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Cancers are consequences of cellular dysfunction leading to an aberrant cellular
multiplication and proliferation, subsequently yielding metastasis formation.
Inflammatory reaction, with immune cell recruitment, is the main defense against
precancerous lesions. However, an inflammatory environment also favors cancer cell
progression, with cancer cell evasion from immune surveillance, leading to cancer
development. Current therapeutic strategies enhance this natural immune response in
order to restore immunosurveillance. The variety of these strategies is a predominant
source of inflammatory mediators used by cancer cells to grow, differentiate, and migrate,
therefore encouraging metastasis formation. For this reason, during cancer progression,
limiting inflammation appears to be an innovative strategy to avoid the escape of cancer
cells and potentially enhance the efficacy of antitumor therapies. Thus, this study aims to
investigate the impact of administering pro-resolving factors (SuperMApo® drug
candidate), which are inducers of inflammation resolution, in the framework of cancer
treatment. We have observed that administering pro-resolving mediators issued from
apoptotic cell efferocytosis by macrophages controlled peritoneal cancer progression by
limiting cancer cell dissemination to the blood and mesenteric lymph nodes. This
observation has been linked to an increase of macrophage mobilization in both
peritoneal cavity and mesenteric lymph nodes. This control is associated to a restricted
immunosuppressive myeloid cell circulation and to an IFN-g-specific anti-tumor T-cell
response. Altogether, these results suggest that administering proresolving factors could
provide a new additional therapeutic alternative to control cancer progression.
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INTRODUCTION

Inflammation is a natural process of the body to fight not only
against aggressions such as infections but also against cancer cells.
Naturally, inflammation is characterized by an inflammatory
response, which self-resolves allowing return to homeostasis (1–
5). Resolution starts with the accumulation of neutrophils mainly
within the aggressed tissue and, once their job is done, for want of
nutriments these cells commit to apoptosis. In addition to a lipid
switch from pro-inflammatory lipid production to specialized
proresolutive lipid mediators (SPM) synthesis, apoptotic cell-
derived factors and the factors released by phagocytes
eliminating apoptotic cells initiate the resolution process.
This limits innate cell infiltration, enhances efferocytosis,
and favors return to homeostasis. Immunosurveillance consists
in the recognition by the immune system of tumor-derived
antigen that induces a tumor antigen-specific immune cell
response that eliminates cancer cells (6–8). The first key cells
contributing to this elimination are myeloid cells (9, 10). Resident
cells (macrophages and dendritic cells) react to tumor antigens
and initiate inflammation by secreting proinflammatory
mediators, such as cytokines (IL-1b, IL-6, TNF-a) (11). This
inflammatory microenvironment favors other immune cell
recruitment, such as monocytes, which differentiate into
inflammatory cells. In the tumor, activated myeloid cells capture
tumor-derived antigen and migrate to lymphoid organs in order
to present the antigen and stimulate T cells, enhancing adaptive
immunity against cancer cells, and ultimately kill them at the
tumor site (12–15).

Although inflammation is a necessary step for immunosurveillance,
persistent and non-resolved inflammation allows cancer to
progress. Intrinsic inflammation during immunosurveillance is
a source of pro-inflammatory mediators (cytokines, DAMPs,
growth factors) (16, 17). This rich inflammatory environment is
used by cancer cells to progress by growing, migrating and
therefore encouraging metastasis formation (16–18). Finally,
this escape favors an immunosuppressive environment not only
from cancer cells but also immune cells, leading to a global
shutdown of the immune system (named cold tumor).

However, current therapeutic strategies (radio-, chemo-, and
immunotherapies) target this cold tumor to restore an
immunosurveillance stage (19–21). Unfortunately, these
approaches are also responsible for a rich inflammatory
environment, which contributes to the persistence of tumor
cells (cytokine syndrome release, metastasis, therapy resistance)
(16, 17, 22–27). This observation was carried out in 1956, known
as the Révész effect (28, 29). Inflammatory response during
cancer editing and anti-cancer therapy is still controversial
today (30–32). The combination of anti-inflammatory drugs
with biologics targeting inflammation has been shown to
reduce cancer cell proliferation and angiogenesis (32–37). For
instance, a meta-analysis reported in 2017 that nonsteroidal anti-
inflammatory drugs reduced the risk of distant metastasis
notably in prostate and breast cancer (38). Anti-IL-6 or anti-
TNF-a antibodies are respectively associated not only to a
decrease of cytokine production, thus avoiding immune cell
recruitment and angiogenesis, but also to a decrease of an
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immunosuppressive protein (PD-L1) favoring T-cell
infiltration (11, 39–42). However, these different approaches,
which consist of inflammation antagonists, could cause side
effects and are not equivalent to inflammation resolution
approaches (32, 33, 36, 39). Targeting pro-resolving
phenotypic switches rather than using pro-inflammatory
inhibiting compounds will likely provide an alternative
approach that may hold greater benefit for cancer treatment.
Many pro-resolving mediators exist for which data potentially
demonstrate anti-cancer properties (36, 43), but, so far, these
have not been translated to the clinic due to their short half-life.

