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Although not being the first viral pandemic to affect humankind, we are now for the first time
faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which
caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with
vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide
with new variants arising in different countries. Such persistent spread is in part enabled by
public resistance to vaccination in some countries, and limited access to vaccines in other
countries. The limited vaccination coverage, the continued risk for resistant variants, and the
existence of natural reservoirs for coronaviruses, highlight the importance of developing
additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the
beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin
(BCG) vaccination programs could be associated with a reduced number and/or severity of
COVID-19 cases. Preliminary studies have provided evidence for this relationship and further
investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2
induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which
recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of
infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an
in silico strategy combining sequence-based and structure-based methods to screen over
13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study
produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-
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reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the
screened targets, and (iii) new computational methods for structure-based screenings that
canbe usedby others in future studies.Our study expands the list of BCGpeptidespotentially
involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple
high-density “neighborhoods” of cross-reactive peptides which could be driving
heterologous immunity induced by BCG vaccination, therefore providing insights for future
vaccine development efforts.
Keywords: SARS-CoV-2, structural bioinformatics, BCG, vaccine, cross-reactivity, HLA, peptide
INTRODUCTION

Since March 2020, the coronavirus disease 2019 (COVID-19)
pandemic caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) has resulted in more than 5 million
deaths globally (1). The virus is highly transmissible and infects
mainly cells that express ACE2 receptors (2). The symptoms of
COVID-19 vary widely, but typically include fever, dry cough,
fatigue, and dyspnea (3). The eldelry and individuals with co-
morbidities are at higher risk of severe disease, respiratory failure,
and death. Several vaccines have been already approved, including
vaccines based on messenger RNA, attenuated adenovirus, and
inactivated virus (4). Despite the success of COVID-19 vaccines,
mistrust and misinformation from segments of society, lack of
resources in low-income countries, and impaired international
coordination are all contributing to very limited vaccination
coverage worldwide, a picture that will not change in the short-
term. In addition, there is an increasing concern with new SARS-
CoV-2 variants and the long-term effectiveness of the currently
approved vaccines (5, 6).

The Bacillus Calmette-Guérin (BCG) is an old, live attenuated
strain of Mycobacterium bovis. The BCGwas originally formulated
as a vaccine by Albert Calmette and Camille Guérin to prevent
tuberculosis (7). This vaccine is safe, recommended for newborn
children, and widely used inmany countries (8). Interestingly, BCG
vaccination has been reported to promote non-specific protection
against other bacteria and viruses (9–12). Different mechanisms
have been associated with this protection, also known as
heterologous immunity (13), including epigenetics and trained
immunity (14–16). Studies of heterologous immunity, as well as
epidemiological data from vaccination studies, suggest that both
infections and vaccines play a role in educating the immune system
and that an optimal vaccination strategy can be beneficial to
immune system maturation (17). In this context, several studies
considered whether the BCG vaccine could provide partial
protection against SARS-CoV-2 infection. Currently, there are 28
registered clinical trials testing the efficacy of BCG in attenuating
COVID-19 (18). Several epidemiology and ecologic studies have
been conducted to associate the vaccination of BCGwith protection
to COVID-19. However the data are controversial (11, 19–29).
Studies comparing the mortality rates between different countries
presented a drawback related to the inaccuracy of the reported
mortality data in some countries. One epidemiologic study pointed
out that BCG may offer some protection against COVID-19 (30).
org 2
Still, the data should be interpreted with caution as it may depend
on the time of pandemic and the age structure of the population
vaccinated with BCG. A Phase III randomized clinical trial
confirmed that recent vaccination with BCG protects the elderly
against new respiratory infections (31). Also, booster BCG
vaccination in high-risk healthcare workers was shown to prevent
COVID-19 (32). Accordingly, in the mice model, BCG
administration can protect from SARS-CoV-2 infection (33).

It is known that the individual repertoire of induced T cells (i.e.,
private specificity), shaped by previous infections and vaccinations,
determines immunopathology and heterologous immunity (34).
Therefore, the protection of BCG against COVID-19 might be
mediated by cross-reactive T cells. T cells recognize peptides
displayed by class I Human Leukocyte Antigen (HLA-I) receptors,
and a recent study analyzing HLA-I-restricted peptides has shown
sequence similarity between BCG and SARS-CoV-2 epitopes (35).
Also, the study of Eggenhuizen et al., identified 8 BCG vaccine-
derived peptides with sequence homology to SARS-CoV-2 NSP3-
derived peptides (36). In a study with 20 individuals, they found that
cells primedwith BCGpeptides developed enhanced T cell reactivity
to 7 SARS-CoV-2 peptides (36). T cell cross-reactivity is not an
uncommon event and was already described in the context of
coronavirus infection (37). The hypothesis that cross-reactive T
cells primed with BCG may be involved in the response against
SARS-CoV-2 has already been discussed, and supported by in silico
studies focused on peptide sequence similarity (38). However, T cell
cross-reactivity isnotdeterminedonlyby sequence similarity.Recent
studies have demonstrated that T cell cross-reactivity is also
determined by structural similarities of unrelated peptide-HLA
(pHLA) complexes (39–41).

