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The tumor microenvironment is essential for the formation and development of tumors.
Cytokines in the microenvironment may affect the growth, metastasis and prognosis of
tumors, and play different roles in different stages of tumors, of which transforming growth
factor b (TGF-b) and tumor necrosis factor a (TNF-a) are critical. The two have synergistic
and antagonistic effect on tumor regulation. The inhibition of TGF-b can promote the
formation rate of tumor, while TGF-b can promote the malignancy of tumor. TNF-a was
initially determined to be a natural immune serum mediator that can induce tumor
hemorrhagic necrosis, it has a wide range of biological activities and can be used
clinically as a target to immune diseases as well as tumors. However, there are few
reports on the interaction between the two in the tumor microenvironment. This paper
combs the biological effect of the two in different aspects of different tumors. We
summarized the changes and clinical medication rules of the two in different tissue
cells, hoping to provide a new idea for the clinical application of the two cytokines.

Keywords: TGF-b , TNF-a, proliferation, apoptosis, inflammation, genomic instability, epithelial-
mesenchymal transition
INTRODUCTION

The process of tumor formation is complex and changeable and closely related to changes in its
microenvironment. As an important part of the tumor microenvironment, cytokines have a two-
way relationship with cancer. On the one hand, cytokines can directly affect carcinogenesis and
metastasis by changing the phenotype of tumors. On the other hand, cytokines can also play a role
through host immune system to produce specific responses against tumors (1). The two most
mentioned cytokines in the tumor microenvironment are TGF-b and TNF-a. Interestingly, these
two cytokines play a two-way role in the process of tumor formation, that is they can both inhibit
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tumor formation and promote tumor development (2).
However, the interaction between TGF-b and TNF-a during
tumor formation is still unclear. This article reviews the two sides
of the interaction between TGF-b and TNF-a during
tumor formation.
ROLE OF TGF-b IN THE PROCESS OF
TUMOR FORMATION

TGF-b was originally thought to induce the proliferation of rat
renal fibroblasts (3). In normal environment, TGF-b, as an anti-
inflammatory factor, has been proved to inhibit the production
and function of effector T cells and antigen-presenting dendritic
cells, and can regulate natural killer cells, macrophages, dendritic
cells and granulocytes to inhibit inflammation (4, 5).
Interestingly, in tumors, its effects are multifaceted, depending
on the stage of the tumor. In the early stage, TGF-b, as an effective
growth inhibitor, can inhibit the epithelial cell cycle and promote
cell apoptosis, thus inhibiting the occurrence and development of
tumors (6). In the middle and late stages, TGF-b can induce and
promote epithelial-mesenchymal transformation (EMT), increase
the activity and invasiveness of tumor cells and participate in
tumor malignant progression and angiogenesis (7). In view of the
above phenomenon, some literatures have proposed explanations.
In the early stage, TGF-b is involved in the inhibition and
apoptosis of tumor cells as a major tumor suppressor factor.
In the middle and late stages, tumor cells develop resistance to
TGF-b or are reinterpreted by tumor cells to promote tumor
growth (8). Therefore, TGF-b plays an important role in tumor
formation and development.
ROLE OF TNF-a IN THE PROCESS OF
TUMOR FORMATION

Tumor necrosis factor (TNF) family is an important class of
cytokines, which play an important role in the regulation of a
series of physiological and pathological reactions such as cell
proliferation, differentiation, apoptosis, immune responses and
inflammation (9). TNF-a is produced by monocytes and
macrophages, it can not only regulate the immune function
and cause necrosis of some tumor cells, but also mediate
pathophysiological reactions such as inflammatory processes,
tissue injury and shock (10). The proinflammatory effect of
TNF-a can promote the formation of tumors. Studies have
shown that TNF-a can lead to highly invasive diseases in
many malignant tumors, and effectively increase the
transcriptional levels of different inflammatory factors and
chemokines, and also increase the metastatic phenotype of
cancer cells to promote the progression of cancer, so it plays
an important role in regulating the proliferation, migration and
invasion of various types of cancer cells (11–13). The
bidirectional regulatory effect of TNF-a on tumors also plays a
key role in cancer progression.
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INTERACTION BETWEEN TNF-a AND
TGF-b

TNF-a is recognized as a strong pro-inflammatory factor and an
important mediator of immune protection. But the role of TGF-b
is complicated. Although it has a pro-inflammatory effect, it is
more regarded as an effective immunosuppressive cytokine. Both
of them are important cytokines involved in the process of tumor
formation, and their interaction relationship mainly depends on
the influence of the microenvironment.