The factors issued from apoptotic cell elimination by
macrophages have demonstrated pro-resolutive properties (3).
The secretome issued from efferocytosis, also called SuperMApo®,
is composed of all the factors released by phagocytes eliminating
apoptotic cells. These pro-resolving factors, including anti-
inflammatory cytokines, growth factors, chemokines, enzymes,
and lipids (3), are able to terminate inflammation and initiate
tissue healing. SuperMApo has been shown to allow the
reprogramming of myeloid cells, notably macrophages, by the
action of TGF-b and associated factors, promoting antigen-
specific Treg activity (3). Administering SuperMApo resolves the
ongoing inflammation and, in particular, ongoing experimental
collagen-induced arthritis, thioglycolate-induced peritonitis, and
dextran-sulfate-sodium-induced xeno-colitis (3). Interestingly, in
experimental cancer models, SuperMApo controls cancer
progression by limiting peripheral colonization by cancer cells.
This mechanism is associated to an increase of anti-tumor
macrophages mobilization, leading to an increase of the antigen-
specific T-cell anti-tumor IFN-g response, and finally limiting the
circulation of immunosuppressive myeloid cells. Our data
demonstrate that, during cancer progression, targeting
inflammation with pro-resolving factors represents an innovative
strategy to avoid cancer cell escape.
MATERIALS AND METHODS

Cell Lines and Culture Conditions
The tumor cell lines EL4-luc (defined here as nonimmunogenic)
and E.G7-OVA were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA, respectively, TIB-39-
LUC2 and CRL). Cells were cultured following supplier
recommendation. The tumor cell line EL4-luc (defined here as
immunogenic, UMR1098) was cultured in DMEM (Gibco,
Waltham, MA, USA) 10% (v/v) fetal bovine serum (Life
Technologies, Carlsbad, CA, USA), 1% (v/v) penicillin/
streptomycin (Eurobio, Les Ulis, France), 10 mM HEPES
buffer (Lonza, Basel, Switzerland), 10 mM nonessential amino
acids (Biowest, Nuaillé, France), and 1 mM sodium pyruvate
(Sigma-Aldrich, St. Louis, MO, USA). Cells were maintained at
an optimal concentration of 0.1 to 1.10e6 cells/mL at 37°C in 5%
CO2 atmosphere. For in vitro study, cancer cells (2.10e4 cells/
mL) were cultured with SuperMApo (ratio 1/2) for 24 to 48 h.
Cell growth was analyzed by bioluminescence quantification 10
min after addition of 0.075 mg/mL of luciferin (Promega,
Madison, WI, USA), viability by staining with fixable viability
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dye (FVD, Invitrogen, Waltham, MA, USA), and proliferation
with Ki-67 (clone 16A8, BioLegend, San Diego, CA, USA).
DAMPs were quantified after 24 h of culture at 1.10e6 cells/mL.

Mice
Female Ly5.2 (Charles River), Ly5.1 (Charles River), and
RAGgc−/− C57Bl/6 (in house) mice aged 7–24 weeks were
housed in filter-top cages with freely available food and sterile
water (Plexx, Elst, Netherlands), at the UMR1098 Animal
Facility. All experimental studies complied with European
legislation and were approved under projects #2019-001-SP-
7PR by the Animal Ethics Committee of Besançon (Comité
d’Ethique Bisontin en Experimentation Animale #58) and the
French Ministry of Higher Education, Research and Innovation,
both authorities for the care and use of animals.

Lymphoma Model and Tumor
Growth Evaluation
C57Bl/6 mice received EL4 cells (2.10e6 cells/20-g mouse
[immunogenic EL4 cell line] or 2.10e4 cells/20-g mouse [non-
immunogenic EL4 cell line]; i.p.) in 1 mL of phosphate-buffered
solution (PBS). The number of cancer cells was adapted
according to the weight of the mice on the day of injection.
Tumor progression was followed by bioluminescence
quantification in the 10 min following the i.p. injection of 15
mg/mL of luciferin (Promega) and analyzed by IVIS Lumina III
Series & Living Image Software (PerkinElmer, Waltham,
MA, USA).