In the present study we aimed at performing a structure-
based screening for potential cross-reactive HLA-I-restricted
peptides from BCG and SARS-CoV-2. We performed a large-
scale proteome analysis and identified thousands of possible
HLA-I binders. We modeled these peptides in the context of
different HLAs, and used a large-scale image-based analysis to
compute similarity between pHLA complexes, while accounting
for biochemical and structural properties. This analysis produced
a short list of immunogenic BCG-derived peptides that are the
most likely primers for T cell cross-reactivity against SARS-CoV-
2. It also produced a longer list of cross-reactivity clusters
involving one SARS-CoV-2 peptide and multiple BCG-targets,
in some cases binding multiple HLA-I alleles, which could
represent interesting targets for vaccine development.
January 2022 | Volume 12 | Article 812176
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MATERIAL AND METHODS

Peptide and HLA Selection
We obtained the proteomes from BCG-Pasteur strain (ID:
UP000032723, hereafter called BCG) and SARS-CoV-2 (ID:
UP000464024, hereafter also called SARS) from the UniProtKB
database. We applied a sliding window method on each protein
aiming to generate all possible peptides with 9 amino acids in length
(redundant peptides were removed). The HLAs were selected
according to prevalence in the human population and
information on literature about SARS-CoV-2 related HLAs
(http://pypop.org/popdata/) (42). We end up with a total of 10
HLAs: HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*11:01,
HLA-A*24:02, HLA-B*07:02, HLA-B*15:03, HLA-B*35:01, HLA-
B*40:01, and HLA-B*51:01.

Filtering by HLA Binding
We filtered peptides according to HLA-I binding affinity. This step
defined the set of pHLA complexes that should be modeled in the
next phase. The implementation of this phase uses the HLA-
Arena tool (43). After setting up our environment, we
implemented different processing pipelines, each one on a
separate python script, using as reference the “virtual screening”
notebook from HLA-Arena (i.e., 3_virtual_screening.ipynb). We
integrated individual python scripts into a single script (i.e.,
run.sh) to parallelize the jobs. This script uses as input (i) 10
HLA-I alleles, (ii) 9,814 peptides from SARS-CoV-2, and (iii)
1,242,895 peptides from BCG as fasta/regular text files. After that,
we first generate a list of all possible pHLA complexes and run the
MHCflurry (44), generating a list of pHLAs with the respective
peptide binding affinity. Secondly, we filter only the set of
complexes that present a binding affinity equal to or lower than
500 nM. We set this threshold aiming to recover only strong and
intermediate HLA-I binders. There is also evidence that there is a
correlation between peptides below this threshold and
immunogenicity (45). This set of complexes is selected to be
modeled in the next phase. The result is stored in 28 files for each
combination between the list of alleles and BCG or SARS-CoV-2
peptides (e.g., HLA-A0101_BCGpeps, HLA-A0101_SARSpeps;
HLA-B0702_BCGpeps, HLA-B0702_SARSpeps). All scripts and
files were made freely available in GitHub and more information
can be found in Supplementary Data.

Structural Modeling
The structural modeling of the selected pHLAs also uses the
HLA-I Arena tool and is based on the “virtual screening”
notebook implemented in the tool. The phase is divided into
three steps. The first step uses the MODELLER tool (46) to create
an HLA-I structure for each of the 10 HLA-I alleles selected. The
second step models the pHLA using the APE-Gen tool (47). The
third step involves the management of big data, because we
needed to parallelize the whole process in a limited number of
machines. To manage the execution of all batches and handle file
transfers between machines, we developed a scheduler in Python
called ArenaDispatcher (see Supplementary Data). The
ArenaDispatcher uses the Docker API to communicate with
docker daemons on either local or remote machines and can
Frontiers in Immunology | www.frontiersin.org 3
schedule jobs in the form of containers to run on one of the
connected docker daemons. The ArenaDispatcher also monitors
the execution state of each job, schedules in accordance to a
maximum (or unlimited) amount of available resources for each
docker host, and retrieves data (files and directories) and
execution logs (i.e., stdout and stderr). We also included
problem circumvention functionalities such as rescheduling
jobs of unavailable hosts, reconnecting to previously
unavailable hosts, and a local log file for the dispatcher’s
consistency (in case of a crash, it can reload the information of
jobs completed, running, or not yet dispatched). By doing this,
associated with cloud resources (i.e., Amazon Web Services
acquired utilizing a grant from Brazilian National Research
and Education Network), we reduced the time of simulation
from 7 years to approximately 60 days.

Generation and Extraction of Surface Data
From pHLA Complexes
The PyMOL tool (https://pymol.org) was used to generate a
visual representation of the TCR-interacting surface electrostatic
potential of each pHLA complex. A script was developed to
automate this process for each PDB file, exporting the result in
the format of PNG images after the alignment of the complex
from a pivot point, assuring all pHLA complexes would be in the
same orientation (i.e., same x, y, z coordinates). The ImageJ tool
(https://imagej.nih.gov/ij/) was used to obtain the histogram
containing RGB values (i.e., mean and standard deviation) of
46 regions of interest (Figure 2A) in each of these images. Given
the large number of images and the ImageJ limitation in
obtaining the histogram of one region at a time, we developed
a plugin in Java (see histogram2csv in Supplementary Material).
The plugin receives an image and a Region of Interest (ROI) Set,
and generates the histogram for each region of interest through
command line. The result is exported in a CSV format file, where
each line corresponds to a region of interest and each column
corresponds to information from the histogram of that region.

