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Radiotherapy (RT) is the standard-of-care treatment for more than half of cancer patients
with localized tumors and is also used as palliative care to facilitate symptom relief in
metastatic cancers. In addition, RT can alter the immunosuppressive tumor
microenvironment (TME) of solid tumors to augment the anti-tumor immune response
of immune checkpoint blockade (ICB). The rationale of this combination therapy can also
be extended to other forms of immunotherapy, such as chimeric antigen receptor T cell
(CAR-T) therapy. Similar to ICB, the efficacy of CAR-T therapy is also significantly
impacted by the immunosuppressive TME, leading to compromised T cell function and/
or insufficient T cell infiltration. In this review, we will discuss some of the key barriers to the
activity of CAR-T cells in the immunosuppressive TME and focus on how RT can be used
to eliminate or bypass these barriers. We will present the challenges to achieving success
with this therapeutic partnership. Looking forward, we will also provide strategies currently
being investigated to ensure the success of this combination strategy in the clinic.

Keywords: radiotherapy (RT), chimeric antigen receptor T cell (CAR-T), solid tumor, immunosuppression, tumor
microenvironment (TME)
INTRODUCTION

Adoptive cell transfer (ACT) has shifted the therapeutic paradigm for cancer patients in recent
years. Transducing T cells with a chimeric antigen receptor (CAR) to redirect their antigen
specificity against a defined tumor antigen has further broadened the use of ACT. CAR-T cells can
recognize tumor-associated surface antigens via the single-chain variable fragment (scFv) and
initiate anti-tumor immune responses by intracellular signaling domains, such as CD3z and CD28
(1). CAR-T therapy has demonstrated remarkable anti-cancer activity, achieving long-term
remission in patients with refractory B cell malignancies (2). However, similar success with
CAR-T cell therapy has not been achieved in solid tumors (3).

Solid tumors can be characterized into two distinct subsets based on the inflammatory status of
the TME (4). Tumors (eg. melanoma) with a high inflammation signature tend to respond well to
ICB (5), an effect largely mediated by CD8+ effector T cells (6, 7); however, the development of
resistance to immunotherapy is common. The presence of liver metastases is also being increasingly
org January 2022 | Volume 12 | Article 8138321
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recognized as a barrier to ICB efficacy, even in the context of
melanoma (8, 9). Tumors that support an immune excluded or
deserted TMEs, such as prostate and pancreatic cancers, are
described as immunosuppressive (10, 11), and typically fail to
respond to ICB and CAR-T therapy. These immunosuppressive
tumors lack T-cell chemokines to drive the recruitment of CD8+

effector T cells or CAR-T cells and are also enriched with
suppressor cells that compromise T cell persistence and
function. To overcome these immunosuppressive features, the
value of TME-altering therapies, such as RT, is actively
being explored.

RT is the standard-of-care treatment used for curative or
palliative intent in close to 50% of cancer patients (12). Factors
including total dose, fractionation scheme, hypoxia, and the
intrinsic radiosensitivity of tumor cells all come into play in
influencing the overall impact of RT on the TME (13–15) and its
ability to reactivate host anti-tumor immune responses (16).
Evidence to support the rationale for combining CAR-T cells
with radiation therapy is growing. The RT effect on the TME,
and the mechanisms whereby this occurs, have been widely
studied in a variety of tumor models using different dose/
fractionation schemes (Table 1). As a TME-modifying therapy,
RT can induce the release of chemokines, such as CXCL9, to
augment T cell trafficking (Figure 1 ①/②), increase the
expression of adhesion molecules that may promote T cell
infiltration (Figure 1 ③/④), alter the immune cell composition
in the TME (Figure 1 ⑤/⑥), and increase the expression of
Frontiers in Immunology | www.frontiersin.org 2
immune-stimulatory cytokines to enhance the functional activity
of effector T cells in the TME (Figure 1 ⑧/⑨) (32). By changing
the TME and creating a niche for immune cells, these benefits
may synergize with immunotherapies, including CAR-T therapy.

