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Yearly administration of influenza vaccines is our best available tool for controlling influenza
virus spread. However, both practical and immunological factors sometimes result in sub-
optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within
the field has led to development of pre-clinical and clinical vaccine candidates that aim to
address limitations of current influenza vaccine approaches. Here, we consider the route
of immunization as a critical factor in eliciting tissue resident memory (Trm) populations
that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has
the potential to boost tissue resident B and T cell populations that reside within specific
niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised
to respond rapidly to pathogen re-encounter by nature of their anatomic localization and
their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal
immunity in the upper and lower respiratory tracts suggest that antigen localized to these
regions is required for the elicitation of protective B and T cell immunity at these sites and
will need to be considered as an important attribute of a rationally designed intranasal
vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of
lung mucosal immunity.
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CURRENT INFLUENZA VACCINATION APPROACHES

Annual vaccination represents the best currently available strategy to mitigate the disease burden
caused by influenza virus infection (1, 2). Each year, influenza vaccines are updated to reflect
antigenic changes that occurred in influenza viruses as a consequence of selective pressures to escape
immune recognition (3). These vaccines may be formulated as split or subunit inactivated vaccines
or recombinant HA-based vaccines that are administered at a peripheral site or through live
attenuated influenza viruses (1). Live attenuated virus vaccines are administered intranasally and
most commonly in children, although the efficacy of this approach for children has sometimes been
challenged (4, 5).

Year-to-year efficacy of licensed influenza vaccines is highly variable, ranging from a historical
low of 10% to as high as 60% in the U.S. (2). Influenza vaccine efficacy is affected by a wide range of
factors, including aspects of influenza surveillance, basic immunology, and vaccine formulation.
Because current influenza vaccines have elicited HA neutralizing antibodies as their primary aim,
efficacy is highly dependent on accurate strain prediction and antigenic match between vaccine and
circulating viruses (2). Even in cases where vaccine viruses are well matched to circulating viruses,
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two well-known immunological phenomena also contribute to
variable vaccine efficacy. The recall of pre-existing immunity
generated by infection and vaccination into subsequent
responses, termed original antigenic sin, re-directs the immune
response towards regions shared with the priming antigen and
away from novel epitopes on related antigens (6). In contrast, B
and T cells focus on a subset of antigenic determinants present
on a given antigen, an adaptive immune phenomenon termed
immunodominance, and affects which cells are drawn into the
immune response to either infection or vaccination (7).
Immunodominance of variable regions of the HA-head over
more conserved sub-dominant regions like the HA-stalk
interfere with protective immune responses targeting the
conserved stalk region (6). This pattern of immunodominance
was observed across diverse species ranging from mammals and
birds to lampreys, suggesting that immunodominance of certain
sites within HA is a consequence of protein-intrinsic properties
(7). While subunit inactivated and recombinant vaccines have a
favorable safety and cost profile, they suffer from reduced
immunogenicity relative to older whole virus vaccines that
contained more diverse viral proteins and innate immune
agonists (8, 9). The low immunogenicity of current vaccine
formulations are further compounded by non-adjuvanted
inactivated vaccine formulations, which can reinforce immune
sub-dominance of conserved regions of HA (6). Low intrinsic
immunogenicity also necessitates yearly administration of
influenza vaccines, which can blunt the vaccine responses in
frequently vaccinated individuals (10–13). Live attenuated
influenza vaccine formulations are only available to people in
certain age demographics and their efficacy may be diminished
by pre-existing immunity that blunts replication (1, 4, 5).

Despite significant investment in influenza vaccination efforts
worldwide, we have not achieved adequate control of seasonal
spread of influenza viruses with current vaccine approaches and
remain vulnerable to emergence of novel strains with pandemic
potential. “Universal” influenza virus vaccine candidates promise
to address the shortcomings of current vaccine approaches by
providing long-lasting immune responses against all influenza A
and B lineages with stable protective efficacy across influenza
seasons (14, 15). With many next-generation influenza vaccines
currently in pre-clinical or clinical trials (16–18), we believe that
the route of vaccination is a critical consideration for future
influenza vaccine design efforts. Specifically targeting intranasal
vaccination to boost immune cell populations localized to the
respiratory tract microenvironment allows us to exploit the
advantages of tissue resident memory cells relative to
peripheral immune cells. Tissue resident memory cells that
have been previously generated by infection or live attenuated
virus vaccination possess a unique phenotype, effector functions,
and localization that allows them to mediate rapid anti-pathogen
responses and act as frontline defenders of the barrier sites in the
respiratory tract (19). Here, we consider the merits of vaccination
approaches that foster B and T cells responses localized to the
respiratory tract as critical factors of vaccine design for
respiratory tract vaccine candidates and describe the
outstanding issues that hinder rational vaccine design efforts.
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DISTINCT NICHES FOR TISSUE
RESIDENT MEMORY POPULATIONS
IN THE RESPIRATORY TRACT

