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Antibody-secreting cells (ASC), plasmablasts and plasma cells, are terminally
differentiated B cells responsible for large-scale production and secretion of antibodies.
ASC are derived from activated B cells, which may differentiate extrafollicularly or form
germinal center (GC) reactions within secondary lymphoid organs. ASC therefore consist
of short-lived, poorly matured plasmablasts that generally secrete lower-affinity
antibodies, or long-lived, highly matured plasma cells that generally secrete higher-
affinity antibodies. The ASC population is responsible for producing an immediate
humoral B cell response, the polyclonal antibody repertoire, as well as in parallel
building effective humoral memory and immunity, or potentially driving pathology in the
case of autoimmunity. ASC are phenotypically and transcriptionally distinct from other B
cells and further distinguishable by morphology, varied lifespans, and anatomical
localization. Single cell analyses are required to interrogate the functional and
transcriptional diversity of ASC and their secreted antibody repertoire and understand
the contribution of individual ASC responses to the polyclonal humoral response. Here we
summarize the current and emerging functional and molecular techniques for high-
throughput characterization of ASC with single cell resolution, including flow and mass
cytometry, spot-based and microfluidic-based assays, focusing on functional approaches
of the secreted antibodies: specificity, affinity, and secretion rate.

Keywords: plasma cell (PC), high-throuput technique, antibody secreting cell, droplet microfluidics, antibodies,
B cells, functional bioassay
INTRODUCTION

Antibody-secreting cells (ASC) are B cells that have differentiated following activation to secrete
various soluble isotypes of their immunoglobulin receptor with the purpose of binding their target
antigen throughout the body (1). ASC are predominantly generated within the germinal center
reactions of secondary lymphoid organs (2), although extra-follicular responses may also generate
ASC (3, 4). Following antigen exposure, parallel downregulation of major regulatory genes of
activated B cells and upregulation of a unique ASC transcriptional program drives differentiation of
B cells into early-ASC or plasmablasts. Several mechanisms have been proposed to govern ASC fate
determination, but a unifying model has not yet been determined (1, 5). Plasmablasts are an
unstable ASC intermediate that require input from a survival niche to persist long term. The bone
marrow has been extensively studied as an ASC niche for its role in harboring ASC following
org January 2022 | Volume 12 | Article 8217291
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infection and immunization, however the majority of ASC are
located in the gut-associated lymphoid tissue and produce IgA
(6); the thymus has also recently emerged as an ASC niche (7, 8).
The factors involved in early-ASC homing to survival niches are
not completely understood. Plasmablasts may also be drawn
towards sites of inflammation, where they act locally and acutely
without persistence (9). Plasma cells are a long-lived ASC subset,
characterized by reinforced expression of genes within the ASC
differentiation network, responsible for secreting large quantities
of antibodies from within their survival niches.

ASC are often considered the “apex” of B cell differentiation
as they actualize antibody-mediated humoral immunity and are
terminally differentiated. ASC contribute to both the acute
humoral response to infection by rapidly generating early
antibodies at sites of infection as well as later secreting higher
affinity antibodies produced by germinal center reactions to aid
in pathogen clearance and protective immunity. While the ASC
response is advantageous during infection and when co-opted
for immunization, emergence of ASC secreting antibodies
towards self-antigens is a deleterious factor in many
autoimmune disorders (10). Despite their importance, much is
still unknown regarding ASC differentiation, selection, and
Frontiers in Immunology | www.frontiersin.org 2
heterogeneity, particularly in autoimmune disorders. High
throughput (HT) analyses of single cells are becoming more
accessible, affordable, and common in literature concerning
adaptive immune responses. This review will outline current
and emerging HT techniques to characterize single ASC
(Figure 1), with discussion of recent applications of these
techniques to study the role of ASC in various pathologies as
well as to expand understanding of fundamental ASC biology.
FUNCTIONAL ANALYSES