TNF-a and TGF-b can promote each other’s production, and
TNF-a has been shown to affect TGF-b expression in many cells
and tissues, such as endothelial cells, lung epithelial cells,
macrophages, as well as subcutaneous adipose tissue (14). A
correlation was also found between TNF-a mRNA expression
and TGF-b mRNA expression in fibroblasts as well as in thyroid
cells (15–17). Similarly, TGF-b can also activate the expression of
TNF-a in in vitro and in vivo experiments and plays an
important role in tissue injury repair, inflammation and tumor
growth (18–21). In addition to direct mutual stimulation of the
two, TNF-a has an effect on TGF-b receptors, and TNF-a can
increase TGF-b type I and type II receptor expression and
stimulate Smad3 phosphorylation in rat fibroblasts (22). The
mutual stimulation of the two is also closely related to their
respective signaling pathways, and TNF-a can lead to increased
TGF-b1 mRNA and promote the expression of TGF-b1 by
activating the extracellular regulated kinase (ERK) specific
pathway in fibroblasts (23). Subsequent in-depth studies
revealed that TNF-a can induce the expression of activator
protein 1 (AP-1) and allow it to bind to DNA, which leads to
increased transcription of the TGF-b1 gene (24). There are also
relevant reports pointing out that up-regulation of TGF-b1
expression induced by TNF-a may be associated with
activation of the NF-kB pathway (25–27). TGF-b1 and TNF-a
have mutually stimulating effect, and their mutual induction and
crosstalk in their respective pathways leads to non-destructive
tissue remodeling, ultimately leading to myocardial fibrosis,
dysfunction and heart failure (28).

TNF-a and TGF-b can also inhibit each other, and increased
TNF-a can inhibit TGF-b-mediated gene or signaling pathway
conduction in the previous literature (29–31). It has also been
shown that elevated TGF-b content can also inhibit the expression
of TNF-a and its receptor in different cell lines, TGF-b can be
produced by autocrine means in microglia, and can inhibit TNF-a
production and prevent oxidative stress response, a phenomenon
that contributes to the survival of phagocytic microglia (32). TGF-
b inhibited the induction of TNF-a expression at both protein and
mRNA levels in rat astrocytes (33). In phagocytes, TGF-b
inhibited TNF-a production by mediating the expression of the
major antigen and adhesion-promoting protein (BAD1) in type B
dermatitis (34). In human venous endothelial cells (EC), TGF-b
can down-regulate TNF-a receptors, thus exerting an
immunosuppressive effect (35). TNF-a and TGF-b can interact
differently in different microenvironments of different cell lines,
which may be the result of self-regulation by the body in order to
maintain the homeostasis of the normal microenvironment.
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However, the mechanism of the interaction between the two on
tumorigenesis is still unclear. There are ten hallmarks which have
been published about the process of normal cells that transforming
into tumor cells, including self-sufficient growth signals,
insensitivity to growth signals, avoidance of apoptosis, limit
potential replication, sustained angiogenesis, tissue invasion and
metastasis, avoidance of immune destruction, promotion of tumor
inflammation, deregulating cellular energetics and genome
instability and mutation (36). However, it has been investigated
that the interaction between TNF-a and TGF-b is also two-sided
during tumor formation. The authors reviewed the dual roles of
proliferation, apoptosis, inflammatory response, immune
regulation, EMT, tissue invasion and metastasis, and genomic
instability in the process of tumor formation.

Role of TNF-a and TGF-b in Cell
Proliferation
The first step in the transformation of normal cells into cancer is
often abnormal changes in proliferation ability, and TNF-a and
TGF-b play multiple roles in the regulation of cell proliferation,
as shown in Table 1. First of all the two have a two-way effect in
the coordinated regulation of proliferation, which can
synergistically enhance the proliferation ability of tumor cells
and increase the characteristics of tumor stem cell in pancreatic
cancer cells (MiaPaCa-2) (37). In rheumatoid synovial
fibroblasts (RSF), TNF-a and TGF-b can synergistically
stimulate the proliferation of RSF, which is related to the
activated RAS gene (38). It is found in myofibroblasts
(MFBIC) that although TGF-b has a slight inhibitory effect on
the cell growth, when used in combination with TNF-a, TGF-b
can promote cell proliferation and stimulate the formation of
liver fibrosis (39). In addition to the synergistic promotion, there
is also a synergistic inhibitory effect. In human promyelocytic
leukemia cells (HL-60), both inhibit cell growth, which is
associated with down-regulation of c-myc expression (40). In
hematopoietic stem cells, hematopoietic progenitor cells and
cord blood megakaryocytes (MK), TNF-a and TGF-b can
inhibit cell proliferation and colony-forming ability (41, 42). It
has also been found that in mouse hepatocytes, TGF-b1 can
inhibit the production of hepatic growth factor (HGF), while
TNF-a is positively correlated with the production of TGF-b,
and inhibiting the level of TNF-a can inhibit the production
of TGF-b1, thereby enhancing liver tissue regeneration (43).
Frontiers in Immunology | www.frontiersin.org 3
TNF-a and TGF-b also have antagonistic effect on proliferation.
In human fibroblasts and nasal epithelial cells (HNECs), TGF-b
dose-dependently inhibits TNF-a-stimulated cell proliferation
(44, 45). In the normal central nervous system, increased TGF-
b1 inhibits the proliferation of brain endothelial cells (BEC),
whereas in cerebral ischemia or other neurotic processes,
activated microglia increase TNF-a production, which can
promote BEC proliferation (46).

