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Immune checkpoint blockade (ICB) therapy has provided clinical benefits for patients with
advanced non-small-cell lung cancer (NSCLC), but the majority still do not respond.
Although a few biomarkers of ICB treatment response have been developed, the
predictive power of these biomarkers showed substantial variation across datasets.
Therefore, predicting response to ICB therapy remains a challenge. Here, we provided
a concise combinatorial strategy for predicting ICB therapy response and constructed the
ICB treatment signature (ITS) in lung cancer. The prediction performance of ITS has been
validated in an independent ICB treatment cohort of NSCLC, where patients with higher
ITS score were significantly associated with longer progression-free survival and better
response. And ITS score was more powerful than traditional biomarkers, such as TMB
and PD-L1, in predicting the ICB treatment response in NSCLC. In addition, ITS scores
still had predictive effects in other cancer data sets, showing strong scalability and
robustness. Further research showed that a high ITS score represented comprehensive
immune activation characteristics including activated immune cell infiltration, increased
mutation load, and TCR diversity. In conclusion, our practice suggested that the
combination of biomarkers will lead to a better prediction of ICB treatment prognosis,
and the ITS score will provide NSCLC patients with better ICB treatment decisions.

Keywords: immune checkpoint blockade, immunotherapy, biomarker, biomarker combinations, non-small-cell
lung cancer

INTRODUCTION

Lung cancer is the most common malignant tumor in the world (1). In the current clinical practice,
immune checkpoint therapy (2, 3) and combination therapy strategy (4, 5) has achieved amazing
therapeutic effects in the treatment of cancer and have changed the clinical management of cancer.
However, despite the strong improvement of these antibodies in cancer treatment, it is important to
note that most patients fail to respond to ICBs or even have to stop treatment because of immune-
related adverse events (6). Therefore, predicting ICB response is a key challenge in guiding patients
to select current checkpoint immunotherapy and providing indicators of early treatment response.
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Several biomarkers for predicting responsiveness to ICB
treatment were developed. PD-L1 expression was one of the
most promising biomarkers, which higher level of expression
contributed better benefit. Nevertheless, some studies reported
that advanced NSCLC patients with lower PD-L1 expression still
benefit from anti-PD1 therapy (6-8). Tumor mutation burden
(TMB) emerged as a biomarker for ICB patient stratification, in
which abundant non-synonymous mutations lead to an increased
number of neoantigen, potentially increasing immune recognition
and response (9). Higher TMB is associated with improved
prognosis and increased response rate to ICB therapies in most
studies (9-11). In addition, several immune escape mechanisms
hindered the application of ICB therapy (12). Decreased T-cell
infiltration has been reported to be associated with a poorer
prognosis (13), and TGF-B signal limits the infiltration of T
cells, forming a suppressed immune microenvironment (14, 15).
These mechanisms were also used to develop ICB response
biomarkers, such as TIDE (16) and PAN-fibroblast TGF-f
response signature (17).

Due to the complexity of factors affecting immune checkpoint
therapy, current biomarkers mainly involve a single ICB
response mechanism, which is not good in predicting the
prognosis of non-small cell lung cancer immune checkpoint
therapy (18). Therefore, it is still a meaningful topic to explore
the prognostic markers of ICB in non-small cell lung cancer.

Therefore, in this study, we focused on building a
combinatorial biomarker for ICB treatment in lung cancer.
Firstly, we evaluated genes related to ICB response biomarkers
including cytotoxic T lymphocyte (CTL) level, TMB, and TGF-3
signal. Then, an ICB treatment score (ITS) for lung cancer was
established by integrating these genes. The relationship of the
ITS with immune activity and mutations was also analyzed.
Finally, we found that the ITS is a powerful prognostic biomarker
and predicts the response to immune checkpoint inhibitors.

METHOD

Data Acquisition

Gene expression with the format of fragments per kilobase
million (FPKM) and mutation data of TCGA-LUAD and
TCGA-LUSC sample were obtained from UCSC Xena (http://
xena.ucsc.edu). For the NSCLC ICB treatment cohort, we
collected gene expression and the corresponding clinical
response data of ICB pre-treatment patients from the Jung
et al. (19) study. We also validated the prognosis efficiency of
ITS score in three additional datasets including Gide et al. (20),
Van Allen et al. (21), and Mariathasan et al. (17), involving two
other cancer types. RNA-seq data of these ICB treatment cohorts
were obtained through the supplementary materials of
original publications.