Treatments
SuperMApo was produced following previously described
methods (3). Briefly, mouse thymic cells were irradiated (35 X-
Gray, Raycell blood irradiator; Best Theratronics, Ottawa, ON,
Canada) to induce cell apoptosis. Irradiated cells were cultured
for 6 h in Dulbecco’s modified Eagle’s medium supplemented
with 10% heat-inactivated fetal calf serum (FCS; Life
Technologies), 1% penicillin/streptomycin, 10 mM HEPES
buffer (Sigma Aldrich), and 10 mM nonessential amino acids
(Invitrogen). Cell apoptosis was determined by flow cytometry
using positive annexin-V staining and negative 7-AAD nucleus
staining (BD Bioscience, Franklin Lakes, NJ, USA). Macrophages
were isolated from peritoneal cavity lavage with HBSS after a
48-h mobilization by thioglycolate injection (3%/mL/mouse;
i.p.). Peritoneal lavage cells were then washed and cultured for
6 h in RPMI supplemented with 10% FCS, 1% penicillin/
streptomycin, 10 mM nonessential amino acids (Invitrogen).
Apoptotic cells and macrophages were finally cultured together
to a 5:1 ratio for 48 h in RPMI supplemented with 2% FCS, 1%
penicillin/streptomycin, and 10 mM nonessential amino acids
(Invitrogen), and the culture supernatant was collected,
centrifuged, 0.22 µm filtrated, and stored at −80°C. The
supernatant corresponds to SuperMApo.

SuperMApo or vehicle (RPMI) was administered at day 0, 4,
or 7 after EL4 injection. The mice received 1 mL of SuperMApo
or vehicle repeated 48 h later, intraperitoneally.
Frontiers in Immunology | www.frontiersin.org 3
Cell Sorting, Culture, and Analysis
Cells were extracted from lymphoid organs or blood or
peritoneal lavages and stimulated for 4 h with 100 ng/mL of
phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich), 4 µg/mL
of ionomycin (Sigma-Aldrich), and 4 µl/mL of Golgi Plug (BD
Biosciences) for T-cell intracellular staining, or with 1 µg/mL of
LPS (Escherichia coli O55:B5, Sigma) and 1 µl/mL of Golgi Plug
(BD Biosciences) for antigen presenting cell intracellular
staining. Cells were stained for CD4 (clone RM4-5, BD
Biosciences), CD8 (clone 53-6.7, BD Biosciences), CD11b
(clone M1/70, BD Biosciences), CD45 (clone 30-F11, BD
Biosciences), CD45.1 (clone A20, BD Biosciences), CD45.2
(clone 104, BD Biosciences), CD80 (clone 16-10A1, BD
Biosciences), CD86 (clone GL-1, BioLegend), CD152 (clone
UC10-4F10-11, BD Biosciences), CD206 (clone C068C2, Sony,
Tokyo, Japan), F4/80 (clone T45-2342, BD Biosciences), Ly-6G
and Ly-6C (clone RB6-8C5, BD Biosciences), I-A/I-E (clone M5/
114.15.2, BioLegend), IFN-g (clone XMG1.2, BD Biosciences),
IL-6 (clone MP5-20F3, BD Biosciences), Ki-67 (clone 16A8,
BioLegend), Ly-6C (clone REA796, Miltenyi, Bergisch
Gladbach, Germany), Ly-6G (clone REA526, Miltenyi), OVA
(25-D1.16, Invitrogen), PD-L1 (clone 10F.9G2, BioLegend), and
TNF-a (clone MP6-XT22, BD Biosciences) expression. For
intracellular staining, cells were permeabilized and fixed with
Foxp3 kit/transcription factor buffer set (Invitrogen) or BD
cytofix/cytoperm (BD Biosciences). Cells were analyzed by flow
cytometry using BD LSR Fortessa X-20 (BD Biosciences), using a
minimum of 250000 acquired events excluding doublets. Cells
harvested from mice were cultured with 35-Gy-irradiated EL4
cells to a 4:1 ratio, or with 10 µg/mL of OVA 257-264 or 323-339
peptides (InvivoGen, Toulouse, France) for 48 and 72 h. Culture
supernatants were used for the quantification of IL-6
(BioLegend), IFN-g (BioLegend), TGF-b (R&D Systems), ATP
(Novus Biologicals, St. Louis, MO, USA), HMGB1 (Novus
Biologicals), and HSP70 (R&D systems) by ELISA. ELISpot
quantification of IFN-g (Diaclone, Besançon, France) was
performed according to manufacturer recommendations.
ELISA plates were analyzed using Delfia EnVision
(PerkinElmer) and ELISpot plates by Immunospot CTL system
(Immunospot, Cellular Technology Limited, Shaker Heights,
OH, USA).

