for target miRNAs due to the
addition of methylene bridges connecting 2-O and 4-C atoms,
leading to “locked” modifications of their ribose rings (71). A
number of LNA-based methods are also undergoing preclinical
studies. LNA-anti-miR-380-5p proved effective in reducing
tumor size in an orthotopic mouse model of neuroblastoma
(83). Miravirsen (also known as SPC3649), an LNA-based
antisense molecule targeting miR-122, is undergoing clinical
phase I and phase II trials in the treatment of hepatitis C (84, 85).

The miRNA sponge is a single mRNA with several tandem
binding sites in its 3’UTR that is designed as a highly efficient
molecule for long-term repression of miRNA genes. Due to the
way miRNAs bind to their targets, a single type of sponge may
shut down all miRNAs in the family with close affinity. miRNA
sponges are already used to study miRNAs linked to tumor
metastasis. Evidence shows that sponges targeting miR-9, miR-
10b, and miR-31 can effectively reduce the expression of their
respective target miRNAs, and have an ameliorative effect on
breast cancer metastasis (86). However, because miRNA sponges
are non-chemically modified competitive mRNAs, they have less
affinity for target miRNAs than chemically modified LNAs and
antagomiRs; as such, the required concentration may be
increased. But whether excessive concentrations of miRNA
sponges are associated with side effects is not known at this
time (81).

5.2 miRNAs Are Employed as Adjuvants
for Immunotherapy
Over the past few decades, the clinical application of
immunotherapy has made tremendous progress and has
become one of the most prosperous fields of cancer research
and development. Several immunotherapeutic approaches,
including adoptive cell therapy (ACT), immune checkpoints
therapy, and cytokine therapy, have made significant clinical
progress, particularly immune checkpoint therapy, with
the successful marketing of Ipilimumab, a monoclonal
antibody for treating melanoma and lung cancer. However,
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they have drawbacks such as side effects, ineffectiveness, and
sometimes no effect on a significant proportion of patients
(87, 88). Intriguingly, miRNAs, a widely used therapeutic
candidate molecule, can act as an adjuvant to several major
immunotherapies, synergistically increasing their efficacy
potential while reducing their dosage. Here, we highlight the
mechanisms of miRNAs as adjuvants in the ACT and immune
checkpoint therapy, two of the most widely studied and clinically
applied immunotherapies today.

5.2.1 ACT
ACT is a type of immunotherapy in which autogenous immune
cells are proliferated and/or modified outside the body before
being infused back into the body. Adoptive T cell-based
immunotherapy has proven to be effective in treating solid
cancers and advanced hematologic malignancies (89).
However, for a large group of patients, this approach fails to
produce long-term effects, whereas in some cases, there is no
effect at all, and the overall response rate is not satisfactory. The
effectiveness of ACT may be enhanced by utilizing miRNAs to
improve both T cell fitness and effector capacity (90).

“T cell adaptability”, referring to the ability of T cells to
survive after transfusion, is an important factor influencing the
effectiveness of ACT, and the fitness of adoptive T cells is
dependent on their ability in response to regulatory factors. To
enhance the fitness of T cells, miRNAs can be combined with
ACT, and one approach is to antagonize miRNAs that act as
negative regulators of T cell immune responses. Overexpression
of miR-155 in lymphocytes has been demonstrated to improve T
cell responsiveness to homologous gc cytokines, resulting in
improved T cell survival and antitumor effects. miR-155
promotes cytokine production and signaling transduction
through targeting several negative regulators upstream of the
PI3K/AKT and STAT pathways (91). Antagonize miRNAs,
which are negative regulators of T cell immune responses, is
another way to improve T cell state. miR-146a is upregulated
when T cells are activated and prevents the action of T cell
overactivation by targeting TRAF6 and IRAK1 of the NF-kB
signaling pathway and inhibiting TCR-induced NF-kB activity
(92). Therefore, miRNA therapies such as antagomiRs and
miRNA sponges that target miR-146a can then be used to
enhance NF-kB activity in the adoptive T cells; this improves
their fitness and may increased the response rate of ACT.