Hierarchical Clustering Analysis
To evaluate the potential of cross-reactivity between pHLA
complexes, the electrostatic potential of the TCR-interacting
surface was submitted to a hierarchical clustering analysis, similar
to what has been done in (48). Briefly, after modeling the pHLA
with PyMOL and extracting the RGB values of each complex, we
used pvclust (version 2.2) (49) and fastcluster (version 1.1.25)
packages (50) from R software (version 3.6.1) (https://www.r-
project.org/) (51) to perform a hierarchical clustering analysis. To
perform the clustering we used the pvclust parameters
method.hclust = “single” and method.dist = “correlation”. The
single linkage method was used to reduce memory usage and
computational time. The procedure was replicated 1,000 (default
nboot value for pvclust) times per HLA-I allele.

Biochemical Properties Analysis
Peptide features can be grouped upon residue physical and
chemical similarities. To sample the most similar SARS-CoV-2
and BCG peptides in our analysis, we filtered candidates based
on amino acid size, hydrogen bond donors and acceptors, charge,
January 2022 | Volume 12 | Article 812176
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aliphaticity, and aromaticity. In short, our strategy compares a
weight vector related to biochemical properties for SARS (query)
and BCG (subject) peptides. As a result, a peptide similarity
ranking is produced spanning the whole dataset of SARS-CoV-2
and BCG pairs for each HLA-I allele. Finally, the peptide ranking
per allele was filtered and we considered 10,000 pairs for
downstream analysis.

Filtering Putative Cross-Reactive Clusters
Dendrograms are broad structures that report several clusters in
distinct levels. The closest levels are related to clusters with
higher similarity, i.e., in our case indicate putative cross-
reactions. To filter closest cross-reactive clusters, we adopt a
depth-first search (DFS) approach to explore the adjacent
branches in each HLA-I allele data. Firstly, the dendrograms
were converted to a graph-based structure. Next, we develop a
DFS-based algorithm that identifies the closest clusters using the
SARS-CoV-2 peptides as a seed node. The search depth was
arbitrarily limited to five branches or bipartitions (d <= 5). The
DFS algorithm was developed in R using functions derived from
igraph version 1.2.6 (52) and ape packages version 5.5 (53).

Cluster Prioritization and
Experimental Evidence
To provide additional information, experimental data on SARS-
CoV-2 peptides were integrated into cross-reactive clusters. The
data was retrieved from IEDB (iedb.org) and we used filters to
recover only HLA-I peptides that were recognized by T cells (i.e.,
immunogenic peptides) in humans. Peptide immunogenicity data
were used to select the interaction pairs among all HLA-I alleles.

Computational Resources and
Data Availability
The HLA-I filtering and modeling processes were executed in a
single machine composed of 24 cores and 192 GBytes of memory.
Each core uses hyper-threading, which provides two virtual
(logical) cores (or execution threads). Therefore, the cluster has
in total 192 virtual cores for processing. Analyzing the resource
utilization of APE-Gen and aiming for the best parallelization, we
used containers configured with 6 virtual cores, resulting in 32
containers in the cluster and 100 complexes per execution. To
accelerate the performance, we used virtual machines from
Amazon Web Services acquired utilizing a grant from RNP
(Brazilian National Research and Education Network) dedicated
for COVID-19 research. Each virtual machine was configured
with 8 cores and 15 GB of memory (c4.2xlarge instance). We used
8 virtual machines. In the end, using local and cloud resources, we
concluded the modeling of all complexes in approximately 60
days. The final result was 358,386 pdb files representing the
modeled complexes. Each pdb file has approximately 480Kbytes,
giving a total of 160 GBytes. For the image analysis we generated
358,383 png files (three pHLAs caused PyMol to fail and crash)
occupying 257 GBytes of storage space. After concluding the
surface generation with PyMol, ImageJ plugin processed
sequentially every png file in approximately 12 hours, storing
Frontiers in Immunology | www.frontiersin.org 4
the extracted information on CSV (comma-separated values) files
(each one with 12 KBytes) requiring 4,3 GBytes of storage space.
The complete list of modelled pHLAs, fasta files, png files, plugins,
and computational scripts are available at https://github.com/
LAD-PUCRS/Arena_SARS-BCG. The structural data is also
available upon request.
RESULTS

We have implemented a new computational strategy to select
putative cross-reactive peptides between BCG and SARS-CoV-2.
Starting from the entire proteome of both viruses, our
methodology allowed for the identification of 40 pairs of
peptides with higher probability to trigger cross-reactive T cell
responses. These sequences were selected through a series of
filters considering affinity to multiple prevalent class I HLA-I
alleles, and pHLA similarity in terms of biochemical and
structural features. The entire workflow is summarized
in Figure 1.