Calculation of ICB Treatment Signature
(ITS) Score

We used the average expression level of CD8A, CD8B, GZMA, GZMB,
and PRFI to characterize cytotoxic T lymphocyte (CTL) levels.

The TGF-P signaling score was calculated based on signatures
proposed by a previous study (22). By spearman’s rank
correlation test, we screened genes associated with CTL and
TGF-B signaling with cor greater than 0.3 and FDR less than
0.01. According to TMB, patients were equally divided into
three groups, high, middle, and low, and the differential genes
between TMB-high and TMB-low group screened by Wilcoxon
rank-sum test were considered to be TMB-related genes.
Pathway enrichment analysis of genes was carried out with a
hypergeometric test described previously (23). We selected genes
associated with both high CTL level and high TMB and excluded
immunosuppression-related genes as the ICB treatment signature
(ITS). For each sample, the ITS score was calculated by ssGSEA
(24) with default parameters in the “GSVA” R package. The
interaction network analysis of ITS genes was performed by the
Metascape online tool (25).

Robustness Evaluation of ITS

We assessed the robustness of the prognostic power of ITS using
the following methods. Firstly, ITS scores calculated by GSVA
(26), Zscore (27), and PLAGE (28) with default parameters were
used to evaluate whether the prognostic efficacy of ITS depended
on specific scoring methods. Then, we evaluated the prognostic
efficacy of signatures derived from multiple combinations of genes
related to CTL, TMB, and TGF-P3 to discuss the necessity of three
factors. And we randomly selected genes from ITS 100 times in a
fixed proportion, from 0.1 to 0.9, to discuss how much does the
absence of some genes in ITS effects the predictive power.

Immune-Related and Genomic Features of
Lung Cancer Sample

We calculated and collected expression signatures, CIBERSORT
fractions, DNA damage scores, intratumor heterogeneity (ITH),
TCR/BCR diversity, stromal fraction, and Leukocyte fraction for
each lung cancer sample (22). Expression signatures include
proliferation, macrophages regulation, overall lymphocyte
infiltration, TGF-P response, IFN-g response, and wound
healing. The composition ratio of 22 immune cells in the
sample was inferred using the CIBERSORT algorithm (29).
Some immune cell types were aggregated to a major class
including total lymphocytes, total dendritic cells, total
macrophage, and total mast cells. These proportions were
multiplied by leukocyte fraction, estimated from a mixture
model with specific methylation probes, to yield corresponding
estimates in terms of overall fraction in samples. ABSOLUTE
algorithm (30) was used to calculate tumor purity, aneuploidy
scores, and ITH. The stromal fraction was defined as the total
non-tumor cellular component, obtained by subtracting tumor
purity from unity.

Screening Features Associated With ITS
Scores

We used linear mixed-effects models to associate ITS score with
TME features in lung cancers using the “Ime4” R package. For
each feature, we compared a model with the feature to a model
without this feature using an ANOVA to determine whether the
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ITS score was significantly associated with this feature in lung
cancers. We adjusted patient age and sex and set cancer type as a
random effect in every model. This allowed us to consider a
different baseline value for the feature in LUAD and LUSC. The
conditional R2 was reported which reflects the variance
explained by the fixed and random factors. An FDR
adjustment was applied to the p-values from the linear mixed-
effect model. Features with FDR less than 0.01 were considered to
be correlated with ITS score.

Statistics Analysis

All statistical analyses were performed with R statistical software
version 3.5.2 (http://www.R-project.org). Wilcoxon rank-sum
test was used to determine the significance of differences
between the two groups. The correlation between the two
continuous variables was evaluated by spearman’s rank
correlation test. The survival curves were calculated with
Kaplan-Meier estimation, and the differences between survival
curves were calculated by log-rank test. The hazard ratio,
multivariate analysis adjusting for clinical parameters was
determined through a Cox proportional hazards model.
Survival analysis was carried out using the “survminer” and
“survival” R packages.