Another possible explanation for the low ACT responsiveness
is that the adoptive T cells are exposed to an immunosuppressive
environment in the tumor microenvironment, preventing them
from releasing large quantities of pro-inflammatory cytokines
and exerting powerful cytotoxic effects (93). If the levels of the
specified miRNAs were artificially adjusted to increase the
cytotoxic effect of the adoptive T cells, the response rate and
persistence of ACT should theoretically be improved. The level
of miR-23a was negatively correlated with the cytotoxic
chemokines such as granzyme B and IFN-g in cytotoxic T
lymphocytes (CTL). The response rate and survival rate of
melanoma mice in the miR-23a overexpression group were
significantly lower than in the ACT group, possibly due to the
ability of miR-23a to inhibit the expression of granzyme B and T-
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bet in CTL (94). Hence, inhibitory therapeutics targeting miR-
23a can be used synergistically with ACT, enhancing the
cytotoxic effects of adoptive T cells and improving ACT
response rate and persistence. Overall, there is some evidence
that miRNAs-based therapies have the potential as effective
adjuncts to ACT, but their efficacy and whether they have
adverse effects remain to be seen.

5.2.2 Immune Checkpoint Therapy
Immune checkpoints aremolecules that can play a suppressive role
in the immune system, and tumors have been shown to express
some immune checkpoints as triggers for immune escape. Given
that themechanismofmost immune checkpoints is ligand-receptor
interaction, they are easily blockedbyantibodies or affectedbyother
factors, thereby resulting in inability to function, which is immune
checkpoint therapy (95). It is worth noting that an immune
checkpoint inhibitor is a monoclonal antibody targeting
immune checkpoints. Since the approval of Ipilimumab, an anti-
CTLA-4 monoclonal antibody, for the treatment of metastatic and
unresectable melanoma in 2011, seven immune checkpoint
inhibitors have been recommended for the clinic and thousands
of clinical trials are underway, which makes immune checkpoint
therapy to be one of themost effective and cutting-edge approaches
of cancer treatment. However, its clinical application is hampered
by side effects, new immunotoxicity, and non-persistence of
immune checkpoint. There is growing evidence indicating that
miRNAs and immune checkpoint molecules are closely related,
thus, combining them intoone therapyhas the potential to improve
their efficacy.

PD-L1 on CD8T cells in diffuse large B-cell lymphoma can be
induced by MALAT1, a miR-195 inhibitor. The proliferation as
well as cytotoxic effects of CD8T cells with high PD-L1
expression were attenuated, suggesting that the combination of
miR-195 mimics and PD-L1 inhibitors might be more effective in
anti-cancer (96). In addition, inhibition of miR-28 led to a
concomitant increase in three immune checkpoint receptors
(PD-1, TIM-3 and LAG3) and induced a decrease in T cell
secretion of IL-2 and TNF-a, reflecting the regulatory role of
miR-28 in T cell depletion (97). Recently, a study showed that the
combined application of miR-200c and BRAF inhibitors that
were delivered to the designated sites by nanotargeted vehicles
could effectively downregulate PD-L1 expression and increase
the resistance of tumor cells to immune checkpoint inhibitors
(98). However, although miRNAs are becoming popular in the
field of immunotherapy as adjuvants for immune checkpoint
therapy, further studies should be conducted to elucidate the
mechanisms underlying the association between miRNAs and
immune checkpoints.
6 VEHICLES FOR MIRNA-BASED
THERAPEUTIC STRATEGIES