Statistical Analysis
Data were represented as mean ± SEM or individually. Some data
pooled from different experiments are expressed as ratio of 100%,
where 100% corresponds to the mean of each control group per
experiment. Data distribution was studied by normality test
(D’agostino and Pearson). Groups were compared with
parametric tests (unpaired t-test or ANOVA test including
multiple comparisons post-tests). For groups unfollowing
normality distribution, non-parametric tests were used (Mann-
Whitney U, one-way ANOVA, or two-way ANOVA tests
including multiple comparisons post-tests). A value of p < 0.05
was considered with statistical significance using GraphPad
Prism version 9 (GraphPad Software).
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RESULTS

SuperMApo Treatment Controls Cancer
Cell Progression
In an experimental model of peritoneal cancer induced in C57Bl/
6 mice injected with EL4 cancer cells into the peritoneal cavity,
we evaluated the administration of pro-resolving factors
(SuperMApo) at the time of cancer detection by luminescence.
In this setting, we observed a reduced cancer progression
compared with the mice receiving vehicle for the next 2 weeks,
as attested by a reduced radiance observed in mice treated with
SuperMApo versus control (Figures 1A–C). Interestingly, the
control of tumor growth by proresolving factors was mostly
observed in peripheral sites such as blood and mesenteric lymph
nodes, where the number of EL4 cells was reduced notably in the
mesenteric lymph nodes (Figures 1D, E). These data show that
SuperMApo treatment limits cancer cell progression by
preventing cancer cell progression to secondary sites.

Pro-Resolving Factors Enhance Anti-
Tumor Immune Cell Response
Going deeper into the mechanisms sustaining the control of
tumor growth, we observed in vitro that pro-resolving treatment
had not a direct effect on EL4 cancer cell growth. Indeed, pro-
resolving factors did not affect EL4 cell growth, proliferation and
viability in vitro (Supplementary Figure S1). These data suggest
that SuperMApo treatment requires third-party cells to provide
anti-tumor activity. Indeed, when the same peritoneal cancer
model was used in RAGgc-/- mice (lacking T, B, and NK
cells), SuperMApo treatment revealed no anti-tumor effect, as
attested by an increased radiance observed in mice treated with
SuperMApo versus control (Figures 2A, B).

Immune cells are necessary to mediate SuperMApo effect. We
additionally observed that, to be effective, SuperMApo treatment
needs cancer cell-primed immune cells. Indeed, SuperMApo
treatment administered to immunocompetent C57Bl/6 mice,
before the priming of immune cells by cancer cells (the same
day as cancer cell injection), was not able to promote any anti-
tumor effect, as attested by an increased radiance observed in
mice treated with SuperMApo versus control (Figures 2C, D).
These observations suggest that providing pro-resolving factors
during cancer cell priming of T cells enhanced the control of
tumor cell growth.

We further addressed cancer cell priming of immune cells by
using another EL4 cancer cell line, defined as non-immunogenic.
Indeed, this cell line weakly expressed the costimulatory
molecules I-A/I-E, CD80, and CD86, the immunosuppressive
molecules CTLA-4 and PD-L1, and did not express the DAMPs
HSP70, HMGB1, and ATP (Supplementary Figures S2A–C).
Thus, using this non-immunogenic EL4 cell line, SuperMApo
treatment failed to control cancer cell progression while it
controlled immunogenic tumor cell line growth (Figures 2E,
F). Interestingly, in this context, we observed that SuperMApo
treatment did not further enhance the immunogenicity
of the immunogenic tumor cell line to control its growth
(Supplementary Figures S3A, B).
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Altogether, these data show that the control of intraperitoneal
tumor progression by pro-resolving factors is dependent on
lymphoid cells primed by immunogenic tumor cells.