Selection of Potential HLA-I Binders From
BCG and SARS-CoV-2 Proteome
We hypothesize that partial heterologous immunity between
BCG and SARS-CoV-2 can be mediated by T cell cross-
reactivity between similar viral peptides displayed by HLA-I
molecules. In order to identify candidate peptide-targets for
these cross-reactive responses, we started by fetching the whole
proteome of BCG and SARS-CoV-2 from UniprotKB. In total,
we analyzed 3,891 proteins from BCG, and 14 proteins from
SARS-CoV-2. We also searched the literature and public
databases for HLAs with high population coverage, as well as
those reported to be involved in SARS-CoV-2 immune
responses. We restricted our analysis to a total of 10 HLAs
(i.e., five HLA-A and five HLA-B alleles). Since HLA-I molecules
most frequently present peptides of nine amino acids (9-mers) in
length (54), we further recovered all possible 9-mers from BCG
and SARS-CoV-2 proteome. This resulted in a total of 1,237,282
(BCG) and 9,814 (SARS-CoV-2) peptides.

Since not all 9-mers would be able to bind all HLA-I
molecules, according to HLA-I binding restrictions, we further
filtered these peptides using a sequence-based binding affinity
predictor. For this step, we set a threshold of 500 nM aiming to
recover only strong and intermediate HLA-I binders (45). As a
result, we recovered a total of 296,651 and 2,918 peptides from
BCG and SARS-CoV-2, respectively. Each peptide was modelled
in the context of its specific HLA using APE-Gen (47) and HLA-
Arena (43), generating a total of 358,386 pHLA structures. A
small percentage of complexes could not be modeled by APE-
Gen, and was removed from the analysis. The calculations were
performed at PUCRS High Performance Computing Lab
(LabLAD) and all the data is made freely available upon
request. This represents one of the largest repositories for
three-dimensional structures of pHLA complexes available.
January 2022 | Volume 12 | Article 812176
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Selection of Similar Peptides Based on
Biochemical Properties
To further refine our analysis to consider only the most similar
pairs of peptides (i.e., BCG-SARS pairs) we apply a filter based on
biochemical properties (BP). For that, we represented each
peptide as a biochemical properties (BP) vector reflecting its
amino acid sequence, as previously described in (55). The L1
Frontiers in Immunology | www.frontiersin.org 5
norm was used to score the overall differences between each
SARS-CoV-2 and BCG peptides displayed by the same HLA-I
allele, respectively. Next, we rank BCG-SARS pairs based on the
BP score. The top 10,000 BCG-SARS pairs across all lists of the
same HLA-I allele were selected for further analysis. Note that
the number of recovered peptides varied across HLA-I alleles.
For instance, most of the peptides selected are presented by the
FIGURE 1 | Flowchart with all the steps from data acquisition to processing and selection of the putative cross-reactive clusters. The shapes in the flowchart
represent distinct aspects of our pipeline. Cylinders and rectangles are showing database (output storage) and computational analyses (including third-party tools,
see Material and Methods), respectively. The yellow diamonds represent data filtering (pHLA binding affinity, electrostatic subset, pairs ranking, and distance filtering).
The curly brackets are showing additional analysis or parameters chosen in our study. BCG, Bacillus Calmette-Guérin (Pasteur strain); SARS, SARS-CoV-2; HLA-I,
Human Leukocyte Antigen of class I; pHLA, peptide-HLA; DFS, Depth-first search; CR, cross-reactive; IEDB, Immune Epitope Database.
January 2022 | Volume 12 | Article 812176
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HLA-B*15:03 (13.5%), while HLA-B*51:01 is the HLA-I allele
with the lowest number of peptides (2.1%).

After removing redundant peptides, we obtained 55,536
BCG-derived peptides that were biochemically similar to 2,113
peptides derived from SARS-CoV-2. The per-allele totals can be
found on Supplementary Table 1.

Selection of Similar pHLAs Based on
Structural Features
Although peptide similarity in terms of biochemical properties
can suggest a higher probability for cross-reactivity (56–58), T
cell cross-reactivity is also driven by structural features of the
pHLA complex (e.g., topography and electrostatic potential over
the TCR-interacting surface) (39). To account for those
additional features, we included all the complexes selected in
the previous step (i.e., a total of 57,649 pHLA complexes, divided
into 10 HLA-I alleles) into an HLA-restricted pairwise structural
comparison analysis. Briefly, we extracted the image of the TCR-
Frontiers in Immunology | www.frontiersin.org 6
interacting surface of each modeled pHLA complex, capturing its
topography and electrostatic potential.

Following a similar protocol to that described in previous
studies (48), we determined 46 gates over this image (Figure 2A).
These gates were designed to cover known “hot-spots” for T cell
interaction derived from crystal structures (i.e., curated
interactions from IEDB) and previous studies (48). We then
extracted summarizing statistics from each of these gates to
create a vector representing each complex. Finally, these
vectors were used as input for a Hierarchical Clustering
Analysis (HCA). This strategy produced 10 dendrograms (i.e.,
one for each HLA-I allele) summarizing all structure-based
pairwise comparisons of pHLA complexes (Figure 2B and
Supplementary Figure 1).