Insights into the role ofmiRNAs in tumor immune escape have led
to their emergence as attractive novel therapeutic tools. However,
miRNA-based therapies like miRNA mimics and antagomiRs are
unstable in vivo due to the fact that naked miRNAs are rapidly
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degraded by nucleases. Moreover, their hydrophilicity, negative
charge, and large physical size limits their ability to passively diffuse
into the tumor cell, leading to unfavorable pharmacokinetics of
miRNA-based therapy. Moreover, considering the way miRNAs
binding to target genes, they may cause strong toxicity to normal
cells if theyarenot targeted to specific sites (81).Therefore,miRNA-
based therapy requires a safe, effective, and targeted drug vehicle to
protect them from degradation and facilitate their targeted delivery
in vivo, thus inducing desired gene regulation. To this end, various
traditional vehicles such as liposomes, nanoparticles, and viruses
have been used, but all have revealed some limitations in their
biological properties and safety issues that have put them into
doubt. The recent introductionof exosomes as vehiclesmayprovide
a new opportunity for miRNA-based therapy. As endogenous
substances, exosomes have a good stability and biocompability of
the internal environment and an intrinsic ability to cross physical
barriers. Moreover, during biogenesis, exosomes can package
nucleic acids as well as proteins, and internalize donor cell
receptors on the surface and express them on the membrane,
acting as shuttle carriers for intercellular communication in vivo.
All these characteristics provide strong support for exosomes in
defeating traditional vectors to provide new opportunities for
miRNA-based therapy (Figure 3).
6.1 Current Commonly Used Vehicles for
miRNAs Delivery
Liposomes are the most widely used and studied drug vehicles.
For instance, MRX34, which was the first miRNA mimic to enter
clinical trials, uses liposomes as a vehicle. It should be noted that
a liposome is a tiny vesicle that can encapsulate the drug within a
lipid-like bilayer. Although using liposomes as vehicles for drug
delivery can improve drug stability and pharmacokinetics (99),
they still have some disadvantages. For example, liposomes tend
to accumulate in the liver and kidneys, and have to be removed
by the mononuclear phagocytic system in a process that affects
the phagocytosis of macrophages at higher doses. In addition,
liposomes have been associated with acute hypersensitivity
reactions in clinical use.

The use of viruses as vehicles is a relatively old strategy that
possesses target specificity, efficient transgene expression, and
the ability to cross biological barriers. The commonly used
viruses include recombinant adeno-associated viruses (RAAV),
adenoviruses, retroviruses and lentiviruses, which have achieved
significantly results. For example, RAAV loaded with miR-134
achieved almost 100% transduction efficacy (100), and lentivirus
expressing miR-7610 injected into tumors has been shown that it
can suppress the growth of non-small cell lung cancer cells (101).
However, the use of viruses as vectors has many drawbacks,
particularly the immunogenicity of viruses and safety issues that
can trigger oncogenic transformation, as well as the efficiency of
gene transfer. A previous study showed with the use of
lentiviruses as carriers may affect the changes in miRNA
expression due to the integration sites of both the vector itself
and the host genome (102). Besides, the availability of high-
quality viral vectors in large quantities is a major obstacle to the
large-scale application of viral vectors in clinic.
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In recent years, inorganic nanoparticles have emerged as
better drug vehicles compared to traditional liposomes and
viral vectors because they have more advantages, such as
adjustable size, ease of crossing biological barriers, more
superior pharmacokinetics, and higher targeting. Zang et al.
(103) invented a miRNA delivery system based on lipid-
encapsulated calcium phosphate nanoparticles that can activate
TAM and reverse its immunosuppressive phenotype to inhibit
tumor progression. However, polymer coatings that confer
superior pharmacokinetics and biodistribution often raise
safety concerns, which limits their clinical translation (104).

6.2 Exosomes as a Promising Vehicle for
miRNAs Delivery
Recent studies have revealed that membrane-based vesicular
exosomes can transport various active biomolecules, including
miRNAs, lipids, proteins and others, from donor cells to
recipient cells under physiological and pathological conditions,
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ultimately altering the physiology of the recipient cell (13,
105, 106).

Exosomes, a kind of extracellular vesicles that range in size
from 40 to 160 nm, are secreted by various cells including
macrophages, dendritic cells, T cells, and B cells. One study
reported that these cells can form early endosomes (EE) through
invagination of the endosomal membrane (107). Over time, EEs
formmultivesicular bodies (MVBs) by invagination of the vesicle
membrane, leading to the formation of multiple smaller vesicles
and selective inward loading of nucleic acids, proteins and lipids
into the cytoplasm. Generally, MVBs have two intracellular
endings: (i) digestion by lysosomes; and (ii) fusion with the cell
membrane and release into the extracellular matrix as exosomes.
Notably, recipient cells can receive exosomes through ligand-
receptor interaction, pinocytosis or membrane fusion (108).