SuperMApo Triggers Early Macrophage
Activation
Macrophages play an important role in tumor progression and also
in the resolution of inflammation (44). We then looked at that
population in ourmodel of cancer cell peritoneal injection since they
might be preferentially targeted by pro-resolutive factors (3). Three
days after the administration of pro-resolving factors, we observed
similar numbers of CD11b+F4/80+ macrophages mobilized in the
peritoneal cavity and in the draining lymph nodes in SuperMApo-
treated animals and controls (Figure 3A). However, we observed a
significant predominant number of mature IA/IE+CD11b+F4/80+

macrophages within the draining lymph nodes of tumor-bearing
mice treated with SuperMApo (Figure 3B). Furthermore, the
treatment induced a significant increase, in the draining lymph
nodes, of the number of macrophages positive for model antigen
OVAharbored by tumor cells (Figure 3C). This increased number of
mature IA/IE+CD11b+F4/80+ macrophages in the draining lymph
nodes was maintained until time of sacrifice, 15 days after treatment
(Figures 3D, E). Of note, mature macrophages were never observed
to be increased in the model with the non-immunogenic cell line
despite SuperMApo treatment (Supplementary Figure S4). Thus,
SuperMApo treatment favors macrophage maturation and
presentation of tumor cell-derived antigens.

Interestingly, the accumulation of mature macrophages
presenting the tumor cell-derived antigen within the draining
lymph nodes of mice controlling tumor cell growth after
SuperMApo treatment was correlated with the reduction of
peripheral pro-tumoral macrophages, as attested by significant
reduced blood counts of IL-6+, TNF-a+, CD206+, and PDL1+

macrophage subsets (Figure 4 and Supplementary Figure S5).
In addition, IL-6 concentration was also decreased in plasma and
ascites liquid (Supplementary Figure S5).

Altogether, these data indicate that SuperMApo treatment
targets macrophages, favoring macrophage maturation and their
presentation of the tumor cell-derived antigen within the
draining lymph nodes and preventing circulation of
immunosuppressive pro-tumoral macrophages.

Activated Macrophages Enhanced T-Cell
Anti-Tumor Response
Because macrophages demonstrated enhanced presentation of the
tumor cell-derived antigen, we then focused our study on T cells.
Three days after treatment, at the time when we observed mature
tumor antigen-presenting macrophages, we observed an enhanced
T-cell response in the spleen. Indeed, we observed an OVA-specific
CD4+ and CD8+ IFN-g T-cell response only in mice receiving
SuperMApo (Figure 5A and Supplementary Figure S6). This
SuperMApo-induced tumor-specific T-cell response was
maintained over time, as 15 days post-treatment, IFN-g was
quantified higher in the plasma of treated mice, but not at a
significant level (Figure 5B). In addition, an IFN-g response was
observableat that timepoint,15dayspost-treatment (Figures5C,D),
January 2022 | Volume 12 | Article 812171

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wetzel et al. Pro-Resolving Factors Limit Cancer Progression
which is associated to enrichmentof antigen-specific IFN-g+Tcells in
the spleen andmesenteric lymph nodes of SuperMApo-treatedmice
(Figures 5E, F). Interestingly, this increase of the IFN-g response
seemed to be associated to a higher capacity of T cells to release IFN-g
Frontiers in Immunology | www.frontiersin.org 5
but not to an increase in the proportion of IFN-g+ T cells
(Figures 5G–I and Supplementary Figure S7). Altogether, these
data show an early and enhanced IFN-g T-cell response post-
SuperMApo treatment, specific to tumor antigens.
A B

C

D

E

FIGURE 1 | SuperMApo treatment control progression of peritoneal cancer model. (A) C57Bl/6 mice received EL4 cancer cells intraperitoneally 7 days before
SuperMApo treatment (1 mL, intraperitoneally, twice, at a 48-h interval). Cancer cell progression was followed by bioluminescence evaluation, once to twice a week
through luciferin intraperitoneal injection. Radiance is represented as mean ± SEM with 24 to 28 mice per group, or (B) individually, and (C) bioluminescence
representative images at days 3 and 15 post-treatment are also given. Data from 3 independent experiments; *p < 0.05 (two-way ANOVA with Sidak multiple
comparisons test). (D, E) The number of EL4 cancer cells (CD45.1−CD45.2+) was determined by flow cytometry at days 3 and 15 post-treatment in the peritoneal
cavity, blood, and mesenteric lymph nodes of mice treated with SuperMApo or vehicle (Veh.). Representative examples obtained at day 15 post-treatment are given
in (E). Data are shown as individual mouse plus mean ± SEM of 5 to 34 mice per group from 1 to 3 independent experiments; p = ns (two-way ANOVA with Sidak
multiple comparisons test).
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DISCUSSION

Here, we provide data showing that pro-resolving factor
administration was able to control cancer progression, in
particular, the dissemination of cancer cells by enhancing an
existing immune response. We have shown that SuperMApo
Frontiers in Immunology | www.frontiersin.org 6
treatment involved macrophage mobilization and activation.
Macrophage deployment was associated with an increase of the
IFN-g+ T-cell anti-tumor response. Additionally, we have
demonstrated that enhancing an existing immune response
with pro-resolving factors prevented pro-tumoral macrophage
circulation. This highlights the use of pro-resolving factors,
A B