In the clinic, patients with immunosuppressive tumors have
few therapeutic options, have high morbidity, poor long-term
survival, and comprise an urgent unmet clinical need. In this
review, we will focus on the potential benefits and challenges for
combining RT with CAR-T cells for the treatment of
immunosuppressive tumors and provide insights into how to
manipulate these two treatments to maximize clinical benefit.
CURRENT CHALLENGES FOR CAR-T
CELLS THAT CAN BE TARGETED BY RT

Poor trafficking, tumorpenetration, andpersistence ofCAR-T cells,
as well as tumor antigen heterogeneity and immunosuppression,
are all major barriers to the success of CAR-T therapy in solid
tumors. In this section, we will outline some of the mechanisms by
which RT can overcome such challenges.

Insufficient Recruitment of CAR-T Cells
Efficient traffickingofCAR-Tcells to solid tumorswithinperipheral
tissue has proven to be a significant challenge. The tumor stroma
comprises immunosuppressive cells, cancer-associated fibroblasts
TABLE 1 | Evidence of the potential synergistic effect of RT in combination with CAR-T cells.

Tumor model Scheme Mechanism Reference

Preclinical evidence of RT as a TME altering therapy

Melanoma 1 × 15Gy RT-induced type I IFN promoted CXCL10 expression, leading to increased CD8+ T cell infiltration. Lim et al (17),
Multiple models 3 × 8Gy RT activated the STING pathway and induced type I IFNs to recruit DC and CD8+ T cells. Vanpouille-Box et.

al (18),
Prostate cancer 10 × 2Gy RT remodeled the tumor vasculature and improved oxygenation. Potiron et al. (19),
Non-small cell lung
carcinoma

1 × 18Gy and 3 ×
6Gy

Irradiated CAF decreased the pro-tumorigenic potential that affected angiogenesis and tumor
growth.

Grinde et al. (20),

Breast cancer 3 × 8Gy RT induced up-regulation of ICAM-1 to enhance both the activation and tumor infiltration of CD8+ T
cells.

Zhao et al. (21),

Melanoma 1 × 15Gy RT-induced IFN-g increased the VCAM-1 expression on tumor vasculature to facilitate T cell
infiltration.

Lugade et al. (22),

Multiple models 1 × 6Gy Liver-directed RT eliminated immunosuppressive hepatic macrophages and increased T cell function
in liver metastatic models.

Yu et al. (23),

Lung adenocarcinoma 2 × 1Gy RT induced M1 macrophage polarization and enhanced immune cell infiltration. Barsoumian et al.
(24),

Multiple models 2 × 12.5Gy RT downregulated the expression of VEGF to reduce the recruitment of MDSC into tumors. Lan et al. (25),
Prostate cancer 2 × 10Gy RT induced CXCL9 expression, leading to increased CD8+ T cell infiltration. Keam et al. (26),
Preclinical evidence of RT in combination with CAR-T cells
Glioblastoma 1 × 5Gy RT facilitated vasculature normalization to promote CAR-T cell extravasation in the TME. Murty et al. 2020

(27)
Pancreatic cancer 1 × 2Gy RT sensitized antigen-negative tumor cells to TRAIL-dependent killing mediated by CAR-T cells. DeSelm et al. 2018

(28)
Glioblastoma 1 × 4Gy RT boosted CAR-T cell activity (IFN-g production) and upregulated CAR-targeted stress ligand. Weiss et al. 2018

(29)
Clinical studies of RT in combination with CAR-T cells
Diffuse large B-cell
lymphoma

20 × 2Gy RT was related to CAR-T cell expansion and therapeutic durability of CAR-T cell therapy. NCT03196830 (30)

Multiple Myeloma 5 × 4Gy The synergistic abscopal effect induced by localized RT and CAR-T cells. NCT03070327 (31)
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(CAFs), epithelium, endothelium, and extracellular matrix (ECM).
Together these elements form a micro-environment that inhibits
the anti-tumor immune response (33). CAFs are a heterogeneous
cell population commonly present in most tumor stroma. CAF-
mediated aberrant high-density ECM contributes to the exclusion
of effector T cells by acting as barriers to immune cell infiltration
(34). In addition, CAFs also exhibit pro-tumorigenic capacity by
inhibiting effector T cells, polarizing macrophages towards an M2
phenotype, recruiting suppressor cells, and remodeling the ECM
(35). Few studies have explored the impact of radiation on CAFs;
however, it was reported that RT could alter the pro-tumorigenic
status of the tumor stroma (20) and potentially increase CAR-T cell
infiltration into the tumor (Figure 1. Step ③).