Given that exosomes express protein molecules or lipid
ligands on their surface, as well as molecules containing their
own nucleic acids, proteins and lipids, they can shuttle through
the body and serve a regulatory role in the physiological and
pathological processes of various systems. For example, the
presence of a plasma extracellular vesicle of non-tumor origin
in melanoma patients may inhibit tumor cell proliferation
through downregulation of beta-catenin and miR-34a delivery
(109). The study also confirmed that endogenous exosomes can
play a role in a number of diseases in vivo through their cargo
loading capabilities and proteins on their membrane surface. In
addition to endogenous exosomes being biomarkers of disease
and prognostic factors, they have the potential to be carriers for
delivering genes and drugs in clinical applications, particularly
miRNA therapies. This can be attributed to the fact that their
surface, unlike liposomes, has a complex and specific
phospholipid bilayer structure, which enables them the
property of loading both hydrophilic and lipophilic materials
(110), allowing for more effective protection, longer circulation
times, easier crossing of biological barriers (99, 111) and, most
importantly, easier fusion with receptor cells to release drugs into
them. Moreover, the protein molecules or lipid ligands expressed
on their surface can help them to have a targeted function (112).
Another highly appreciated feature of exosomes is their stability
in circulation, as they have a negative charge on their surface and
can avoid clearance from the mononuclear phagocytic system by
expressing CD47 on their surface (113). In addition, the size of
exosomes can be utilized for enhanced permeability and
retention effect, making them more accessible to tumor tissues
and long-term retention (114, 115). Collectively, these factors
suggest that exosomes have great potential to overcome the
shortcomings of the commonly used drug delivery systems and
become the most effective vehicles of miRNAs therapeutics in the
treatment of tumor immune escape.

Utilization of exosomes as vehicles of miRNAs largely
depends on identification of an effective cargo loading strategy.
It is well known that producing sufficient numbers of exosomes
loaded with miRNAs has been a technical challenge (116).
Currently, there are two main approaches that can be used to
load cargo into exosomes: exogenous loading and endogenous
loading (117). Exogenous loading, including electroporation,
FIGURE 3 | Cellular journey of exosomes from donor cells to recipient cells.
The range of basic mechanisms of exosome biogenesis and their multiple
ways of interaction with recipient cells. Extracellular components, such as
proteins, lipids, metabolites, small molecules and ions, can enter the cell
together with cell surface receptors via endocytosis to form early endosomes
(EE). During EE maturation, the contents of the cell cytoplasm are sorted and
loaded into vesicles, while the membrane of the EE invaginates, forming
multivesicular bodies (MVB). This step can lead to further modification of the
cargo, with cytoplasmic components entering the newly formed MVB. MVB
can be degraded by lysosomes or transported to the plasma membrane via
the cytoskeleton and microtubule network. With the help of MVB docking
proteins, they are released through exocytosis which are referred to as
exosomes. Exosomes range in size from 40 to 160 nm and usually contain
RNA, miRNA, natural products, proteins, and cell surface proteins. Released
exosomes can be seen as signal bodies involved in a variety of biological
processes. They can be involved in antigen presentation processes,
intercellular signaling, transfer or pinocytosis, phagocytosis into the recipient
cell to deliver effectors for biological functions.
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sonication, simple incubation, extrusion and freeze-thawing, and
has been widely studied and practiced. However, exogenous
loading techniques may cause exosome or cargo aggregation
and may even change their morphological characteristics (118).
This has resulted in endogenous loading gradually gaining
acceptance. Although the process of loading exosomes under
physiological conditions is not a completely random process, the
exact mechanism of exosome sorting of miRNAs is still unclear
(119). Based on this, the mechanism of exosomes sorting
miRNAs can be used to load miRNAs into vesicles, thus
achieving endogenous loading. Transfection is one of
endogenous loading methods, involves encapsulating a gene in
a vesicle during exosome biogenesis by overexpressing it in a
donor cell (120). For example, miRNA or siRNA plasmids are
loaded into exosomes by first transfecting with HEK293FT, and
then isolating the exosomes (121). Exosomes carrying miR-1,
miR-210, miR-214-3p and miR-21-5p, respectively, can exert the
expected therapeutic effects by combining the miRNAs therein
with target cells (122–125). In addition, several studies have
demonstrated that RNA-binding proteins bind to particular
miRNAs to enhance their loading in exosomes. For instance,
the synaptophysin-binding cytoplasmic RNA-interacting protein
(SYNCRIP) in hepatocytes and the sumoylated heterogeneous
nuclear ribonucleoprote (hnRNPA2B1) in lymphocytes
recognize specific GGCU and GGAG in miRNAs, respectively
sequences (119). Consequently, the miRNAs with these
sequences can increase the exosomes loading efficiency by
binding to these two RNA binding proteins.