RESULTS

Identification of Inmune-Related Genes
Used to Construct ICB Treatment
Signature in Lung Cancer

To construct an integrated ICB response biomarker, we first
evaluated genes and pathways associated with three mechanisms
related to ICB response (CTL, TMB, and TGEF-P signaling) in
lung cancer samples (see Methods). We identified 756 and 1,100
genes associated with high CTL levels in lung adenocarcinoma
(LUAD) and lung squamous carcinoma (LUSC), respectively, of
which 608 genes were found in both cancers (Figures 1A, S1A).
Pathway enrichment analysis showed that these genes converged
to immune-related pathways, including innate immune system,
adaptive immune system, and various cytokine pathways (Table
S1, Figure 1B). The genes associated with TMB were
significantly different between the two cancer types. A large
number of genes in LUAD were associated with high levels of
TMB compared to LUSC (Figure S1B). In LUAD, TMB-related
genes were mainly enriched in RNA metabolism and regulatory
pathways, while in LUSC, they were mainly enriched in the cell
cycle pathway (Table S1, Figure 1C).

A large number of immunosuppressive-related genes were
also identified in both cancer types (Figures 1D, S1C). These
genes are associated with the abnormal glycosylation and
extracellular matrix organization pathway (Table S1,
Figure 1E). We found that the genes associated with high CTL
infiltration and high TMB level still contained a certain number
of immunosuppressive-related genes, which may have a poor
contribution to the prognosis of immunotherapy, so we
considered excluding these genes when constructing the biomarker.

Finally, by combining three mechanisms related to ICB response,
we selected genes associated with both high CTL level and high
TMB and excluded immunosuppressive-related genes as the ICB
treatment signature (ITS). In LUAD, ITS contained 91 genes
(Figure 1G, Table S2), while in LUSC only one gene passed the
screening criteria (Figure 1F), so we used ITS obtained from
LUAD as a proxy for NSCLC. A close interaction network was
formed between ITS genes, and we found three functional
modules in the interaction network, which were respectively
related to cell killing, interferon response, and transcription
factor binding (Figure S2).

ITS Score Predicts the Prognosis of Lung
Cancer Patients With ICB Treatment

Then, we used a cohort of NSCLC patients treated with ICB
therapy to evaluate the prognosis efficacy of ITS. In this cohort,
85 genes in ITS had expression information. ITS score was
estimated using single-sample gene set enrichment analysis
(ssGSEA) with default parameters in each patient. Patients
were divided into two groups based on median ITS scores.
Patients with high ITS scores had significantly better
progression-free survival (p = 0.03; Figure 2A) and higher
objective response rates (53.8% VS 7.1%, p = 0.01; Figure 2B)
than patients with low ITS scores. Meanwhile, the ITS score of
responders was significantly higher than that of non-responders
(p = 0.008; Figure 2C). Multivariate Cox analysis showed that
the ITS score was an independent prognostic factor after
adjustment for age and sex (HR = 0.097, p = 0.02).
Alternatively, other algorithms such as PLAGE, GSVA, and
Zscore could also be employed to calculate the ITS score.
Patients with higher ITS scores could have better survival to
immunotherapy (Figure S3). While for the PLAGE scores,
higher scores may not indicate higher activities as PLAGE
calculates the first principal component as the gene-set score.

To discuss whether the combination of CTL, TMB, and TGF-
B is necessary to the predictive effectiveness in prognosis or
response to immunotherapy, we built various signatures based
on multiple combinations of these factors. Using these three
factors alone, the only score of CTL-related genes had predictive
power (Figure 2D). And the best predictive performance
was achieved only when these factors were considered
simultaneously (Figure 2D). We further evaluated the
immunotherapy prognostic ability of each gene in ITS, and
only 8.2% (7/85) genes had the prognostic ability (Figure
S4A). we randomly selected genes from ITS 100 times in a
fixed proportion to investigate the robustness of prognostic
ability of ITS. It can be seen from the results that when 80% of
the genes in ITS are lost, it can still ensure satisfactory prognostic
efficacy (Figure S4B). It can be seen that these genes make ITS
maintain very good stability in the application process because
when we apply ITS, we cannot guarantee that every gene in ITS
has expression information.