Tumor-associated hypoxia and dysregulated vasculature are
further barriers to T cell access into tumor stroma.
Immunosuppressive tumors, such as prostate cancer, present
with a hypoxic environment that excludes the T cells from
infiltration. These hypoxic zones in the TME also recruit and
harbor suppressive cells such as MDSC (36). As one of the major
influencers in the TME, tumor-associated vasculature also
contributes to maintaining an immunosuppressive TME. Pro-
angiogenic factors, such as vascular endothelial growth factor A
Frontiers in Immunology | www.frontiersin.org 3
(VEGF-A), can reduce T cell infiltration by disrupting their
access to the tumor bed and also inhibit adhesion molecules on
endothelium for immune cell extravasation, such as intercellular
adhesion molecule (ICAM)-1 and vascular cell adhesion protein
(VCAM)-1 (37). RT contributes to the improved normalization
of tumor vasculature in the TME. In prostate cancer, fractionated
RT altered the function of tumor vasculature to improve tumor
reoxygenation (19). Real-time imaging analysis in a glioblastoma
model revealed that RT also promoted CAR-T cell extravasation
and local expansion leading to a synergistic benefit of the
combination treatment (27). In addition, radiation was shown
to induce increased expression of the integrins ICAM-1 and
VCAM-1 on the endothelium of the vasculature in the TME
(21, 22), these adhesion molecules are critical for transendothelial
migration of CAR-T cells (Figure 1. Step ④).

Themigratory activity ofCAR-Tcells is largely influencedby the
CXCR3/CXCL9-11 chemokine receptor-chemokine axis (38).
These T cell recruiting chemokines are produced by M1-like
immune-stimulatory macrophages in response to the
proinflammatory cytokine IFN-g (39, 40). In addition, CD8+ T
cell infiltration is also controlled by the CCR5/CCL5 axis (40).
However, immunosuppressive tumors lack the pro-inflammatory
environment and immune-stimulatory cells to produce the T cell
recruiting chemokines. Some tumors also secrete chemokines that
recruit suppressive cells, such as regulatory T cell (Treg)-recruiting
CCL17/22 andmyeloid-derived suppressor cell (MDSC)-recruiting
CCL2 (41). As a result, the immunosuppressive tumors present a
mismatched chemokine signature for T cell recruitment, leading to
limited effector T cell homing and tumor infiltration (42).
Radiation-induced inflammation in the TME can promote the
recruitment of effector T cells by triggering macrophages, in an
IFN-g dependent manner, to produce increased levels of the
CXCR3-reactive T cell chemoattractants CXCL9, CXCL10, and
CXCL11 (17, 26) (Figure 1. Steps ①②). Radiation-induced
activation of stimulator of interferon genes (STING) pathway was
also shown to increase expressionofCXCL10 in amousemammary
carcinomamodel refractory to immune checkpoint inhibitors (18).

Immunosuppression in the TME
The TME comprises a complex network of tumor cells and the
tumor stroma made up of endothelial cells, fibroblasts,
extracellular matrix, and immune cells (43). Despite sufficient
trafficking and expansion of CAR-T cells in TME, suppressor
immune cell subsets and soluble mediators can render CAR-T
cells exhausted and dysfunctional (44).