A popular way to visualize these pairwise comparisons is
through the use of heatmaps, but they became harder to interpret
for larger datasets. Here, we traverse the dendrogram using
a DFS approach with a cut-off distance lower or equal to 5
A

B

C

FIGURE 2 | (A) pHLA models using HLA-A*02:01 and the SARS-derived peptide TQWSLFFFL as an example. On the left, the HLA-I alpha chain and the peptide
are represented in green and yellow, respectively; on the right, forty-six regions (green squares) were sampled for electrostatic potential analysis through RGB mean
and standard deviation values extraction. The red, white, and blue represent negative, neutral, and positive charges, respectively. The electrostatic potential range
used was -3kT to +3kT. (B) An overview related to dendrogram extraction based on the DFS algorithm. As an example, the HLA-A*11:01 heatmap was obtained
after the HCA procedure. The color key represents Euclidean distance applied as the similarity metric into dendrogram clustering. The color gradient blue to red
indicates high to lower similarity among pHLA structures, respectively. On the superior bars the clustering (i.e., grouping pHLA by similarity using our approach) and
experimental evidence status (i.e., data gathered from literature) are represented. SARS-CoV-2 peptides with experimental support are shown in red, and the DFS-
based cross-reactive clusters are shown in blue. The tree-base structure in the right corner represents a filtered cluster in HLA-A*11:01 data. The predicted binding
affinity (i.e., how well the peptide binds that specific HLA) is shown in the red color key. The node size represents the peptide-donor (i.e., SARS-CoV-2 or BCG) and
the silhouette thickness indicates if the peptide is immunogenic, according to the IEDB database. In (C) we recover the total number of cross-reactivity clusters for
each one of the HLAs present in our analysis.
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(see Material and Methods). We arbitrarily choose this value
aiming to recover clusters of possible cross-reactive targets
between SARS-CoV-2 and BCG peptides. From this analysis,
we retrieved a total of 16,606 putative BCG-SARS cross-reactions
(Supplementary Table 2), distributed throughout a diverse
number of clusters per-allele (Figure 2C). This database of
putative cross-reactive clusters (Figure 1, see Putative CR
clusters) was then used for two different analyses, presented in
the following sessions. First, we conducted a qualitative analysis
focused on available experimental data (i.e., identifying
experimentally-determined immunogenic peptides from IEDB
(59). Second, we performed a quantitative analysis driven by the
data. Here we computed (i) the “density” of BCG pHLA-targets
in close distance to SARS-CoV-2 pHLAs, and (ii) the overlap
degree of SARS peptides within cross-reactive clusters displayed
by distinct HLA-I alleles (Figure 1).

Identification of Cross-Reactive Clusters
Including Immunogenic Peptides From
BCG Vaccine
Immunogenicity, defined as the capacity of a peptide to trigger an
immune response, is one of the most important features in epitope
discovery. It is also a requirement for potential involvement in T
cell cross-reactivity. Therefore, we initially focused on identifying
SARS-CoV-2 peptides present in our putative cross-reactivity
clusters, defining three conditions: i) a DFS distance equal to
one, plus experimental evidence regarding ii) HLA-I binding-
affinity matching to our prediction, and iii) T cell response assay
reported by on IEDB. After this filtering, we produced a table of 40
possible cross-reactive BCG-SARS pairs (Table 1 and
Supplementary Table 3). In summary, according to our
approach, these immunogenic SARS-CoV-2 peptides are highly
similar to BCG peptides, both in terms of biochemical properties
as well as structural pHLA features (Supplementary Figure 4).

Cross-Reactivity Prediction Between BCG
and SARS-CoV-2
Since there is currently no experimental support for the
immunogenicity and cross-reactivity of most peptides in our
predicted cross-reactivity clusters, we decided to also perform a
quantitative analysis to explore other ways to prioritize potential
targets of cross-reactivity in our data. In this context, we
performed two different analyses: cluster density and HLA-
I restriction.

In the first case, we focused on the “density” of BCG pHLA-
targets in close distance to SARS-CoV-2 pHLAs (indicated in
Figure 1 as SARS neighborhood analysis). The density was
calculated based on a number of BCG peptides within the cross-
reactivity cluster (i.e., SARS-BCG pairs inside d <= 5). As a result,
several high-density SARS neighborhoods were identified across
HLA-I alleles. The SARS pHLAs with high-density neighborhoods
are an interesting resource due to the higher potential of triggering
heterologous immunity with several BCG peptides. Finally, these
findings can be used for further investigation of potential cross-
reactivity. Supplementary Figures 2, 3 show 50 SARS
neighborhoods for each HLA-I allele in this study.
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In the second case, we examined whether SARS-CoV-2
epitopes in putative cross-reactive clusters can be presented by
multiple HLA-I alleles using UpSetR to create visualizations of
intersecting sets (Figure 3A) (60). Epitopes presented by
multiple HLA-I alleles are promising resources for vaccine
design and immunotherapy, since they maximize population
coverage (61, 62). As expected, our results show a higher
percentage of putative cross-reactive epitopes presented by a
single HLA-I allele, and a lower percentage of epitopes shared
between 2 or more than 3 HLA-I alleles (Figure 3B).