C D

E F

FIGURE 2 | The control of tumor progression is dependent on lymphoid cells and enhances existing antitumor immune response. (A) Immunodeficient RAGgc−/−

C57Bl/6 mice received EL4 intraperitoneally 7 days before SuperMApo treatment (1 mL, intraperitoneally, twice, at a 48-h interval). Cancer cell progression was
followed by bioluminescence evaluation, once to twice a week through luciferin intraperitoneal injection. Data are given as mean of radiance ± SEM with 5 mice per
group from 1 experiment, ***p < 0.001 (two-way ANOVA with Sidak multiple comparisons test) and (B) as bioluminescence images from days 0 and 14 post-
treatment. (C) EL4-bearing C57Bl/6 mice treated by SuperMApo at day 0 (1 mL, intraperitoneally, twice, at a 48-h interval) the same day as EL4 injection. Data
are given as mean of radiance ± SEM with 5 mice per group from 1 experiment, p = ns (two-way ANOVA with Sidak multiple comparisons test), and (D) as
bioluminescence images from days 0 and 21 post-treatment. (E) C57Bl/6 mice received EL4 cancer cells intravenously 7 days before SuperMApo treatment (1 mL
i.p., repeated after 48 h). Cancer cell progression was followed by bioluminescence evaluation once or twice a week with luciferin intraperitoneal injection. Data are
given as mean of radiance ± SEM, 5 mice per group from 1 experiment. p = ns (two-way ANOVA plus Sidak multiple comparisons test) and (F) as individual mouse
bioluminescence images at days 0 and 15 post-treatment.
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especially here SuperMApo, as a new therapeutic approach
against cancer propagation.

First, we demonstrated that pro-resolving factor administration
controlled peritoneal cancer progression in the peritoneal cavity
but more importantly limiting cancer cell progression outside the
Frontiers in Immunology | www.frontiersin.org 7
peritoneal cavity. Indeed, SuperMApo treatment prevented
cancer cell accumulation in the blood and in the mesenteric
lymph nodes. To date, only few studies have evaluated the
benefits of using pro-resolving factors to target cancer cell
progression and have been restricted to the use of specialized
A B

C D

E

FIGURE 3 | SuperMApo treatment triggers early and sustained macrophage activation. (A) Number of macrophages (CD11b+F4/80+) from C57BL/6 mice bearing
immunogenic EL4 cells, treated by SuperMApo (1 mL, intraperitoneal, twice, at a 48-h interval) were evaluated by flow cytometry at day 3 post-treatment in the
peritoneal cavity and mesenteric lymph nodes (MLN). Data are given individually plus mean ± SEM of 5 to 11 mice from 1 to 2 experiments; p = ns (t-test).
Representative dot plots are also given. (B) The number of mature macrophages (IAIE+CD11b+F4/80+) was also evaluated in the same conditions and are
represented as mean ± SEM of 5 to 6 mice per group from 1 experiment; **p < 0.01 (t-test). (C) Number of macrophages positive for model antigen OVA expression
(OVA+CD11b+F4/80+), expressed as mean ± SEM of 5 to 6 mice per group from 1 experiment; **p < 0.01 (t-test). (D) Number of macrophage subsets CD11b+

F4/80+ and IAIE+CD11b+F4/80+ at day 15 post-treatment in the peritoneal cavity, represented as mean ± SEM of 13 to 14 mice per group from 2 experiments; p =
ns (t-test), and (E) in mesenteric lymph nodes, depicted as mean ± SEM of 8 to 9 mice per group from 1 experiment, **p < 0.01 (t-test).
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pro-resolving lipid mediators (SPM). Resolvins have been shown
to suppress tumor growth (36, 43, 45–51). These observations
have been mostly done in solid cancer models, but few have been
doneon liquid cancer (45). Interestingly, resolvinshavebeen shown
to be involved in metastasis formation. Mice knocked out for the
resolvin receptor ALX/FPR2 demonstrated a higher spontaneous
metastasis growth after tumor resection than wild-type mice (45),
and resolvin injection after intravenous B16 cell injection, limited
metastasis formation (45).While the SPMcontent of SuperMApo is
limited (data not showed), triggering resolution by this complex
biological product also limited cancer progression. Indeed, only
arachidonic and docosahexaenoic acid have been quantified in
SuperMApo, which may initiate the synthesis of SPM in vivo,
participating in controlling tumor cell escape as described for
resolvin. While pro-resolving mediators have failed to be
translated into the clinic due to their short half-life, SPM
precursors might represent a better therapeutic alternative.