We also compared the prognosis efficacy of ITS with
traditional biomarkers such as PD1, PD-LI, Teff, and TMB.
None of these individual markers showed satisfactory predictive
power, and only the ITS score was an independent prognostic
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FIGURE 1 | Genes and pathways related to ICB treatment response biomarker. (A) Genes related to CTL in LUAD and LUSC. The red dots represent an
association greater than 0.3 in two cancer types. (B) Pathways related to CTL in LUAD and LUSC. (C) Pathways related to TMB in LUAD and LUSC. (D) Genes
related to TGF-B in LUAD and LUSC. The red dots represent an association greater than 0.3 in two cancer types. (E) Pathways related to TGF-f in LUAD and
LUSC. (F) Relationship between genes related to CTL, TMB, and TGF- in LUSC. (G) Relationship between genes related to CTL, TMB, and TGF-f in LUAD.

factor for ICB treatment (Table S§3, Figure 2D). Typically, CTL
(p = 0.13; Figure S5A) and TMB (p = 0.36; Figure S5B) did not
show significant prognosis efficacy of ICB treatment. And, the
AUC of ITS was higher than that of CTL and TMB in predicting
the survival rate of patients at different periods, showing a better
prognosis efficiency (Figure 2E). In terms of predicting the
response to ICB treatment, ICB also had a higher AUC than
other biomarkers (Table S§3). Taken together, the ITS score was
demonstrated as a promising biomarker for immunotherapy
after immune checkpoint inhibitors.

ITS Score Represented Comprehensive
Immune Characteristics

Further, we explored the biological explanation of the prognosis
significance of the ITS score. The linear mixed-effect model was
used to associate ITS score with TME and genomic features in
lung cancers by adjusting for age and sex. LUAD samples were
observed to have relatively high ITS scores than LUSC (Figure
S6A). Therefore, cancer type was further incorporated as a

random effect in the model, allowing us to consider a different
baseline value for features in LUAD and LUSC.

Among the immune subtypes identified in previous studies
(22), samples characterized by IFN-gamma dominance had the
highest ITS scores, while lymphocyte-depleted samples possessed
lower ITS scores (Figure S6B). Notably, C3 samples, which are
predominantly immune-inflammatory and have the best
prognosis, also had relatively low ITS scores, suggesting that
some immune escape mechanism exists in these samples to
influence the response to ICB treatment. We observed that
proliferation rate (R* = 0.269, FDR = 1.17e-41) and four
immune expression signatures, macrophages (R*> = 0.565,
FDR = 1.01e-80), lymphocyte infiltration (R* = 0.615, FDR =
2.76e-113), IFN-g response (R* = 0.462, FDR = 7.23e-61), and
wound healing (R*=0.193, FDR = 2.49¢-27), were more active in
sample with higher ITS score (Table S4, Figures S7, 3A).

We found that higher stromal fraction (R* = 0.287, FDR =
9.06e-26) and leukocyte fraction (R* = 0.355, FDR = 5.03e-60)
were associated with stronger ITS score (Table S4, Figure S7,
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Figure 3B). Of the 29 classes of tumor-infiltrating immune cells
tested, infiltrating levels of 21 showed significant related with ITS
score (FDR < 0.01; Table S4). Of these, ten were highly infiltrated
and eleven less enriched in tumors with elevated ITS score
(Figures S7, 3B). The sample with higher ITS score had
abundant adaptive immune cells, including CD8+ T cells (R* =
0.387, FDR = 7.01e-64), active Memory CD4 T cells (R* = 0.370,
FDR = 4.96e-55), and Th2 cells (R* = 0.196, FDR = 4.27¢-28).
Low ITS score samples had more quiescent cells and activated
innate immune cells, including resting mast cells (R* = 0.219,
FDR = 5.82¢-16) and activated dendritic cells (R* = 0.266, FDR =
2.10e-10), suggesting that patients in the low I'TS group may have
an insufficient adaptive immune response.

We also observed that samples with higher ITS score had
increased tumor immunogenicity. For instance, elevated TCR
richness (R* = 0.459, FDR = 4.87-71), BCR richness (R* = 0.199,
FDR = 6.89¢-19), TMB (R* = 0.205, FDR = 1.24e-11), and SNV
neoantigens (R* = 0.199, FDR = 2.45¢-10) were associated with
high ITS score (Figures S7, 3C). Considering the strong
association of ITS score with mutational density, we next
looked to determine whether these were selectively affected
specific genes or chromosome regions. The mutation status of
69 genes was significantly correlated with the ITS score (FDR <
0.01; Table S4), of which 8 genes were related to immune or
cancer genes (Figure 3D). Typically, mutations in the EGFR were
associated with decreased ITS score (R*> = 0.156, EDR = 0.004),
consistent with previous descriptions that EGFR mutant tumors
have generally a low response to immune checkpoint inhibitors (31).