The primary effector functions of ASC are mediated by their
secreted antibodies, and thereby are characterized by a secreted
phenotype. Polyclonal antibody responses of ASC are routinely
assessed by sampling the serum or ASC-containing organs for
binding antibodies and their global potency (11). Such methods
provide an overview of the cumulative ASC response but are
unable to interrogate ASC diversity. Techniques with single cell
resolution are required to uncover the contributions of
individual clones to the polyclonal ASC pool, the prevalence of
specific groups of ASC, and the relationships between the factors
FIGURE 1 | Overview of common techniques for single ASC characterization. Antibody secreting cells (ASC) may be characterized functionally (red region) or
molecularly (green region). Functional methods include microfluidic approaches (top), including stationary and flowed droplet-based systems and microwell systems
(far right: Berkeley Lights Beacon setup), cytometry-based approaches, and spot-based assays. The red streak represents a laser beam; the yellow and dark red
bulb shapes indicate a positive microwell). Molecular methods (bottom) may assess the VH (red band) and VL (blue band) antibody-encoding mRNA transcripts or
non-antibody related mRNA transcripts (green bands). Molecular approaches commonly amplify VH chains only (e.g., VH-seq), VH and VL chains with the addition of
barcodes (grey bands) or linkage (e.g., BCR-seq), or all mRNA within the cell (e.g., scRNAseq).
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and markers that differentiate ASC. It should be noted that many
other soluble effectors besides antibodies are also known to be
secreted from ASC (12, 13), including various interleukins and
transforming growth factor-beta one (TGF-b1), and HT
functional assays may also be readily adapted to study the role
of these soluble factors.

The topic of techniques for measuring single-cell protein
secretion in immunology and their origins have been
previously described (14, 15). Three general strategies are
available for characterizing the secreted effectors of immune
cells, each with applicability to ASC: spot-based assays,
cytometry-based assays, and microfluidic-assays. These
approaches globally share the strategy of isolating ASC, either
by distance or compartmentalization, to ensure that “positive”
loci or compartments reflect secretions or markers of single cells.
Here we will focus on what these techniques offer to describe
ASC behavior and highlight notable demonstrations of their use.

Spot-Based Assays
Spot-based assays spatially distribute ASC by dilution and rely
on localized membrane capture of secreted antibody or cytokine
from ASC, followed by visualization with enzyme- or
fluorophore-linked secondary antibodies (16, 17), termed
enzyme-linked immunospot (ELISpot) and Fluorospot,
respectively. The number of “spots” formed is indicative of the
prevalence of ASC and/or antigen-specific ASC from a given
sample. The strength of spot-based assays are their ease of use,
robustness, and versatility between models (18, 19). Spot-based
assays also directly observe secretion and therefore robustly
identify ASC, in contrast to indirect-functional or molecular
techniques where the ASC definition is inferred. However,
ELISpot and Fluorospot are limited to the detection of only 1-
2 or 1-4 soluble analytes, respectively, cannot precisely quantify
secretion rates, and the ASC identified cannot be recovered for
further analysis. ELISpot has seen extensive use in characterizing
the ASC response during pathogenic infections (19, 20), in
autoimmune disorders (21–23), and following immunization
(24). Bonezi et al (25) recently used ELISpot to demonstrate
the contribution of altered tryptophan metabolism to the hyper-
abundance of ASC frequently seen during flavivirid infections,
Dengue virus being the most common example.