The control of inflammation associated to cancer therapy by
pro-resolutive drugs such as SPM has proved successful in
enhancing cancer therapy efficacy (44, 49). In our hands, it is
important to note that SuperMApo pro-resolutive factors are only
able to sustain anti-tumoral immunity in a context of an
immunogenic tumor and a primed immune system. This suggests
that indeed, inflammation associated either to the tumor or to the
treatment, is the condition of success for pro-resolutive approaches
to sustain anti-tumoral activity. Thus, SuperMApo needs to be
evaluated as a co-therapy to promote the control of tumor growth.

Also, we observed that the anti-tumor effect of SuperMApo
was dependent on existing host immune cell response specific to
Frontiers in Immunology | www.frontiersin.org 8
cancer cells. Myeloid cells, and macrophages even more, are both
sentinel cells controlling tissue hemostasis as well as regulators of
pro-tumor inflammation due to their plasticity (52, 53). Indeed,
macrophages have pro- and also anti-tumor properties (18, 52–54).
Tumor-associated macrophages (TAM) are associated with a poor
prognosis in cancer (18, 25, 29, 52, 53, 55, 56). TAM controlled
circulating cancer cell recruitment to the primary tumors and are
involved in the metastatic cascade (29, 53, 55, 57, 58). Several studies
have shown that targeting macrophages improved cancer outcome,
either by depleting them with clodronate liposome injection for
instance, blocking the phagocytosis pathway, inhibiting their
recruitment (CXCR2/CCL2 pathway blocking), targeting CD47,
or by reprogramming them toward an anti-tumoral phenotype
(11, 25, 52, 53, 57, 59). Anti-inflammatory approaches in cancer,
such as aspirin, have been shown to trigger SPM production that
stimulates cancer resolution by targeting macrophage subsets (36).
Specialized pro-resolving lipid mediators have been described to
favor the switch of TAM with a pro-inflammatory phenotype to
pro-resolving macrophages limiting CD206 expression, TNF-a, and
IL-6 secretion (36, 48, 52, 60). In addition, pro-resolving mediators
such as SPM can trigger an increase of phagocytosis from
macrophages (3, 36, 45, 52). Macrophages are thus key cells in
cancer progression, from escape to immune surveillance. We have
demonstrated that SuperMApo pro-resolving properties allowed the
reprogramming of antigen-presenting cells (APC) (3). Here, we
show that in a peritoneal cancer model, SuperMApo treatment
triggered early mobilization and activation of macrophages.
Interestingly, this conversion toward anti-tumor macrophages
seemed, over time, to prevent inflammatory circulating and
A B

C D

FIGURE 4 | Modifying macrophage subset prevents the emergence of circulating inflammatory and pro-tumor macrophages. (A) Number of macrophages
(CD11b+F4/80+) secreting IL-6, from C57BL/6 mice bearing immunogenic EL4 cells and treated by SuperMApo (1 mL, intraperitoneally, twice, at a 48-h interval),
were evaluated by flow cytometry at days 3 and 15 post-treatment in blood samples. (B) Number of macrophages secreting TNF-a+, expressing CD206+ (C) or
PD-L1+ (D) were also evaluated in the same animals. Data were represented as mean ± SEM of 5 to 6 mice per group from 1 experiment, *p < 0, 05, t-test.
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FIGURE 5 | Early type II IFN response is enhanced by SuperMApo treatment and conserved. (A) IFN-g response was evaluated from C57Bl/6 mice bearing immunogenic
EL4 cells and treated by SuperMApo (1 mL, intraperitoneally, twice, at a 48-h interval). Three days post-treatment, splenocytes were stimulated for 24 or 72 h with a-CD3
or OVA257–264 (for CD8