Tregs are key contributors to tumor-mediated immune
suppression (45). In patients with recurrent glioblastoma,
infiltration of Tregs in the TME dampened immune activity
and promoted acquired resistance to CAR-T cell therapy (46).
Other immunosuppressive subsets that have been shown to
impact CAR-T cell function are MDSC and tumor-associated
macrophages (TAM) (47, 48). MDSCs can generate a suppressive
milieu of cytokines and metabolites such as IL-10, TGF-b, IL-1
receptor antagonist, nitric oxide, and arginase 1 to hinder the
tumoricidal immune response (49–52). Neutralizing MDSCs by
immunostimulatory agents, such as all-trans retinoic acid,
preserved CAR-T cell proliferation and cytotoxic function, and
FIGURE 1 | Radiotherapy improves the outcomes of CAR-T cells in
combination therapy. ①Radiation-induced IFN-g promotes chemokine
secretion of CXCL9/10/11, ②leading to effective CAR-T cell homing to the
tumor bed. ③Diminished tumor barriers of cancer-associated fibroblasts (CAF)
and extracellular matrix (ECM) promote CAR-T cell infiltration. ④Radiation-
induced expression of ICAM-1/VCAM-1 on the endothelium of tumor
vasculature facilitated CAR-T cell infiltration. ⑤RT polarized M2 macrophages
to M1 macrophages in the TME. ⑥Reduction of TAM and MDSC by RT.
⑦Radiation-induced increased expression of proinflammatory cytokines
altered the TME from immunosuppressive “cold” to immune-inflamed “hot”.
⑧Radiation enhanced infiltrated CAR-T cell function with increased expression
of TRAIL, IFN-g and ⑨augmented expansion of CAR-T cells. The figure is
created with BioRender.com.
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resulted in reduced tumor burden in CAR-T treated mice in an
osteosarcoma model (53). Similarly, TAM can be co-opted by
tumor cells and polarized to an anti-inflammatory M2-like
phenotype capable of hindering T cell responses by the
production of inhibitory mediators (i.e., TGF-b, indoleamine
2,3-dioxygenase IDO) and expression of PD-L1 (54, 55). Direct
depletion of TAM has proven ineffective in promoting ACT,
however, re-wiring of TAM to a pro-inflammatory phenotype by
anti-CD40 agonist or blocking AIM2 inflammasome can
improve the performance of immunotherapies including CAR-
T cells (56, 57).

Cytokines and metabolic factors can also contribute to tumor
progression and the loss of immune surveillance. The accumulation
of lactate and adenosine, by-products of abnormal cellularmetabolism
in the TME, favors the infiltration and expansion of suppressive TAM
andMDSCanddampens the activity ofT cells (58–61). Enrichment of
the inhibitory cytokine TGF-b has also been documented in many
cancers and exerts profound immunomodulatory properties to
attenuate the cytotoxic potential of T cells and accelerate T cell
dysfunction (62, 63). TGF-b can also polarize myeloid cells and B
cells towards an immunosuppressive phenotype (64, 65). As such,
TGF-b co-opts various immunosuppressive cells to indirectly
counteract immune activation in the TME. Neutralizing the TGF-b
signal in the TME has been shown to unleash potent T cell responses,
thereby rendering tumors susceptible to immunotherapy, including
CAR-T cell treatment (66, 67).

Taken together, depleting Tregs andMDSC, reprogramming the
TAM, and blocking the associated soluble mediators can be crucial
to rescuing anti-cancer immune activity. In this regard, RT has been
broadly investigated for its TME altering capacity (16, 32). This
rationale is further supported by the notion that irradiation can alter
the phenotype of immunosuppressive cells in the TME (Figure 1.
Step ⑤). RT has been shown to enrich the TME for M1-like
macrophages and reduce the frequency of immunosuppressive
M2-like macrophages and MDSC (23, 24, 68, 69) (Figure 1. Step
⑥). Reduction of MDSC in the peripheral blood of patients post
conventionally fractionated RT (<2 Gy/fraction) has also been
reported (70). Similarly, hypofractionated RT (>2 Gy/fraction),
has also been shown to reduce the influx of MDSC in TME by
downregulating the expression of VEGF (25). Taken together, RT
can boost immune activation by altering the immunosuppression
status of the TME to enhance CAR-T cell efficacy.

Aside from its direct ability to debulk tumors, RT can also
engage host immune defenses by causing immunogenic cell death
(ICD) (71). ICD is associated with the release of danger-associated
molecular patterns (DAMP) and increased expression of
neoantigens that can help facilitate the recruitment and activation
of dendritic cells and subsequent priming of T cell responses with an
expanded TCR repertoire (72, 73). Radiation-induced activation of
the STING pathway induces expression of Type I IFNs and TNF,
leading to an inflammatory microenvironment, which facilitates T
cell activity (22, 74) (Figure 1. Step⑦). Of note, the STING response
induced by a single fraction of high-dose radiation is distinct from
that when the total dose is fractionated into a series of smaller doses.
Demaria and colleagues demonstrated that fractionated radiation
schedules of less than 8 Gy/fraction activated the STING pathway
Frontiers in Immunology | www.frontiersin.org 4
and release of Type I IFN, permitting the induction of abscopal
response when delivered in combination with ICB therapy. In
contrast, a single fraction of 20 Gy RT increased the expression of
TREX1 within tumor cells, preventing STING activation and its
ability to augment the systemic anti-tumor activity of ICB
therapy (18).