In summary, in pancreatic cancer, rheumatoid synovial
fibroblasts and myofibroblasts, TNF-a and TGF-b can
promote cell proliferation, while in human promyelocytic
leukemia cells and hematopoietic cells, the two can inhibit cell
proliferation. In fibroblasts, nasal epithelial cell and neurological
diseases, TGF-b can restrain the pro-proliferative effect of
TNF-a.

Role of TNF-a and TGF-b in Apoptosis
In addition to abnormal proliferation, avoiding cell apoptosis is
also an important manifestation in the process of cell
carcinogenesis, as shown in Table 2 and Figure 1. For
Schwann cells (SC), oligodendrocytes (OLG), human umbilical
vein endothelial cells (HUVEC) and malignant glioma cells
(SMA-560), both cytokines have a significant synergistic effect
on promoting apoptosis (54–58), and they can also induce the
expression of apoptosis-related proteins and play a synergistic
effect. In HL-60 cells, TGF-b1 and TNF-a can induce apoptosis
by down-regulating the expression of the anti-apoptotic protein
Bcl-2 (47). In gastric cancer cells (SNU620), both synergistically
promote up-regulation of the transcription level of the pro-
apoptotic protein Bim, thereby promoting apoptosis (48).
However, in hepatic stellate cells (HSCs), TGF-b and TNF-a
can synergistically inhibit apoptosis levels not only by reducing
the expression of the spontaneously apoptotic CD95L gene but
also by inducing NF-kB activation and up-regulating the anti-
apoptotic protein Bcl-xL (49).

In terms of apoptosis, there is not only a synergistic effect but
also a mutual antagonism between the two. In epithelial cells,
TGF-b1 can induce epithelial cell apoptosis, while TNF-a can
induce the anti-apoptotic protein P21 to regulate the level of
apoptosis (50). In melanoma cells, TGF-b1 can induce cell death,
while TNF-a can reduce the relative cell death number, a
phenomenon that may be associated with both regulating
Twist1 protein levels (51). In splenocytes, TGF-b has an
TABLE 1 | The mechanism of TNF-a and TGF-b on proliferation in different cells.

Tissue/cell Mechanism

Synergy effect
MiaPaCa-2 Enhance the proliferation ability and cancer stem cell characteristics of tumor cells (37)
RSF Stimulation of RSF proliferation may be related to activated RAS genes (38)
MFBIC They can promote the proliferation of cells and stimulate the formation of liver fibrosis (39)
HL-60 Inhibition of cell growth may be associated with down-regulation of c-myc expression (40)
Hematopoietic stem cells, etc. Inhibition of cell proliferation and colony formation (41, 42)
Mouse hepatocytes Inhibition of the level of TNF-a can inhibit the production of TGF-b1, thereby enhancing liver tissue regeneration (43)
Antagonism effect
Human fibroblasts and nasal epithelial cells TGF-b dose-dependently inhibited the cell proliferation ability stimulated by TNF-a (44, 45)
BEC TGF-b1 inhibits the proliferation of brain endothelial cells, but TNF-a promotes BEC proliferation (46)
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anti-apoptotic effect, while TNF-a can exacerbate the apoptotic
process (52). In osteoblasts (MC3T3-E1), TGF-b1 can attenuate
TNF-a-induced caspase gene expression to reduce TNF-a-
induced apoptosis in murine osteoblasts (53). Thus, TNF-a
and TGF-b have multiple roles in regulating cell proliferation
and apoptosis, and the release of these cytokines by the body
indirectly determines the survival fate of cells.

Therefore, both of them can promote apoptosis in SC, OLG,
HOVEC, SMA-560, HL-60 and gastric cancer cells, while in
hepatic stellate cells, both of them can inhibit apoptosis. In
epithelial cells and melanoma cells, TGF-b induces apoptosis
while TNF-a is anti-apoptotic, and in splenocytes and
osteoblasts , TGF-b i s ant i-apoptot ic whi le TNF-a
induces apoptosis.

Role of TNF-a and TGF-b in Inflammation
and Immunomodulation
Inflammation is an important intermediate process of
carcinogenesis, and immune regulation disorders can induce
the formation of cancer microenvironment. TNF-a and TGF-b
are two important cytokines involved in immune regulation and
inflammatory response. TNF-a and TGF-b also have two-way
functions in immune regulation and participation in
Frontiers in Immunology | www.frontiersin.org 4
inflammation, as shown in Table 3 and Figure 2. These
functions may vary depending on the microenvironment.

The synergistic effect of TNF-a and TGF-b is mostly
manifested in jointly promoting the release of inflammatory
factors. In astrocytes, the co-stimulation of TNF-a and TGF-
b1 increased the expression of NOS-2 compared with cytokine
stimulation alone (59). TNF-a and TGF-b1 can synergistically
increase IL-6 secretion in IEC-6 cells (60). In mesenchymal stem
cells TNF-a and TGF-b can increase the release of
proinflammatory factors such as COX-2, that is to say, in the
presence of TNF-a, TGF-b1 is converted into pro-inflammatory
cytokines, and when they act together on MSCs, they can play a
synergistic effect in promoting inflammation (61). Besides, TGF-
b can reverse the inhibitory effect of MSCs on T cell proliferation,
and cooperate with TNF-a to promote immune response (69).