Note that there is not a clear correlation between the number
of peptides presented by one allele and the number of putative
cross-reactive clusters. For instance, most of the peptides are
presented by HLA-A*11:01, while the largest number of cross-
reactive clusters was observed for epitopes restricted to HLA-
B*15:03. In terms of shared cross-reactive clusters, both HLA-
B*15:03 and HLA-B*35:01 are the most represented alleles, as
observed in Figure 3 by the number of connections to other
HLA-I alleles (16 and 14 times, respectively).
DISCUSSION

The development of functional memory T cell response is a
complex process, which plays a fundamental role in vaccine-
induced protection. Pre-existing memory T cells can be activated
by cross-reactive peptide-targets (63), making response to
immuniza t ion to be large ly dr iven by indiv idua l
immunological history (64). For instance, a study with yellow
fever virus showed that T cell kinetics after vaccination depended
on the pre-vaccination precursor frequencies and initial
differentiation states (65). Their results indicate that vaccines
re-prioritize the immune repertoire to more relevant T cells
against the novel pathogen. In the context of the COVID-19
pandemic, cellular immune response mediated by CD8+ T cells
specific to cross-reactive epitopes from common coronaviruses
has been reported as one of the main determinants of
immunological protection in SARS-CoV-2 infection (66).
Taken together, these findings raise the possibility that
individuals vaccinated with BCG present a pre-existing pool of
cross-reactive CD8 T cells, which can be recruited during SARS-
CoV-2 natural infection or COVID-19 vaccine, resulting in an
enhanced cellular immunity.

Several studies have described a protective effect of BCG
vaccination against viral infections (11, 15, 26, 67, 68). In fact,
it has been suggested that the BCG vaccination program could be
associated with a reduction in COVID-19 cases in some
countries (69). In this context, the search for sequence
similarity between SARS-CoV-2 peptides and peptides from
the BCG vaccine has been the main tool available for the
identification of potential targets for T cell cross-reactivity,
which could be the basis for a BCG-induced heterologous
immunity. In a recent study, Eggenhuizen and collaborators
(36) used an in vitro co-culture system to identify human T
cells specific to a BCG-derived peptide, which cross-react with a
highly similar peptide from SARS-CoV-2.
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Here we present a large-scale computational screening for
potential targets of T cell cross-reactivity between SARS-CoV-2
and BCG that might help to explain the possible protective effect of
BCG vaccination against COVID-19. We combined standard
immunoinformatics methods (e.g., sequence-based HLA-binding
prediction) with innovative structural approaches to better account
for other aspects of biochemical and structural features that are
potential drivers of T cell cross-reactivity. Some of the pHLA
comparison methods used here have been proposed and applied
in previous studies (39, 48), but have never been deployed to the
scale of the analysis described here. The size of this analysis,
encompassing the entire proteome of both pathogens of interest,
created a series of technical challenges that could not be addressed
with off-the-shelf solutions. For instance, our structural analysis
included themodeling of 358,386 pHLA complexes with APE-Gen.
This is the largest dataset of pHLA structures ever produced, and
such large-scale modeling was enabled by the development of a
Frontiers in Immunology | www.frontiersin.org 8
dispatcher to optimize the use of APE-Gen in High Performance
Computing clusters. As part of our analysis, we performed theTCR-
interacting surface comparison of all possible pairs of pHLAs for a
given HLA-I allele, considering 46 regions of interest in each
surface, and multiple data points for each region. This was only
possible through the implementation of a plugin for image
processing with ImageJ. All APE-Gen models produced in this
project, as well as the APE-Gen dispatcher and the ImageJ plugin
will be made publicly available as part of this study.

Our analysis produced a large dataset of putative cross-reactive
clusters involving BCG- and SARS-CoV-2-derived peptides. Then,
weexploredbothqualitativeandquantitativeapproaches toprioritize
themost promising pairs of peptides in this dataset. Our initial focus
on SARS-CoV-2 peptides with experimentally-determined
immunogenicity led to the identification of 40 putative 9-mer
peptide pairs with potential cross-reactivity with BCG peptides.
This list included the HLA-B*40:01-restricted SARS-CoV-2-
TABLE 1 | Top 40 putative BCG-SARS cross-reactions.

HLA predicted Peptide source DFS distance SARS-CoV-2 peptide presented by Protein source