Cytometry-Based Assays
Flow cytometry and its derivative, fluorescence-activated cell
sorting (FACS), have become a staple in investigations of B cells
and ASC, allowing for relatively straightforward and rapid
evaluation of multiple samples or experimental conditions (26,
27). Multicolor flow cytometry allows for immense diversity and
depth of information gathered through the customization of
antibody panels to target surface and intracellular markers. In
contrast to ELISpot, flow cytometry can precisely identify the
proportions of different ASC, B cell, and lymphocyte populations
in each sample. Flow cytometry and ELISpot are frequently used
in concert to measure global changes in the proportion of ASC
and other B cells and the robustness and antigen-specificity of
the ASC response, respectively (28, 29).
Frontiers in Immunology | www.frontiersin.org 3
Human ASC are often defined in flow cytometry as larger
cells with CD27 and CD38high expression among CD3- CD20-

cells, and may be subdivided by expression of CD138, CD19,
CD45, CD81, HLA-DR, and immunoglobulin isotypes (30–33).
Plasma cells secreting human IgA or IgM, but not IgG, express
surface immunoglobulin and may be identified by direct surface
staining (34, 35). Local capture of IgG antibodies secreted by
ASC onto their surface has been proposed to identify human
IgG-secreting ASC by flow cytometry, using CD45 as a
membrane anchor onto which IgG antibodies are captured by
their constant region (Fc) (36), but has not yet been widely used.
Surface markers and soluble effectors, namely antibodies and
cytokines, not expressed at the cell membrane may be assessed
using cell permeabilization and fixation to allow labelling
reagents access within the cell; such intracellular staining
normally precludes downstream assessment of cells by other
functional or molecular methods. However, Price et al (37)
demonstrated the feasibility to molecularly characterize ASC
following intracellular staining for both antibody isotype as
well as antibody specificity using tetramer constructs of
antigens bound to fluorophore-conjugated streptavidin.
Alternatively, early IgG-expressing ASC (IgG-ASC) often
continue to bear their antibodies at the cell membrane, and
surface staining for antibody isotype and antigen-specificity with
tetramers offers a simpler method for isolating such IgG-ASC,
though represents a restricted view of the whole IgG-ASC
population (38, 39). Flow cytometry is also a valuable tool for
scouting potential novel markers of ASC subsets (40). The use of
intracellular tracing dyes further allows for assessment of ASC
proliferation, as Scharer et al (41) have applied to ASC
emergence from activated B cells.

Flow cytometry has identified ASC and ASC subsets in the
context of autoimmune disorders and their contributions to
acute and chronic disease states (42–45), and the ASC
response to natural infection, as recently shown by Woodruff
et al (46) in the context of COVID-19. The authors showed by
flow cytometry a predominance of extrafollicularly-activated
ASC in circulation, based on varied expression of CD11c,
CXCR5, and CD21, and demonstrate its effect on infection
morbidity. Noticeably, distinction between ASC derived from
germinal centers or extrafollicularly is not possible with most
other functional assays and is often overlooked. Application of
FACS to in vitro models of ASC differentiation (47) and survival
(48, 49) also highlights the ability of flow cytometry to
distinguish ASC subpopulations. FACS isolation of populations
of interest may be followed by a spot-based assay to query the
subsequent prevalence of ASC within those populations (50–52).

It should be noted that current cytometric-gating strategies
for ASC populations have not been demonstrated to completely
define all ASC without exclusion of rarer phenotypes. Strategies
often vary considerably, utilize a unique marker that may not be
ASC-identifying in all contexts, or rely on intracellular staining
of transcription factors (31, 53). ASC are distinct in their
transcriptional regulation compared to other B cells, and the
transcription factors IRF4, BLIMP-1, and XBP1 are ideal for
complete identification of ASC (1, 53). Indeed, BLIMP1-YFP
January 2022 | Volume 12 | Article 821729
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mice have been invaluable to studying ASC differentiation,
behavior, and transcriptional regulation (54, 55). IRF4-based
labelling has similarly been used to identify differentiating
human plasma cells following influenza vaccination (56).