Through literature research, we found that the antagonistic
effect of TNF-a and TGF-b have been reported in terms of
immune regulation and inflammatory response. Regarding the
antagonism of the two cytokines, studies have shown that in
inflammatory bowel disease (IBD), TNF-a can inhibit the
synthesis of IL-25, while TGF-b1 can stimulate the up-
regulation of IL-25 in colon tissue (62). TGF-b1 can inhibit the
production of CCL-17 in human epidermal cells induced by
TABLE 2 | The mechanism of TNF-a and TGF-b on apoptosis in different cells.

Tissue/cell Mechanism

Synergy
HL-60 cells Apoptosis was induced by down regulating the expression of Bcl-2 (47)
SNU620 The up regulation of Bim transcription may be related to the activation of JNK and Smad3 signaling pathways (48)
HSC Down regulation of CD95L gene expression and activation of NF-kB and up regulation of Bcl-xL (49)
Antagonism
Epithelial Cells TGF-b1 induces apoptosis in epithelial cells, while TNF-a regulates the level of apoptosis through P21 (50)
Melanoma cells The opposite phenomenon in the number of cell death may be related to the regulation of Twist1 protein level (51)
Splenocyte TGF-b is anti-apoptotic, while TNF-a exacerbates apoptosis (52)
MC3T3-E1 TGF-b1 attenuates TNF-a-induced caspase gene expression to reduce TNF-a-induced apoptosis of rat osteoblasts (53)
FIGURE 1 | Role of TNF-a and TGF-b in apoptosis. This figure summarizes the regulatory effect of TNF-a and TGF-b on different proteins in terms of apoptosis.
The black arrow represents the common regulatory role of TNF-a and TGF-b, and the orange arrow represents the effect of TNF-a, the blue arrow represents the
effect of TGF-b.
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TNF-a, suggesting that TGF-b1 may have a certain effect on the
treatment of atopic dermatitis (63). TNF-a can down-regulate
the expression of CD105, while TGF-b1 can up-regulate it in
vascular endothelial cells and this differential expression can
regulate the damage repair of endothelial cells (64). TGF-b
secreted by human umbilical cord mesenchymal stem cells can
inhibit TNF-a and relieve atopic dermatitis (70). In patients with
systemic lupus erythematosus (SLE), exogenous TNF-a can
restore the expression of PD-L1 in lupus cells, while TGF-b,
on the contrary, can inhibit the expression of PD-L1 in lupus
cells (65).

Speaking of the antagonism of the two cytokines in their
respective pathways, the increase of TNF-a can lead to the
activation of AKT, and activated AKT can interact with
Smad3, which leads to the inhibition of TGF-b pathway in
regulatory T cells, so TNF-a can weaken the differentiation
and function of Treg cells induced by TGF-b in autoimmune
diseases through AKT and Smad3 signaling pathways (66). In
fibroblasts, TNF-a can inhibit TGF-b1-induced activation of
Smad2/3 and p38 MAPK pathway and terminate nerve growth
factor (NGF) expression, which inhibits the regeneration of
Frontiers in Immunology | www.frontiersin.org 5
neurons (67). In rheumatoid synovial fibroblasts, TGF-b1
inhibits the expression of RANTES induced by TNF-a in a
dose-dependent manner, possibly due to the decreased binding
of NF-kB to the RANTES promoter (68).

In summary, TNF-a and TGF-b can increase the release of
inflammatory factors and play pro-inflammatory or anti-
inflammatory effect in different cells and tissues. In epidermal
cells and patients with systemic lupus erythematosus, TNF-a is
proinflammatory and TGF-b is anti-inflammatory. In vascular
endothelial cells, inflammatory bowel disease, T cells and
fibroblasts, TNF-a is anti-inflammatory and TGF-b is
pro-inflammatory.

Role of TNF-a and TGF-b in EMT and
Tissue Invasion and Metastasis
EMT is an important process of cancer invasion and changes in
cell-extracellular matrix (ECM) interactions also contribute to
these pathological conditions (71–73). TNF-a and TGF-b play
important roles in EMT and tumor formation, and they play
different regulatory roles in different cell lines and different
microenvironments, as shown in Table 4 and Figure 3.
TABLE 3 | The mechanism of TNF-a and TGF-b on inflammation and immune regulation in different cells.