The Effect of RT on CAR-T Cell Function
In addition to the effect of RT on the TME and T cell trafficking,
radiation can also promote CAR-T cell function. Radiation can
induce tumor cell stress ligands and it is an alternate mechanism
through which RT may increase tumor-cell susceptibility to
CAR-T cell-mediated killing (Figure 1. Step ⑧). DeSelm et al.
showed that a single fraction of 2 Gy could augment TRAIL-
mediated cytolysis by anti-sialyl Lewis-A CAR-T cells, leading to
attenuated tumor growth in mice bearing heterogeneous
pancreatic tumors (28). A similar effect was also observed
when radiation enhanced the IFN-g production of CAR-T cells
in a glioblastoma mouse model (29). In addition, CAR-T cell
expansion was correlated with RT in a patient with relapsed
diffuse large B cell lymphoma (Figure 1. Step ⑨). The CAR-T cell
transgene copies dropped initially post-infusion but increased
dramatically after RT and persisted for more than 120 days, leading
to a complete remission post combination treatment (30).

Radiation may also induce the expression of stress ligands
that can be targeted by CAR-T cells. NKG2D CAR-T cells
combined with local intracranial RT significantly reduced
tumor burden and prolonged survival, which can be attributed
to the upregulation of NKG2DL, such as RAE-1 and MULT-1
post-irradiation (29).

In addition to the local effects of RT, induction of systemic anti-
tumor immune responses that control tumor growth outside the
irradiation volume (known as the abscopal effect), was also reported
(75). In a case study of a BCMA CAR-T cell clinical trial,
combination with RT showed complete radiographic resolution
including the innumerable sites outside the radiation site with no
relapse in 9 months post-treatment (31).

More evidence is emerging that certain dose/fractions of RT
can, directly and indirectly, affect the CAR-T efficacy against
tumor cells, although further detailed mechanisms to explain the
benefits of RT on CAR-T cells are still not clear and should be
investigated further.
CHALLENGES FOR THE COMBINATION
THERAPY OF RT AND CAR-T CELLS

Although RT and CAR-T therapy have shown therapeutic
efficacy in treating some tumors, further consideration is
needed when designing the combination therapy to gain the
maximum clinical benefit.

For many cancer patients, RT is given post CAR-T cell
infusion so the adoptive transferred cells are potentially
vulnerable to radiation-induced induce apoptosis (76),
however, in vivo data relating to this point remains scarce.
Notably, antigen-experienced T cells, such as memory CD8+ T
January 2022 | Volume 12 | Article 813832
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cells and tissue-resident memory T cells have been reported to be
more resistant to radiation-induced apoptosis compared to naïve
T cells (77, 78). Thus, the ex vivo culturing processes necessary to
generate CAR T cells may aid in strengthening their resilience to
direct exposure to external beam RT. In a clinical trial, low dose
RT (2 Gy/fraction) was found to induce in vivo expansion of
CAR-T cells (30). Based on our current knowledge of the
immunological effects of RT we would expect that low dose RT
(<2 - 4Gy) to be a better complement to CAR-T therapy. Low-
dose RT is likely to be less impactful on the viability of the
immune compartment and has reported positive impacts on
TAM and the vasculature as discussed above.