SARS-CoV-2* BCG

HLA-A*01:01 CNDPFLGVY MTAFGVEPY 1 HLA-A*0101 SPIKE
HLA-A*01:01 FSAVGNICY WTDVKFALI 1 HLA-A*01:01 R1A, R1AB
HLA-A*01:01 GTDLEGNFY EVDSAFDGY 1 HLA-A*01:01 R1A, R1AB
HLA-A*02:01 FIAGLIAIV TLAGLLPPV 1 HLA-A*02:01 SPIKE
HLA-A*02:01 FVFLVLLPL WVFLVNLPL 1 HLA-A*02:01 SPIKE
HLA-A*02:01 GLMWLSYFI TMWLHVPAV 1 HLA-A*02:01 VME1
HLA-A*02:01 ILGLPTQTV IVAALLVTI 1 HLA-A*02:01 R1AB
HLA-A*02:01 IVAGGIVAI NLTGGIVAL 1 HLA-A*02:01 R1A, R1AB
HLA-A*02:01 KLVNKFLAL KMAKSVLLA 1 HLA-A*02:01 R1A, R1AB
HLA-A*02:01 TLMNVLTLV ALVLNLLPI 1 HLA-A*02:01 R1A, R1AB
HLA-A*02:01 YLASGGQPI LLSAAGVPL 1 HLA-A*02:01 R1A, R1AB
HLA-A*11:01 ATVVIGTSK GLNVNTLSY 1 HLA-A*11:01 R1AB
HLA-A*11:01 VVNARLRAK IVASRGAQK 1 HLA-A*11:01 R1AB
HLA-A*24:02 AYANRNRFL VWAQVRNRL 1 HLA-A*24:02 VME1
HLA-A*24:02 IFFITGNTL TFGALAITL 1 HLA-A*24:02 R1A, R1AB
HLA-A*24:02 MFTPLVPFW IYPPQVALV 1 HLA-A*24:02 R1A, R1AB
HLA-A*24:02 TFNGECPNF EYLETIHTW 1 HLA-A*24:02 R1A, R1AB
HLA-A*24:02 VFVSNGTHW SYIAYAPQL 1 HLA-A*24:02 SPIKE
HLA-A*24:02 VYMPASWVM LYGIFIVWL 1 HLA-A*24:02 R1A, R1AB
HLA-A*24:02 YFMRFRRAF AWRRLTKVI 1 HLA-A*24:02 R1A, R1AB
HLA-A*24:02 YFPLQSYGF GWPTWGMIL 1 HLA-A*24:02 SPIKE
HLA-B*07:02 LPNNTASWF APNSGLVAA 1 HLA-B*07:02 NCAP
HLA-B*07:02 QPGQTFSVL FPMLQFSLL 1 HLA-B*07:02 R1A, R1AB
HLA-B*07:02 RARSVSPKL RAATAAMVM 1 HLA-B*07:02 NS7A
HLA-B*07:02 TPRDLGACI LVVDAARAM 1 HLA-B*07:02 R1A, R1AB
HLA-B*40:01 GEAANFCAL TEVLAAQHL 1 HLA-B*40:01 R1A, R1AB
HLA-B*40:01 GEVITFDNL SEVVVFDAA 1 HLA-B*40:01 R1A, R1AB
HLA-B*40:01 SELLTPLGI AEMTVALLL 1 HLA-B*40:01 R1A, R1AB
HLA-B*40:01 WEPEFYEAM AELEAQQEL 1 HLA-B*40:01 R1AB
HLA-A*11:01 QVVDMSMTY AQPTEPVLK 1 HLA-A*01:01, HLA-A*11:01 R1A, R1AB
HLA-A*11:01 SASKIITLK ASGAKTGAK 1 HLA-A*03:01, HLA-A*11:01 AP3A
HLA-A*24:02 VYFLQSINF VYSVLLALL 1 HLA-A*24, HLA-A*24:02 AP3A
HLA-A*24:02 YFVVKRHTF VFPGRKGGF 1 HLA-A*24:02, HLA-B*08:01 R1AB
HLA-B*07:02 FPRGQGVPI DPRGNPVPL 1 HLA-B*07:02, HLA-B*08:01 NCAP
HLA-B*35:01 FAYANRNRF MASAARLAA 1 HLA-B*15:01, HLA-B*35:01 VME1
HLA-B*35:01 SANNCTFEY QPALFTVEY 1 HLA-A*29:02, HLA-B*35:01 SPIKE
HLA-B*40:01 NELSRVLGL VEGQTNHML 1 HLA-B*40:01, HLA-B*44:02 R1A, R1AB
HLA-B*35:01 TSNQVAVLY IAAMLLVIY 1 HLA-A*26:01, HLA-B*35:01, HLA-B*57:01 SPIKE
HLA-B*40:01 AEIRASANL AEPRATGHI 1 HLA-B*40:01, HLA-B*44:02, HLA-B*44:03 SPIKE
HLA-A*01:01 LTDEMIAQY MTNDNLEYY 1 HLA-A*01:01, HLA-A*29:02, HLA-B*35:01, HLA-C*07:02 SPIKE
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derived peptides GEAANFCAL, GEVITFDNL, and FIAGLIAIV
which have been independently shown to induce T cell response,
INF-g production, and proliferation in COVID-19 patients (66, 70).
Inaddition,multiplepeptides fromour top40 list (Table1)havebeen
reported to induceTcell activation inrecent studies analyzingaspects
of cellular immunity in COVID-19 patients (71–74). Some of the
peptides described by Eggenhuizen and colleagues as cross-reactive
betweenBCGandSARSwere found in the top16,000putativeSARS-
BCG cross-reactive peptide pairs (Supplementary Table 2) (36).