Tissue/cell Mechanism

Synergy
Astrocytes Co-stimulation of TNF-a and TGF-b1 increased the expression of NOS-2 (59)
Enterocyte Synergistically promotes IL-6 secretion (60)
MSC Synergistically increase the release of proinflammatory factors such as COX-2 from MSCs (61)
Antagonism
Colon tissue TNF-a can inhibit the synthesis of IL-25, while TGF-b1 can stimulate the up-regulation of IL-25 in colon tissue (62)
HaCaT TGF-b1 can inhibit TNF-a-induced CCL-17 production (63)
vascular endothelial cell TNF-a down-regulated CD105 expression, whereas TGF-b1 up-regulated CD105 expression (64)
Lupus cells TGF-b has the ability to suppress exogenous TNF-a to restore PD-L1 expression in lupus cells (65)
Regulatory T cells TNF-a impairs TGF-b-induced Treg cell differentiation and function through Akt and Smad3 signaling (66)
Fibroblasts TNF-a can inhibit TGF-b1-induced activation of Smad2/3 and p38 MAPK (67)
Rheumatoid synovial fibroblasts Inhibition of TNF-a-induced RANTES expression by TGF-b1 may be associated with reduced NF-kB binding to the promoter (68)
FIGURE 2 | Role of TNF-a and TGF-b in Inflammation and Immune Regulation. This figure summarizes the regulatory effect of TNF-a and TGF-b on different
proteins in terms of immune regulation. Black arrows represent the common regulatory effect of TNF-a and TGF-b. Orange arrows represent the effect of TNF-a,
and blue arrows represent the effect of TGF-b.
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In previous studies, a large number of literatures reported that
the two play a synergistic role in fibrosis and EMT.

For fibrosis, both of them play a synergistic role in different
tissues. In rat kidney and lung tissues, TNF-a and TGF-b
cooperatively induce fibrosis through their respective pathways
(74–76), which is related to the expression of Plasminogen
activator inhibitor-1 (PAI-1) (95). In the retina, TNF-a
activates TGF-b signal transduction to induce the formation of
fibrotic lesions in retinal pigment epithelium cells (77), which is
related to the promotion of the expression of CD44 and
MMP9 (96).

In EMT, TNF-a and TGF-b can stimulate intercellular
transformation of bronchial epithelial cells and promote cell
migration in combination (78). In addition, TNF-a can also
enhance the endothelial mesenchymal transition induced by
TGF-b (97, 98). Most of the literature focuses on the
synergistic promotion of EMT in tumor cells. In terms of
Frontiers in Immunology | www.frontiersin.org 6
breast cancer, TGF-b and TNF-a can not only induce EMT,
but also form a stable breast cancer stem cell phenotype (79, 80).
EMT of breast cancer cells is regulated by TGF-b/Smad-
dependent pathway and activated by TNF-a/NF-kB/Twist,
which both promote tumor metastasis and synergistically
promote breast cancer cell migration (99, 100). Activation of
gene transcription programs associated with poor prognosis and
increased malignancy in breast cancer is associated with
activation of the NF-kB signaling pathway (101, 102). In
cervical cancer and ovarian cancer, TNF-a and TGF-b induce
EMT and cancer stem cell-like properties through the NF-kB/
Twist axis (81, 82). In lung cancer, TNF-a enhances TGF-b1-
induced EMT and enhances TGF-b1-induced cell contraction
(103). In A549 cells, TGF-b1 induces EMT in a Smad-dependent
manner, while TNF-a accelerates this process and may be
involved in the regulation of miR-23a (83). Combined use of
TNF-a and TGF-b can promote the dryness of H460 lung cancer
TABLE 4 | The mechanism of TNF-a and TGF-b on EMT, tissue invasion and metastasis in different cells.

Tissue/cell Mechanism

Synergy
kidney and lung tissues TNF-a and TGF-b cooperatively induce fibrosis through their respective pathways (74–76)
retinal pigment epithelial cells TNF-a activates TGF-b signaling and induces the formation of fibrotic foci in retinal pigment epithelial cells (77)
Bronchial epithelium Combined stimulation of bronchial epithelial cell transformation and cell migration (78)
Breast cancer TGF-b and TNF-a induce EMT and form a stable breast cancer stem cell phenotype in breast cancer cells (79, 80)
Cervical and ovarian cancer cells TNF-a and TGF-b synergistically induce cancer cell EMT through the NF-kB/Twist axis (81, 82)
A549 cells TNF-a accelerates TGF-b1 to cause EMT in a Smad dependent manner (83)
H460 TNF-a and TGF-b can promote lung cancer stemness at H460 via NF-kB and FoxM1 pathways (84)
3D cancer cells TNF-a and TGF-b1 can synergistically increase the migration rate and persistence of 3D cancer cells (85)
Antagonism
Fibroblasts TGF-b can stimulate the production of extracellular matrix of fibroblasts, while TNF-a has anti-fibrotic activity (86)
Myofibroblasts TNF-a inhibits myofibroblast differentiation by inhibiting the phosphorylation of Smad2/3 by TGF-b1 (87)
Fibroblasts TNF-a elevates the level of Smad7 and reduces the phosphorylation of Smad2 to inhibit fibroblast migration (88)
Type I collagen genes The opposite effect of TGF-b and TNF-a on type I collagen gene expression may be related to MAPK (89–92)
Nucleus pulposus cells Reversal of TNF-a-induced increase of MMP3 in NP by TGF-b1 may be associated with ERK1/2 activation (93)
NP cells TGF-b1 antagonizes TNF-a-mediated syndecan-4 upregulation, which is attenuated by inhibitors of ERK1/2 and NF-kB (94)
FIGURE 3 | Role of TNF-a and TGF-b in EMT and tissue invasion and metastasis. This figure summarizes the regulatory effect of TNF-a and TGF-b on different
proteins in terms of tissue invasion and metastasis, black arrows represent the common regulatory effect of TNF-a and TGF-b, reflecting the common regulatory
effect of the two, orange arrows represent the effect of TNF-a, and blue arrows represent the effect of TGF-b.
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through NF-kB and FoxM1 pathways (84). Moreover, studies
have shown that the release of TNF-a and TGF-b1 from
macrophages can synergistically increase the migration rate
and persistence of 3D cancer cells. TGF-b1 mainly acts via the
MT1-MMP pathway, while TNF-a acts mainly through the
NFkB-MMP1 pathway (85). Therefore, TNF-a and TGF-b
play a mutually promoting role in the regulation of fibrosis
and EMT, and they complement each other and are two essential
factors in the process of tumor formation.