Besides reprogramming the TAM and MDSC in the TME to a
proinflammatory phenotype, RT can also induce the wound
healing response and the induction of highly suppressive Treg
responses (79). Interestingly, the rate and amplitude of
accumulation of Tregs within irradiated tumors were dictated
by dose per fraction rather than total dose. In this study, a single
fraction of 20Gy generated a more aggressive Treg response
compared to a fractionated dose of 9 x 4 Gy, despite sharing the
same biological effector dose of 45Gy (79). Several preclinical
studies have demonstrated that the targeted depletion of Tregs is
required to induce a durable response to RT and support the
anti-cancer actions of immune checkpoint blockade therapy (80,
81). Thus, a more precise dose/fraction should be considered,
and additional Treg-targeted approaches may be needed to
overcome potential immune suppression and acquired
resistance. In this regard, other combination treatment
strategies could be considered, such as chemotherapy and
monoclonal antibodies. Docetaxel was reported to specifically
deplete activated Tregs with more IFN-g and less TGF-b, but not
resting Tregs in non-small cell lung cancer (82). In pancreatic
ductal adenocarcinoma, low-dose gemcitabine also induced Treg
depletion (83). Another approach is to use the monoclonal
antibodies (mAbs) targeting the key molecules on Treg cells,
such as CTLA-4 (Cytotoxic T lymphocyte-associated antigen-4),
CD73, and TIGIT (T cell immunoreceptor with Ig and ITIM
domains). Some of these mAbs have been approved for treating
cancers, such as Ipilimumab (anti-CTLA-4 mAb), and others are
being investigated in clinical trials as reviewed elsewhere (84–86).
Similarly, upregulation of inhibitory signaling molecules, such
as PD-L1, have been observed on tumor cells post-radiation
(87–89). Thus, adding immune checkpoint blockade into the
combination therapy may resolve the negative effects of RT and
promote the efficacy of CAR-T cells, although the safety and
synergistic benefit remain to be evaluated in the clinic.

ATP released from irradiated tumor cells can be converted to
adenosine by the ectoenzymes CD39 and CD73, which is another
potential barrier for CAR-T cell function (90). Elevated
adenosine impedes the anti-tumor response of effector T cells
through their surface A2a adenosine receptors (A2aRs) (91–93).
Blocking adenosine signaling has been shown to elicit a more
potent T-cell response in combination therapy (94, 95). Besides
therapeutic inhibitors, this strategy can also be achieved by
directly modifying the CAR-T cells. The modification includes
depleting the A2aRs in CAR-T cells by CRISPR-Cas9 editing and
Frontiers in Immunology | www.frontiersin.org 5
engineering CAR-T cells to carry antagonist nanoparticles. Both
approaches showed increased efficacy with radiation in CD73/
CD39 induced adenosine-enriched tumors (96, 97), but not in
tumors with weak CD73/CD39 expression, such as melanoma
(98). Therefore, for radiation-induced adenosine-rich tumors,
inhibitors of the adenosine pathway or the engineering of CAR-T
cells to resist adenosine-induced suppression may prove
beneficial in the context of RT.

Radiation-induced enrichment of TGF-b in the TME is another
critical barrier to the effective partnership of RT and CAR-T cells
(26, 79). The wound healing process and DNA repair programs
post-radiation treatment trigger TGF-b signaling in the TME,
resulting in epithelial-mesenchymal transition, tissue fibrosis, and
the induction of a broad spectrumof immunosuppressive effects on
infiltrating immune cells including CAR-T cells (99, 100). To
overcome this barrier, CAR-T cells can be modified to become
resistant to TGF-b mediated immunosuppression. For example,
Kloss et al. engineered a dominant-negative TGF-b receptor
(dnTGF-bRII) capable of binding TGF-b without directly
triggering a T-cell inhibitory signaling event. This approach
proved effective in promoting superior anti-tumor efficacy
compared to the parental CAR-T cells in a metastatic prostate
cancermodel (101). TheTGF-b onCAR-T cells can also be blocked
by knocking out the endogenous TGF-b type II receptor (102).
However, given the homeostatic function of TGF-b signaling in
lymphoid tissues, constitutive TGF-b blockade may result in off-
target toxicity. Indeed, following treatment with dnTGFbRII-
PSMA-CAR-T cells, a subset of patients developed severe
cytokine release syndrome and immune effector cell-associated
neurotoxicity syndrome (ICANS) (103). Based on these findings,
efforts are ongoing to refine this approach. Developing a CAR
construct to selectively capture and neutralize TGF-b only within
the TME may indeed prove to be efficacious and safe.
CONCLUSION

Combination treatment of RT and CAR-T cells has significant
therapeutic potential. Although it is a promising option for patients
with immunosuppressive tumors, further considerations on dose/
fraction, treatment schedule, immune context, and tumor type
should be considered when designing the treatment, and more
mechanistic studies are still needed to understand how these
therapies will best work in combination. Our increased
understanding of the immunomodulatory effects of RT together
with the incredible advances being made in the CAR-T cell field,
especially with promising molecular engineering of novel CAR
constructs, will facilitate the successful implementation of this
combination strategy in the clinic.
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