D
® & @ N O U
SESEN S FS S S

other signature traditional biomarker

== TMB
= CTL
— TS

100 200 300 400
Time

FIGURE 2 | Predictive efficacy of ITS scores in an ICB treatment dataset for NSCLC. (A) PFS difference between the two groups with high and low ITS scores. (B)
Response to treatment between the two groups with ITS score. Red indicates the patient’s response to treatment. (C) Differences in ITS scores between responders
and non-responders. (D) Prognostic efficacy (top panel) and response prediction ability (bottom panel) of different signatures and biomarkers. (E) The area under the
curve (AUC) was calculated for three prognostic models from 50 to 400 days. Blue: CTL; green: TMB; red: ITS.

And we detected no specific copy number region associated
with the ITS score (Table S4), indicating a general effect
of association.

Overall, these results suggested that the ITS score may
represent comprehensive immune characteristics to predict the
outcome of ICB treatment.

Robustness of Prognosis Efficiency

of ITS Score

To ensure the robustness of ITS scores for ICB treatment
prognosis efficacy, it should be evaluated in more data sets.
However, due to the lack of additional immunotherapy data for
non-small cell lung cancer, we examined the prognostic efficacy
of ITS scores for ICB treatment in other cancer types. In a
melanoma cohort (20), immunotherapy-treated patients with
higher ITS score demonstrated the longer OS (p = 0.002;
Figure 4A) and PFS (p = 0.002; Figure 4B), and responders
had significantly higher ITS scores than non-responders (p =
0.001; Figure 4C). In this dataset, some samples were also
sequenced early during treatment (EDT), and we found that
the ITS scores of almost all samples increased after treatment
(Figure 4D), reflecting the dynamic changes of tumor immune
microenvironment during ICB treatment. Similar findings were
observed in another cohort of melanoma patients (21) (n = 42)
treated with anti-CTLA-4 therapy. Patients with prolonged OS
also noted in higher ITS score (p = 0.039; Figure 4E), and ITS
score was significantly higher in responders and long-term
survivors (p = 0.018; Figure 4F). In addition, ITS scores also
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showed prognostic efficacy for ICB treatment in bladder cancer
(17). Immunotherapy-treated patients with higher ITS score also
displayed a superior prognosis compared with the other patients
(p = 0.019; Figure 4G), and respondents were associated with
higher ITS scores (p = 9.1e-5; Figure 4H). In summary, these
results indicated the robust and practical prognosis efficacy of the
ITS score. We also compared the prognosis and response
prediction efficacy of ITS with traditional biomarkers in these
three cohorts. ITS still showed satisfactory results (Figure 4I),
although it was not trained in the corresponding cancer sample.
This further confirms the prognostic potential of the
combined strategies.

DISCUSSION

In this study, we analyzed genes and pathways associated with
traditional biomarkers, including CTL level, TMB, and TGF-B3
signal, and designed a combined strategy to predict ICB

treatment response and prognosis. We suggested that robust
prognostic factors should include a comprehensive immune
response mechanism and not be associated with immuno
suppression. We applied this strategy to TCGA lung cancer
samples and obtained an ICB treatment signature (ITS)
with 91 genes. In independent ICB treatment cohorts, we
demonstrated superior prediction performance of ITS scores
over traditional biomarkers.