TNF-a and TGF-b not only have synergistic effects on EMT
and fibrosis, but also have antagonistic effects in some
microenvironments. This antagonism is mainly reflected in
fibroblasts, the regulation of type I collagen, nucleus pulposus
cells and liver cancer. TGF-b can stimulate the production of
extracellular matrix of fibroblasts, while TNF-a has anti-fibrotic
activity and TNF-a can down-regulate the level of TGF-bRII
protein through proteolysis in human skin fibroblasts, thereby
attenuating the effect of extracellular matrix response to TGF-b
(86). TNF-a inhibits phosphorylation of Smad2/3 by TGF-b1,
thereby inhibiting the differentiation of myofibroblasts (87). In
addition, high levels of TNF-a may inhibit fibroblast migration
by elevating the level of Smad7 and reducing the
phosphorylation of Smad2 (88). TGF-b can enhance the
expression of type I collagen gene, while TNF-a has an
antagonistic effect on the expression of type I collagen gene,
which may be related to the bidirectional regulation of MAPK
pathway (89–92). TGF-b1 can reverse the TNF-a-induced
increase of MMP3 in nucleus pulposus cells (NP), which may
be due to the activation of ERK1/2 signaling pathway, and
treatment with ERK1/2 inhibitors (PD98059 and U0126) can
abolish the antagonistic effect of TGF-b1 on TNF-a-mediated
catabolic response (93). TGF-b1 antagonizes TNF-a -mediated
up-regulation of syndecan-4 in NP cells. Treatment with ERK1/2
and NF-kB inhibitors can reduce TNF-a up-regulation of
syndecan-4. This suggests that TGF-b1 exerts an anabolic
effect on intervertebral discs by inhibiting syndecan-4
expression (94). In terms of liver cancer, TGF-b treatment can
induce Huh7 in liver cancer cells to up-regulate autophagy gene
expression, strongly activate autophagy and induce EMT, while
Frontiers in Immunology | www.frontiersin.org 7
TNF-a inhibits TGF-b-induced EMT levels by inhibiting
autophagy (104).

In kidney, lung tissue and retinal pigment epithelial cells, the
two together induce fibrosis; in breast cancer, ovarian cancer,
cervical cancer, lung cancer and bronchial epithelial cells, the two
together induce EMT. In fibroblasts, TGF-b promotes fibrosis,
while TNF-a is anti-fibrotic; in liver cancer Huh7 cells, TGF-b
induces EMT, while TNF-a resists EMT.

Role of TNF-a and TGF-b in Genomic
Instability and Mutation
Mitotic abnormalities in normal cells frequently lead to
missegregation of chromosomes, which produces genomic
instability that triggers the development and progression of
tumors (105). TNF-a and TGF-b have dual roles in causing
genomic instability and mutations, as shown in Table 5. Studies
have showed that there is a positive correlation between TNF-a
and TGF-b and TP53 mutations (106, 109). Aberrant expression
of androgen receptor (AR) -dependent transcriptional programs
is a decisive pathology in the development of prostate cancer, and
studies have shown that TNF-a and TGF-b can be involved in
mediating AR-dependent gene transcription (107). Radiation
can induce persistent genomic instability of bone marrow cells
in mice, which is associated with high expression of TNF-a with
TGF-b (110).TGF-b can up-regulate the activity of the
pseudoxanthoma elasticum genesis gene ABCC6 promoter in
HepG2 cells, while TNF-a has the opposite effect (108).

In summary, in monocytes and macrophages and
cholangiocarcinoma, the two are positively correlated with
TP53 mutant gene; in fibroblasts, the two jointly inhibit gene
mutation. In addition, they can also affect the development of
prostate cancer by regulating AR-dependent gene transcription.
In the treatment of malaria parasites and liver cancer, the two
are antagonistic.