Despite the contributions of both the local and systemic humoral
response to protective immunity, current vaccine approaches
only target the systemic humoral response. In cases where strain-
specific systemic antibodies fail to neutralize virions and blunt
infection, local immune cell populations in the respiratory tract
can contribute to protection from infection. A unique subset of
memory cells, termed tissue resident memory (Trm) cells, can
reside in non-lymphoid tissues such as the respiratory tract
independent of circulating populations of memory cells (20).
Their positioning at mucosal sites where pathogens are
encountered makes these Trm cells anatomically positioned to
respond rapidly to pathogen re-encounter. In addition to their
anatomical location, these Trm cells are functionally poised to
respond rapidly to reinfection. Data from animal models and
humans have highlighted that both B and T cells can assume
tissue resident memory fates. Tissue resident memory cells can
localize to at least two distinct anatomical sites within the
respiratory tract: upper respiratory tract (URT) and lower
respiratory tract (LRT). The nares, pharynx, and larynx
comprise the URT, while the LRT consists of the trachea,
bronchi, and lungs (21).

Within the URT and LRT, there are distinct niches that help
to support the long-term persistence of memory cell subsets
outside of secondary lymphoid organs. Nasal associated
lymphoid tissues (NALT) consist of B cell areas surrounded by
T cell areas in the URT, a site that cannot support naïve T cell
priming and is primarily populated by memory B and T cells (21,
22). In contrast to the LRT, memory T cells in the URT can be
recalled by local inflammation, can patrol the nasal turbinates,
septum, and NALT, and may not wane as quickly as LRT-
localized T cell populations (23). Within the LRT, inducible
bronchus-associated lymphoid tissues (iBALT) are generated in
response to inflammatory stimuli following orchestrated
interactions between stromal cells, professional APCs, and
infiltrating B and T cells (24). An antigen-dependent niche is
thought to be especially important for memory CD4 T cell
responses and for the production of local antibodies (21).
Repair associated memory deposits (RAMD) form around sites
undergoing tissue regeneration following infection-induced
injury of the bronchioles. While RAMD does not contain
lymphoid-like structures like NALT or iBALT, RAMD is
important for maintaining CD8 T cells at relatively high
density during the resolution phase of infection (21). Finally, a
combination of local proliferation and recruitment from the
periphery contributes to maintenance of LRT memory cell
populations. A subset of lung resident cells primed by infection
emigrate from the lung and maintain their tissue resident
memory program from the lung draining lymph node, thereby
maintaining the ability to return to the lung via a process termed
retrograde migration (25). This reverse migration to the lung
may allow cells to be saved from gradual attrition of cells in the
lung and be stably maintained independently of residual antigen
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(25). Despite this reservoir of cells in the draining lymph node,
memory T cell populations in the LRT are known to undergo
attrition over time likely as a consequence of imbalances between
local cell death and replenishment by peripheral cells that home
to the lung or local proliferation of cells within the LRT, as well as
diminishing viral antigen persistence (26–28).
TISSUE RESIDENT MEMORY CD4
AND CD8 T CELL RESPONSES