In our analysis, the number of putative clusters of cross-
reactive peptides varied among HLA-I alleles. Although most of
the peptides were predicted to bind to HLA-A*01:01, most of the
cross-reactive clusters were restricted to HLA-B*15:03. Note that
the importance of the HLA-B*15:03 allele for the presentation of
SARS-CoV-2-derived peptides has already been described in
previous work. For instance, molecular docking studies
performed by Albagi et al. indicated higher affinity of Spike-
derived peptide for the HLA-B*15:03 allele (75). In another study,
Barquera and colleagues analyzed the binding affinities of peptides
derived from complete proteomes of seven pandemic human
viruses (including coronaviruses), against 438 Class I and Class
II HLA proteins. In their study, statistical modeling indicated that
HLA-B*15:03 binds to more than 200 peptides with strong
affinity, with only a minimum number of peptides being
predicted as weak/non-binders for this allele (76). Finally, a
comprehensive in silico study by Nguyen and colleagues
suggested that HLA-B*15:03 can generate cross-protective T cell
dependent immunity, due to a greater ability to present highly
conserved SARS-CoV-2 peptides (77). Our study complements
these previous findings by incorporating large-scale structural
modeling and structure-based comparison of pHLA complexes on
the identification of potential targets of T cell cross-reactivity.
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Taken together, these findings further corroborate the notion that
differences in HLA-I genotypes can alter the course of the
COVID-19 disease and its transmission (78), and that HLA-
B*15:03 might contribute to increased cellular immunity against
SARS-CoV-2. On the other hand, the allele with the least number
of predicted clusters in our analysis was HLA-B*51:01
(Figure 2C), which could suggest an increased susceptibility to
COVID-19. In fact, a study on genetic association with
susceptibility to SARS-CoV-2 infection and disease severity
identified HLA-B*51:01, as well as HLA-A*11:01 and HLA-
C*14:02, as themost prevalent in patients with severe disease (79).

The responsemediated by CD4+ T cells is also important during
SARS-CoV-2 infection and the vaccine immunity (80, 81). Although
this was not the major goal of our study, we ran a sequence-based
predictor on the selected 40 possible cross-reactive BCG-SARS pairs
to analyze their capacity to bind HLA class II molecules. We have
found only one epitope (YLASGGQPI) that can strongly bind to the
human HLA-DRB1*07:01 (data not shown).

To further explore our dataset, going beyond available
experimental data, we performed a quantitative analysis to
identify both (i) clusters with higher density neighborhoods of
potentially cross-reactive BCG pHLA-targets, and (ii) clusters
with SARS epitopes that were shared across different HLAs
(Figures 1 and 3). This effort identified a list of SARS peptides
representing the 50 higher-density neighborhoods. These
candidates are interesting because they could indicate instances
in which T cell cross-reactivity with a single SARS-CoV-2
peptide could be primed by multiple BCG peptides, increasing
its potential involvement in heterologous immunity. In addition,
our data could help the analysis of results from several ongoing
clinical trials on the protective effect of BCG vaccination for
COVID-19. One limitation of our study is the lack of
A B

FIGURE 3 | The overall profile of cross-reactive SARS-CoV-2 epitopes presented by different HLA-I alleles. (A) The intersection size represents the number of SARS-
CoV-2 epitopes per cross-reactivity cluster when presented by one, two, and three or more HLAs. The edges connecting HLA-I alleles represent an intersection among
SARS-CoV-2 epitopes (i.e., the number of epitopes presented by the same HLA molecule). Only the intersections higher or equal to two are shown. The set size
represents the total number of SARS-CoV-2 epitopes in each HLA-I allele. (B) The percentage of shared SARS-CoV-2 epitopes per HLA-I allele bins is shown. The
color bar represents intersection degree bins in each plot.
January 2022 | Volume 12 | Article 812176

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tarabini et al. BCG and SARS-CoV-2 Cross-Reactive Peptides
experimental validation of these peptides. These targets should
be further investigated and confirmed in future studies.

Finally, we also identified clusters of potential cross-reactive
targets that were shared across multiple HLA-I alleles.
Considering the vast diversity of HLA-I alleles in the human
population (i.e., over 19,000 alleles), HLA-I restriction is a concern
for vaccine development. Even a highly immunogenic SARS-
CoV-2 peptide will not constitute a useful target for vaccine
development if its presentation to T cells is restricted to an
HLA-I allele that is rare in the human population. On the other
hand, peptides displayed by prevalent HLA-I alleles, or even
multiple HLAs, would make very interesting targets for vaccine
development due to broader population coverage. In fact, we have
found two peptides - FSAVGNICY and QPGQTFSVL - that were
(i) included in our top 50 high-density neighborhoods, (ii) can be
presented by multiple alleles, and (iii) are immunogenic targets,
with the capacity to elicitate CD8+ T cell response.

In the context of the current pandemic it is important to note that
despite ongoing success withmultiple COVID-19 vaccines, there are
still open questions and concerns regarding the rise of different
SARS-CoV-2 variants. In addition, other coronaviruses represent a
continuous threat of new pandemics, considering the existence of
large natural reservoirs (82). In this context, the development of
peptide-based vaccines targeting conserved regions of
coronaviruses, and presenting cross-reactivity with existing pools
of memory T cells in the population, could be an interesting strategy
to complement and extend the protection conferred by existing
COVID-19 vaccines (83–85). We hope our work can contribute to
these efforts by suggesting high priority targets for potential T cell
cross-reactivity with BCG-derived peptides.
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