Effect of TNF-a and TGF-b in
Other Aspects
In other respects, TNF-a and TGF-b also interact, as shown in
Table 6. TGF-b1 can alleviate TNF-a-induced intestinal
TABLE 5 | The mechanism of TNF-a and TGF-b on genomic instability and mutations in different cells.

Tissue/cell Mechanism

Synergy
Monocyte macrophages The two are positively associated with the presence of TP53 mutations (106)
Androgen Receptor The two regulate AR-dependent gene transcription to affect the development of prostate cancer (107)
HepG2 TNF-a can inhibit TGF-b from up regulating the activity of ABCC6 promoter (108)
TABLE 6 | The mechanism of TNF-a and TGF-b on other aspects in different cells.

Tissue/cell Mechanism

Intestinal epithelium TGF-b1 can reduce the changes of ZO-1 and occludin induced by TNF-a (111)
PRL TGF-b1 inhibits the synthesis of prolactin (PRL),whereas TNF-a does the opposite (112)
Osteoclasts The enhancement of TNF-a-induced osteoclast formation by TGF-b may be related to the induction of SOCS expression by TGF-b (113–115)
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epithelial barrier disorders, and TGF-b1 reduction significantly
alleviated TNF-a-induced changes in proteins ZO-1 and
occludin, these results showed that TGF-b1 could protect
intestinal integrity after challenge with TNF-a (111). TGF-b1
can inhibit the synthesis of prolactin (PRL) in a dose-dependent
manner, while TNF-a can stimulate the synthesis and release of
prolactin, and the two cytokines antagonize each other,
indicating that their relative concentrations can determine
whether PRL synthesis is upregulated or downregulated (112).
In terms of osteoclast formation, TGF-b enhances the formation
of o TNF-a-induced osteoclasts, which may be reflected that
TGF-b can induce the expression of SOCS (113–115). In
addition to their different relative roles in different tissues or
cells, the two also have different changes in different time periods.
For example, in 1-5 months after radiotherapy of A549 cells,
TGF-b did not change significantly (slightly more in the first
month but not statistically significant), but TNF-a showed a
significant trend to increase (116).
THE APPLICATION OF TNF-a AND TGF-b
IN TUMOR TREATMENT

Some progress has been made in animal tumor model
experiments. For example, in vivo studies in mice and rats
demonstrated that low-dose tail vein injection of TNF-a
enhanced the anti-tumor activity of pegylated liposomal
doxorubicin (117). There are also experiments to enhance the
activity of local TNF-a by removing soluble TNF-a receptors in
vitro, thus taking advantage of the strong antitumor activity of
TNF-a (118). Clinical studies have proved that the hemorrhagic
necrosis of the tumor can be quickly observed after the combined
use of TNF-a and melphalan (119). The results of clinical trials
have shown that the use of the TNF-aantagonist etanercept can
alleviate the condition of some patients with ovarian cancer
(120), but it has not achieved clinical remission in patients with
advanced breast cancer (121).

In related experiments with TGF-b, different inhibitors have
achieved satisfactory results in cell culture and animal models.
TGF-b blocking peptide P114 can significantly reduce tumor
growth (122). However, in clinical trials of cancer, the results are
poor or inconsistent with animal experiments, which may be due
to the differences between tumor-bearing tissues and naturally
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formed tumor tissues. However, there are few clinical reports on
the combination of the two in the treatment of diseases, and it is
unknown whether the combination of the two can achieve better
efficacy. The following are some drugs we can currently learn
about TNF-a and TGF-b. The FDA-approved inhibitors of
TNF-a are infliximab, adalimumab, etanercept, golimumab
and certolizumab. The role of TGF-b in tumors is complicated,
so many inhibitors are in clinical trials. Inhibitors of TGF-b are
mainly classified into four categories, TGF-b receptor kinase
small molecule inhibitors, monoclonal antibodies that prevent
TGF-b binding to receptor complexes, ligand traps, and TGF-b
activation inhibitors (123). Several commonly used drugs related
to TNF and TGF are shown in Table 7.

Drugs targeting TNF-a or TGF-b have limitations and side
effects. For example, TNF-a inhibitors can cause opportunistic
infections, invasive fungal infections, autoimmune diseases and
the development of lymphoma, and increase skin derived
incidence of solid tumors (127). The side effects of TGF-b are
minor, but long-term systemic inhibition of TGF-b therapy can
affect wound healing, tissue repair, and anti-inflammatory effects
(128). At present, there have been experiments to develop drugs
from the perspective of ligand receptors, hoping to improve
clinical efficacy. However, TNF-a and TGF-b are in the
upstream position of the cellular pathway, and simple blocking
of both will affect many downstream protein abnormalities, so it
is necessary to specifically block downstream target proteins that
cause a pathological feature may be better.