Memory T cell populations persisting at the site of infection have
been shown to mediate protection from infection with distinct
subtypes of influenza virus by targeting viral proteins conserved
between viral isolates, a phenomenon termed heterosubtypic
immunity (29–35). Both influenza-specific CD4 and CD8 T
cells make critical contributions to anti-viral immune
responses in the lung (36–39). CD4 T cells can produce anti-
viral cytokines and kill infected cells through a perforin and
granzyme dependent mechanism (40–42). CD4 T cells can
promote innate cell responses in the lung and promote early
activation of professional APCs through cytokine production
(38, 43–46). CD4 T follicular helper cells can provide cognate
help to influenza-specific B cells and CD8 T cells, including those
that reside directly in the respiratory tract (47–52). CD8 T cells
mediate cytotoxic killing of infected cells and secrete anti-viral
effector cytokines (36–39). Effector CD8 T cells kill infected
cells through Fas-FasL interactions and through perforin
and granzyme mediated cytotoxicity (53, 54). Somewhat
paradoxically, airway localized CD8 Trm cells display
decreased cytotoxic function relative to effector CD8 T cells
from secondary lymphoid organs (SLO). The microenvironment
of the lung is thought to drive a distinct transcriptional and
epigenetic profile relative to cells from SLO, resulting in
decreased cytotoxicity (55). However, signaling through the
IFNa receptor up-regulated GzmB protein expression in CD8
Trm cells, enhancing killing and control of early viral titers (54).
In addition to killing functions, CD8 Trm cells isolated from the
lung airways are able to produce effector cytokines more rapidly
than cells isolated from SLO, producing IFNg within two hours
of antigen restimulation (54). When transferred to naïve
recipients that were subsequently challenged with influenza
virus, CD8 airway Trm cells reduced influenza virus copy
number in the lung in an IFNg dependent manner (56). In the
absence of CD4 T cells, CD8 T cell memory formation and
localization are impaired, demonstrating functional synergy
between the two cell subsets (36–39). Thus, memory CD4 and
CD8 T cells targeting conserved epitopes between viruses can
mediate diverse, often synergistic antiviral effector functions and
provide protection from infection independent of antibody.

Data from animal models of infection demonstrate enhanced
protection afforded by tissue resident memory T cells relative to
peripheral T cells, suggesting that localization of Trm
populations is a critical factor underlying their protective
potential. We showed that intranasal vaccination with an
influenza NP-nanoparticle vaccine elicited a polyfunctional
Frontiers in Immunology | www.frontiersin.org 3
subset of CD4 T cells that persisted long-term in the lung.
Adoptive transfer of CD4 T cells isolated from the lung of
mice boosted with the influenza NP-nanoparticle vaccine was
sufficient to mediate protection from a lethal influenza virus
challenge (57). Others in the field have found that adoptive
transfer of TCR transgenic CD4 Trm cells isolated from lung, but
not spleen, also mediated protection from influenza challenge
(58). Lung localized CD8 T cells primed by intranasal infection,
but not intraperitoneal infection, contribute to heterosubtypic
immunity and clearance of infectious virus while peripheral CD8
T cell populations make a minimal contribution to protection
(35). SARS infection in mice could be controlled by an airway
localized CD4 T cell population that produced IFNg and
facilitated help for respiratory dendritic cell migration and
CD8 T cell priming (59). In the absence of B cells, adoptively
transferred CD4 T cells can mediate perforin-dependent
protection from influenza virus infection (40). A subset of CD4
T resident helper cells have been identified in the influenza
infected lung that can provide help for lung localized CD8 Trm
and B cell resident memory (Brm) responses (51, 52). CD4
resident helper cells co-localize with B cells in lymphoid
structures of BALT, where they can persist long term (51, 52).
T resident helper cells, like other Trm cell subsets, are dependent
on sustained interactions with MHC-II in the lung. Inducible
deletion of Bcl6 among CD4 T cells resulted in less co-
localization of CD4 T cells and B cells within BALT and an
overall decreased influenza-specific ASC recall response in the
lung (52). Using the same Bcl6 depletion approach, others have
implicated T resident helper cells in the generation of optimal
CD8 Trm and Brm responses (51). Therefore by emphasizing
only systemic antibody responses against HA, current
vaccination strategies fail to boost respiratory tract Trm
populations and exploit their enhanced protective potential
relative to peripheral immune populations.
DEFINING THE CONTRIBUTIONS OF
LOCAL AND SYSTEMIC ANTIBODY
RESPONSES

While current findings provide strong support for the role of T
cell Trm in protection of the respiratory tract from infection, B
cells can also adopt a tissue resident memory fate and reside in
non-lymphoid tissues. Findings from animal models suggest that
memory B cells primed by infection seed the NALT, airway
draining LNs, spleen, and lung, and that these cells maintain the
potential to assume ASC fate upon stimulation. IgA isotype
switched ASCs were maintained in the URT at least 8 weeks post
infection, while the lung contained both IgA and IgG isotype
switched ASCs (22). Detailed clonal analysis of the B cell
responses to influenza infection also demonstrated that
infection elicits a widely disseminated B cell response (60).
This clonally diverse response includes a subset of influenza-
specific B memory cells generated in SLO that migrate to the lung
and become resident memory cells (60). These data suggest that
while there is relatively stable output of plasmablasts and
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memory B cells from the germinal center reaction, there is a
kinetic window for establishing tissue resident memory in the
lung. B cells generated in the lung draining lymph node can
home to the lung up to 28 days post infection and cells derived
from the spleen can home to the lung for up to 14 days post
infection (60). Others have shown that Brm is durable, persisting
for at least 5 months post infection (61). When transferred into
an immunodeficient host, lung B cells maintained the potential
to differentiate into plasma cells that produced neutralizing
antibodies within the lung. The production of local IgA and
IgG was correlated with decreased viral spread (61). Local
antigen within the lung is necessary for Brm formation and for
lung resident B cells that are present to lead to an accelerated
antibody secreting cell response in the lung following secondary
challenge (62).