+ response) or OVA323–339 (for CD4+ response). IFN-g spot delta between non-stimulated (medium) and stimulated cell response is evaluated
by ELISpot, mean ± SEM of 5 to 6 mice per group from 1 experiment, *p < 0.05, two-way ANOVA + Sidak multiple comparisons test. (B) At day 15 post-treatment,
IFN-g was quantified by ELISA in plasma, mean ± SEM is represented by 5 mice per group from 1 experiment, p = ns, t-test; (C) in the peritoneal cavity, cells are
stimulated for 72 h with irradiated EL4 (4:1), delta of response versus unstimulated cells (medium), mean ± SEM of 5 mice per group from 1 experiment, p = ns,
t-test; (D) in spleen, cells are stimulated for 48 h with irradiated EL4 (4:1), delta of response versus unstimulated cells (medium), mean ± SEM of 10 mice per group
from 2 experiments, p = 0.052, t-test. (E) Quantification of T-cell response was evaluated in spleen with OVA323–339 stimulation for 72 h, delta of response versus
unstimulated cells (medium), mean ± SEM of 5 mice per group from 1 experiment, p = ns, t-test, (F) in mesenteric lymph nodes (MLN) OVA323–339 or OVA257–264,
delta of response versus unstimulated cells (medium), mean ± SEM of 5 mice per group from 1 experiment, p = ns, t-test. (G, I) IFN-g response was evaluated by
ELISpot with spleen cells of mice bearing immunogenic EL4 cells and treated by SuperMApo (1 mL, intraperitoneally, twice, at a 48-h interval) 15 days post-
treatment, stimulated with irradiated EL4 cells (4:1 ratio), for 72 h. Data are shown as the delta of IFN-g spot size and count of stimulated minus unstimulated cells
(medium) and expressed as mean ± SEM of 9 to 10 mice per group from 2 independent experiments. p = ns (t-test). (I) Representative images of IFN-g spots from G.
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immunosuppressive macrophages. These observations suggest that
SuperMApo treatment could enhance an immune surveillance by
macrophages without inducing an immunosuppressive
environment and, finally, preventing immunosuppressive escape
by reducing IL-6 as described (53). Of note, in the context of
experimental arthritis, SuperMApo treatment resolved ongoing
inflammation through the lasting reprogramming of macrophages
with immunomodulatory functions, favoring regulatory T-cell
rather Th1 polarization (3). These observations in the context of
experimental arthritis and in cancer suggest that together with the
modified microenvironment, SuperMApo treatment provides to the
macrophages the necessary factors to either escape from
inflammation pressure and provides an adapted regulatory
response or, acquires the capacity to mount a tumor-derived
antigen-specific immune response, respectively. How macrophages
adapt their function under SuperMApo treatment remains an
ongoing question. Recombinant TGF-b polarizes plasmacytoid
dendritic cell (pDC) to favor Th17-cell commitment (61), while
factors from efferocytosis, rich in TGF-b, polarize pDC to favor
regulatory T-cell commitment (62). Thus, additional researches are
needed to better understand what factors and how they could
overcome environment-primed macrophage functions.

We also observed that the SuperMApo product was
ineffective to control cancer cell progression in the absence of
B, T, and NK cells in a RAGgc-/- environment. Indeed,
SuperMApo triggered an early IFN-g T-cell response, sustained
over time. Strategies targeting inflammation to prevent an
adequate microenvironment for tumor growth and escape have
been mostly concentrated on myeloid cells. Again, the depletion
of macrophages increased CD8+ T cells, and impairment of
phagocytosis was associated with an increased IFN-g T-cell
response (57, 59). In murine models, anti-inflammatory drugs
have been associated with a more important CD4/CD8 T-cell
infiltration in spleen after tumor rejection (49). In contrast,
radio-chemotherapy approaches were associated to an increase
in the IFN-g response (19, 26, 63), IFN-g that is responsible for a
pro-tumor TAM phenotype commitment (58). In the context of
SuperMApo, composed of pro-resolving mediators including
TGF-b and IL-10 (3), we did not inhibit the specific anti-
tumor response from T cells. Indeed, SuperMApo injection
restored and enhanced a specific anti-tumor IFN-g response
which was correlated to the induction of macrophages highly
expressing class II and a tumor-derived antigen. In addition, pro-
tumor macrophage phenotype decreased with a low level of IL-6,
suggesting the anti-tumor role of the SuperMApo treatment.

In summary, this work demonstrated that SuperMApo
disrupted cancer cell progression, preventing cancer cell
delocation from the primary tumor site by enhancing a pre-
existing anti-tumor immune cell response. SuperMApo
treatment triggered macrophage mobilization and activation that
enhanced a specific IFN-g anti-tumor T-cell response, without
increasing immunosuppressive myeloid cells. These observations
revealed the beneficial impact of pro-resolving mediators in cancer
progression. Interestingly, these results opened new opportunities
toward a pro-resolving mediator role in cancer treatment. Despite
the facts that cancers vary considerably between rodents and
Frontiers in Immunology | www.frontiersin.org 10
humans and that further experimental studies with human
material need to be performed, SuperMApo treatment appears
promising as a potential new therapeutic strategy to fight cancer.
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