Although exosomes have made rapid and very promising
progress in cell communication, clinical application of exosomes
into clinical therapy as carriers of miRNAs is limited by several
challenges. First, considering the specificity of miRNAs targeting,
precise determination of the content of exosomes loaded with
miRNAs should be to avoid side effects. Second, the mechanisms
such as exosomes crossing the biological barrier and sorting
miRNAs are not fully understood. Currently, the purification,
loading, and storage technologies of exosomes are not very
mature, and the cost effectiveness and yield are too small to be
used in large-scale clinical therapies. However, it is evident that,
with the progress of research, exosome-loaded miRNAs are likely
to be a promising new strategy to address tumor immune escape.
7 CONCLUSION

Tumor immune escape is a key step in the malignant progression
of tumors and is a significant factor for the failure of some tumor
treatments. This review mainly focused on the effects of miRNAs
interference on three aspects: innate immune response, specific
immune response and apoptotic process. The paper has shown
that miRNAs play a crucial role as oncogenic molecules and also
tumor suppressor molecules in the tumor immune escape
process. Currently, more and more nucleic acid drugs have
entered the clinical research stage, thus, the superiority of
miRNAs and their role in tumor immune escape should be
exploited, alone or as adjuvants, for some developmental value.
However, due to the instability of miRNAs in body fluid and
Frontiers in Immunology | www.frontiersin.org 10
demand for targeted delivery, diverse biomaterials as liposomes,
viruses, inorganic nanoparticles and otherwise are applied as
vehicles for miRNAs-based therapeutic drugs delivering.
Especially, exosomes, an endogenous substance, can be
equipped with nucleic acids and proteins for intercellular
communication in both physiological or pathological conditions.

With the advancement of miRNA research, more and more
studies are exploring the use of miRNA for diagnosis and
prediction of prognosis, including miRNA-based therapies that
use the expression patterns of some specific miRNAs to predict
and target immune escape. The emergence of miRNAs can also
be used to elucidate the mechanisms underlying tumor immune
escape, with the overarching goal of understanding the
malignant biological behavior of tumors.

Despite the great achievements in miRNAs-based therapeutic
strategies, the structural properties of miRNAs and how they
bind to target genes can cause many side effects that are
inconsistent with the therapeutic goals. Therefore, in addition
to chemical modification of miRNAs, identifying a
biocompatible vehicle that can deliver miRNAs safely and
efficiently to the specified location is a valuable solution to
reduce side effects and off-targets. Accumulating evidence has
suggested that, exosomes are very promising as vehicles of
miRNAs. However, there are plenty of obvious issues that need
further confirmation, such as the source of exosomes, isolation
techniques, loading techniques, and what kind of drugs are
suitable for loading. In conclusion, the era of small molecule
RNA drugs is rapidly approaching, and we believe that, as
research continues, miRNA-based drugs or therapies will be
increasingly used in clinical treatment against tumors.
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