Current influenza virus vaccine approaches are designed to
induce systemic IgG responses, but not local antibody responses
in the respiratory mucosa. Given that the primary target of
influenza virus infection is the epithelium that lines the
respiratory tract, mucosal antibody responses in the respiratory
tract are critical for preventing influenza virus infection (63).
Data from humans and pre-clinical animal models of influenza
virus infection have highlighted important differences in the
mechanisms underlying antibody-mediated protection in the
URT relative to the LRT, suggesting that a “one size fits all”
vaccine approach may not be sufficient to elicit antibodies at both
sites. An increased understanding of the route of natural
infection with respiratory viruses in humans has highlighted
that a wide size range of particles shed from the respiratory tract
can carry infectious droplets, and that larger particles tend to
deposit in the URT, while smaller particles can penetrate deeper
into the lung reaching the LRT (64). Thus, depending on the
properties of the inhaled viral particles, local URT or LRT
antibody titers may be insufficient to blunt viral replication.

Mucosal IgA and IgM responses are responsible
predominantly for protection in the URT, while protection in
the LRT is mediated by transport of serum IgG (65, 66). There is
also evidence of mucosal IgD antibodies in the URT, but their
function remains relatively poorly understood (66). Antibodies
arrive in the URT through a process of active transport of IgA
and IgM isotypes produced by plasma cells in the lamina propria
adjacent to the epithelial cell barrier by the polymeric Ig receptor
(63). An extracellular component of the polymeric immunoglobulin
receptor (pIgR), termed the secretory component, gives secretory
IgA increased resistance to proteases and aids in release of antibody
complexes transported through epithelial cells (63). Antibody
transport from serum into the LRT, however, is mediated by the
neonatal FC receptor (67, 68). IgA is known to exist in multiple
forms within the respiratory mucosa, ranging from monomers to
tetramers, and potentially even higher order polymeric structures
with greater than 4 IgA subunits. Collection of nasal washes from
human donors demonstrated that polymeric and tetrameric forms
of IgA had the highest neutralization potential, and that
neutralization potential decreased as immunoglobulin structure
became smaller (69). The higher avidity of multimeric IgA
complexes increases the breadth of sIgA reactivity relative to IgG,
Frontiers in Immunology | www.frontiersin.org 4
especially when antibody affinity for the target antigen is limiting
(70, 71). Human vaccine trials targeting intranasal vaccination with
existing IIV and WIV formulations boosted serum and mucosal
antibody titers when virus neutralization in the URT was correlated
with local IgA titers and serum neutralization was correlated with
IgG titers (69, 72). Recent findings from the acute response to a
COVID-19 infection shows that early plasmablasts elicited by
infection are predominantly of an IgA isotype and possess a
mucosal homing phenotype, and that secreted mucosal IgA was
detected at higher titers than in matched serum samples (73). These
findings suggest that by focusing on only eliciting serum antibody,
current vaccine strategies are neglecting a critical aspect of the
humoral response that provides protection for the URT.
CONSIDERATIONS FOR VACCINE
APPROACHES THAT FOSTERRESPIRATORY
TRACT LOCALIZED IMMUNITY