Drug resistance to targeted drugs including BRAF (32), MAPK
(33), and MEK (34) signaling pathways in different cancer types
affects patient treatment outcomes. Immunotherapy has been
observed to show strong antitumor activity in advanced non-
small-cell lung cancer. While the success of immunotherapy was
exciting, it was important to note that only a subset of patients will
benefit from ICB treatment. Therefore, predicting the treatment
response of ICB was a challenge for researchers. At present,
various predictive biomarkers have been constructed, but these
markers have not achieved satisfactory prediction effects, and the
prediction performance of these biomarkers has shown great
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FIGURE 4 | Predictive efficacy of ITS scores in other ICB treatment cohorts. (A) OS and (B) PFS difference between the two groups with high and low ITS scores in
the Gide cohort. (C) Differences in ITS scores between responders and non-responders in the Gide cohort. (D) ITS score changes after treatment. (E) OS difference
between the two groups with high and low ITS scores in the VanAll cohort. (F) Differences in ITS scores between responders and non-responders in the VanAll
cohort. (G) OS difference between the two groups with high and low ITS scores in the Mariathasan cohort. (H) Differences in ITS scores between responders and
non-responders in the Mariathasan cohort. (I) Biomarkers are shown as rows and individual cohorts as columns. The heatmap indicates the hazard ratio derived
from Cox regression (left panel) and AUC value derived from ROC curve (right panel), * denoted p <0.05, ** denoted p <0.01, *** denotes p < 0.001.

variability in different datasets (18). In NSCLC, PD-L1 expression
was the most commonly used predictive biomarker in routine
clinical practice. Some studies have shown that increased PD-L1
expression predicts longer progression-free survival and overall
survival after ICB treatment (18). However, PD-L1 expression was
not the best biomarker for some patients, because patients with
low PD-L1 expression also showed a lasting response (35). Tumor
mutation load (TMB) was the second most frequently studied

biomarker, where higher TMB was associated with long-lasting
clinical benefits and longer overall survival (9-11). Similarly,
studies have shown that the tumor immune microenvironment
can be used to predict the efficacy of immunotherapy in NSCLC
patients. Clinical trials of ICB therapy in NSCLC patients have
shown that higher effector T cell level is associated with greater
clinical benefit (36). However, none of these markers achieved
sufficient predictive power in the ICB dataset we analyzed. The
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immune response depends on various elements (37), and the
complexity of the immune therapy response mechanism led to the
fact that prognostic markers designed based on a single
mechanism can no longer meet the prediction needs.

Despite the agreement that they are associated with better ICB
outcomes, our results suggested that pathways related to cytotoxic
T Iymphocytes (CTL) differ from pathways related to TMB. Genes
related to CTL in LUAD and LUSC represent a broad range of
immune response systems including the innate immune system,
adaptive immune system, and cytokine pathways. In LUAD and
LUSC, TMB-related genes were enriched in cell cycle and RNA
metabolism and regulation pathways, respectively. This is
consistent with the idea that they represent different immune
response mechanisms. CTL plays a killing role in the tumor, and
response to ICB treatment requires pre-existing immune
microenvironment (38). Tumors with high TMB may be
associated with the presence of a large number of neoantigens
that can be recognized by CD8+ T cells (39). In addition, we found
that the genes related to CTL and TMB contained a large number
of genes related to immunosuppressive signature, suggesting that
the use of these two types of biomarkers alone would ignore the
immune escape mechanism, leading to the instability of prediction
performance. We considered that the stable prognostic factors
should include a comprehensive response mechanism and exclude
the interference of immunosuppressive signals. Based on this idea,
we constructed ITS scores in lung cancer to predict ICB
treatment response.

ITS is a set of 91 genes identified in LUAD. We did not find a
large number of genes associated with both CTL and TMB in
LUSC, and one possible explanation is that differences in
mutagenicity between the two cancer types lead to different
patterns of genomic variation (40). Gene interactions in ITS are
involved in cell killing, interferon response, and transcription
factor binding. And ITS scores represented comprehensive
immune activation characteristics including activated immune
cell infiltration, increased mutation load, and TCR diversity. In
the independent ICB treatment cohorts, ITS scores were more
effective in predicting survival and response to treatment than the
single biomarker. Multi-angle evaluation proves that ITS is stable
in the application process. This suggests the need to combine
multiple immune response mechanisms to predict ICB response.

However, more NSCLC ICB treatment datasets and
prospective studies are needed to evaluate the clinical
usefulness of ITS. Meanwhile, the ssGSEA method was used to
calculate the ITS score in this study. It is not a robust sample
classification method to classify samples only according to
median ITS value, and more effective methods may be needed
to explore the optimal cutoff value. In addition, the complex
immune microenvironment of the samples also raises concerns.
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