Traditional Chinese medicine (TCM) is a multi-target in the
treatment of diseases, and each target can synergize with each
other with few side effect, which provides many possibilities for
the combination of traditional Chinese and western medicine.
The therapeutic effects of Chinese herbs on TNF-a and TGF-b
have been reported. Guizhi Fuling capsule can down-regulate the
expression of proinflammatory cytokines IL-1b and TNF-a
(129). Dachaihu Decoction can reduce TNF-a and TGF-b in
nonalcoholic fatty liver model rat (130). Psoralen, can reduce the
levels of TGF-b and TNF-a in bleomycin-induced pulmonary
fibrosis (131), and it can also inhibit TNF-a-induced
inflammation of synovial cells by down-regulating the
synthesis of IL-1b protein (132).

According to different purposes, different intervention
measures can be taken for TGF-b and TNF-a. For example, in
the treatment of tumors, if the two play a synergistic role in
TABLE 7 | Drugs related to TGF-b and TNF-a.

Drugs Mechanism

TGF related drugs
LY3022859 (124) Inhibition of TGF-b receptor-mediated activation of transforming growth factor-b signaling.
Fresolimumab (125) Interfering With Ligand-Receptor Interactions.
264RAD (126) Blocks integrin-mediated TGF-b activation to target the TGF-b signaling pathway.
TNF-related drugs
Infliximab,
Adalimumab,
Golimumab

Inhibits binding of TNF to its receptors to neutralize activation of TNFR1 and TNFR2.

Etanercept Prevents TNF binding to TNFR2.
Certolizumab pegol Selectively neutralize TNF-a.
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promoting tissue or cell proliferation, inflammation, EMT and
inhibiting apoptosis, they can be blocked at the same time.
However, if the two play a role in inhibiting tissue or cell
proliferation, inflammation, EMT and promoting apoptosis,
the expression of both can be promoted. Similarly, when two
cytokines exert an antagonistic effect, they need to be blocked or
promoted according to their current effects on the tumor. At
different time points of tumor development, drug intervention
can be given according to the changes of the two at different time
points. For instance, as mentioned above, it can promote the
production of TGF-b in the early stage to achieve the purpose of
anti-tumor, but in the middle and late stages of the tumor, it is
necessary to inhibit TGF-b to resist tumor angiogenesis. TNF-a
also seems to have this logic, that is, it can regulate tumor
apoptosis in the early stage, and it can increase tumor invasion
and metastasis in the late stage. In most reports, it is described
that the two should be used to effectively kill cancer in the early
stage (133, 134), and the two should be targeted for treatment in
the late stage (135, 136). However, we have proposed that the two
play more antagonistic effects in the early stage and evolution of
the tumor, and synergistic effects occur in the late stage of the
tumor, and whether targeted therapy is needed or not needs to be
distinguished according to different tissues and cells.

According to the above five effects of TGF-b and TNF-a on
tumor genesis and development, we made the following
generalizations. In proliferation, the antagonistic effect of the
two was mainly in epidermis, and the synergistic effect was
Frontiers in Immunology | www.frontiersin.org 9
mainly in hematopoietic system. In terms of apoptosis, the
antagonistic effect of the two was mainly in skin and bone, and
the synergistic effect was mainly in glial cells. In terms of
inflammatory response, the antagonistic effect is mostly skin
and intestinal tract, and the synergistic effect is mostly in glial
cells and stem cells. In EMT and fibrosis, the antagonistic effect is
mostly in normal tissues, while the synergistic effect is mostly in
epithelium and cancer. For genomic instability, the antagonistic
effect of the two was mainly in hepatocytes, while the synergistic
effect was mainly in fibroblasts and macrophages. So we guess
that the co-action of the two is mostly in the endoderm, while the
antagonistic action is mostly in the ectoderm. This corresponds
to the theory of Yin and Yang and the theory of exterior and
interior in Traditional Chinese medicine, as concluded
in Figure 4.
CONCLUSION

In summary, based on the bifacial nature of TNF-a and TGF-b
in the body microenvironment, this article describes the
interaction between the two in the process of tumor formation
from five aspects: proliferation, apoptosis, inflammation, EMT
and genomic instability. Summarizing the different functional
roles of the two in different microenvironments helps to
speculate and control the evolution of cancer. For decades,
researchers have been committed to the study of cytokines to
FIGURE 4 | TGF-b and TNF-a action diagram. The crosstalk effect of TGF-b and TNF-a is similar to the relationship between Yin and Yang in Traditional Chinese
medicine, which restricts and balances each other. This figure summarizes the roles of the two and their corresponding cell types described in the paper. The methods
of synergism, antagonism and time-varying were put forward, and the prospects of integrated traditional Chinese and western medicine were also discussed.
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treat cancer-related diseases. When designing relevant treatment
methods, the direct effects of cytokines and the mutual regulation
of multiple factors in immunity must be considered. In addition,
traditional Chinese medicine has the advantages of multiple
points of marked effect, synergy, and less side effects, which
can supplement the inadequate treatment of modern medicine,
and it also provides many possibilities for the combined
application of traditional Chinese medicine with TNF-a and
TGF-b.
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