Future influenza vaccine development approaches must consider
route of vaccination as a critical factor for vaccine efficacy.
Different mucosal sites require different signals for establishment
of Trm cells (20). Whereas Trm cells in the mucosa of the female
reproductive tract can be recalled with inflammation alone, this
“prime and pull” strategy does not elicit stable Trm cell
populations in the lung (74). Both B and T cell populations in
the lung require local antigen for establishment of Trm (21, 75–
77). Thus, given the necessity for local antigen in the lung,
intranasal vaccine approaches may show promise in establishing
B and T cell memory within the human respiratory tract. In
addition to the immunologic advantages of seeding immune cells
directly at the site of infection, delivery of local antigen via
intranasal vaccination presents the advantage of non-invasive
needle free delivery, which may enhance vaccine compliance.
Current vaccine approaches based on the master-donor LAIV
backbone show promise in eliciting mucosal immune responses in
naïve individuals but show a reduced efficacy in those with pre-
existing memory, likely as a consequence of antibody blunting
viral replication (4, 5). Approaches utilizing novel viral vectors to
which humans lack pre-existing immunity or non-replicating
antigens may increase efficacy (78). A number of pre-clinical
and clinical vaccine candidates have shown tremendous promise
in generating anti-influenza immune responses, including
mucosal immune responses in the lung (79–81). Inclusion of
adjuvants may enhance protective efficacy of non-replicating
antigens. Although there is significant appeal for the addition of
adjuvants, safety is a primary concern with the complex immunity
that exists in human (82, 83). A novel polysaccharide-based
adjuvant was found to be well tolerated in human phase I trials
and displays a synergistic effect with other adjuvants, raising the
possibility of its use as a safe but potent intranasal adjuvant
candidate (84). Persistent antigen within the respiratory tract is
required for the induction of long-lived Trm cell populations (21,
76). An adenoviral vector vaccine expressing influenza NP drove
antigen expression for at least three months and resulted in stable
Trm cell populations for at least one year (85). Inclusion of
December 2021 | Volume 12 | Article 808527

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nelson and Sant Potentiating Lung Mucosal Immunity
excipients may enhance antigen persistence at mucosal sites, as
rapid clearance and antigen adsorption are likely to affect lung
localized immune responses (69, 72). In addition to formulation
considerations, the safety of eliciting a lung-localized immune
response will need to be assessed in diverse human populations.
The challenges of pre-existing memory and intrinsic
immunogenicity introduced above, suggest that the choice of
antigen in the immune response for next-generation vaccines
w i l l b e c r i t i c a l . App roache s tha t ove r come the
immunodominance of HA by specifically targeting the HA stem
(86–88), NA (89, 90), or highly conserved and immunodominant
internal proteins like NP are excellent candidates to increase
efficacy and breadth of protection (57, 91, 92). Evidence from
humans suggest that the anti-HA stalk antibody repertoire may be
enriched for polyreactivity, the ability to bind to multiple distinct
antigens, thereby implicating the role of self-tolerance in shaping
the antibody response to certain pathogens (93–97).
OUTSTANDING QUESTIONS IN LUNG
MUCOSAL IMMUNITY

While animal studies have been indispensable in the identification
and characterization of B and T cell resident memory populations,
the role of these tissue resident cell populations inhuman immunity
to respiratory infections is understudied. Data from human tissue
explants has identified robust populations of CD4 and CD8 Trm
cells in human lung and defined a core transcriptional signature of
human Trm (98, 99). Restimulation of CD8 T cells isolated from
human lung has demonstrated that human CD8 lung Trm cells
mediate many of the same effector functions associated with
protection in mouse models, including cytotoxic degranulation,
polyfunctional cytokine production, and proliferation in response
to stimulation (100, 101). In a human challenge model of RSV
infection, the frequency of virus specificCD8T cells in the airway of
the lung were correlated with lower symptom scores and viral load
(102). Kinetics of the virus-specific T cell responses in the airway
were distinct from the blood, highlighting difficulties in
extrapolating the relationship between readily sampled peripheral
blood and the immune cells at the site of infection (102). Further
human challenge studies that sample the actively functioning
Frontiers in Immunology | www.frontiersin.org 5
respiratory tract will be critical in defining better correlates of
protection and potentially lung-specific correlates of T cell
mediated protection. Defining a lung-specific correlate of
antibody-mediated protection may help address whether levels of
local antibody are limiting. Repeated administration of current
influenza vaccines elicits high serum antibody titers but antibody
specificities or titers in the URT may be insufficient to provide
complete protection from infection (103). Peripheral vaccination
with weakly immunogenic vaccine formulations may also limit
boosting of tissue resident T cell populations. In light of thefindings
from animalmodels demonstrating attrition of lung Trm, a greater
understanding of the factors that underlie waning of immune cell
populations, especially within the LRT, is necessary for any
intranasal vaccination efforts aiming to provide durable
protection (26–28). With safety as a primary focus, development
of approved mucosal vaccine adjuvants may assist in intranasal
vaccine design efforts (82).
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