Mass cytometry is based on a similar principle as flow
cytometry, using heavy metal ions instead of fluorophores to
distinguish the antibodies in the cytometry panel. Glass et al
(57) utilized multiple mass cytometry panels to characterize over
350 B cell surface markers, combined with analyses of isotype
usage, BCR sequence, metabolic profile, biosynthesis activity, and
signaling response, which together constitute an expansive single-
cell atlas of human B cells. An additional mass cytometry panel
targeting enzymes associated with different metabolic pathways
(58) found plasma cells to be highly metabolically active, and
further subdivisible based on transcriptional activity; such
metabolic distinctions have largely been restricted to molecular
studies or classical metabolomics (49, 59). Although mass
cytometry can simultaneously detect ~40 parameters per panel,
the vaporization of analyzed cells prevents further study of the
precise subsets identified, which remains the advantage of FACS.

Microfluidics
Microfluidic single cell assays essentially miniaturize existing
techniques to assess ASC secretions, to increase the scale and
throughput of analyses and enable single cell resolution via
compartmentalization into either wells or droplets (14, 15).
Miniaturization also allows for greatly reduced reagent usage
and less cells are needed per experiment. The functional
measurements within microfluidic ASC assays largely share the
concept of capturing secreted antibody or cytokine onto a
physical surface followed by visualization with fluorescent
detection reagents. The advantages of microfluidic-based
functional analyses of ASC include their direct identification of
ASC via antibody secretion, a high throughput, and the ability to
absolutely quantify ASC secretions over time.

Micro- and nano-well microfluidic approaches use
microfabrication techniques to create thousands of wells into
which individual ASC can be introduced (60–62). The nature of
the wells and coating and reagent strategy used can be readily
customized to assay different antibodies, antigens, or secretions.
The small volumes of these wells allow for absolute quantification
of secreted molecules, in contrast to ELISpot where only relative
measurements can be made (14). Well-based microfluidic assays
also have lower detection thresholds than ELISpot, making them
more sensitive and more capable of wholly representing ASC (63).
Importantly, as ASC are identified and sustained within the static
well array, cells can be recovered following the assay for additional
functional or molecular assessment. The Berkeley Lights
“nanopen” platform introduces considerable advancement to
well-based ASC assays using optofluidics, offering integrated
workflows for antibody screening of ASC followed by targeted
recovery of specific cells for molecular analysis (64). This rapid
pipeline for functional antibody assessment was recently used to
characterize antibody repertoires following SARS-COV2 infection
(65). Despite their advantages over ELISpot, well-based
microfluidic assays have seen limited application beyond
Frontiers in Immunology | www.frontiersin.org 4
technical demonstrations and antibody discovery (66–68),
mainly due to their cost and limited throughput.

Droplet microfluidics achieves single cell compartmentalization
using two immiscible fluids, an aqueous phase containing the cell
and assay reagents and an oil phase that separates the aqueous
phase into droplets with single cells (14). Large numbers of
droplets can be quickly produced for each new sample and the
assay composition can be easily changed. Secretion by
encapsulated ASC is assessed by beads or other cells within the
droplet that act as capture surfaces for secreted cytokine or
antibody, to which fluorescent reagents in the droplet can
localize for measurement. Flow-based or flowed droplet assays
can characterize ASC with high throughput by passing droplets at
high frequency through a laser for rapid detection of fluorescence
relocalization within droplets (69–71). Droplet measurement may
also be paired with dielectrophoretic sorting, which pushes or pulls
droplets into separate channels by manipulating electric fields,
allowing for further assessment of directly identified ASC or
antigen-specific ASC (69, 72). We reported in Gerard et al (69)
the CelliGo assay using a double fluorescent sandwich ELISA in
microfluidic droplets for the identification, sorting, and VH-VL

sequencing of antigen-specific IgG antibodies produced by ASC
from immunizedmice. In this study, we demonstrated screening of
a bacterial antigen (tetanus toxoid), an autoantigen linked to
Rheumatoid Arthritis (Glucose-6-phosphate Isomerase), and an
insoluble, membrane-expressed antigen (tetraspanin-8; TSPAN8);
antigen-specific ASC against all 3 model antigens were able to be
sorted by this flowed droplet microfluidic technique.

An alternative approach to study ASC in droplets is to collect
droplets in a horizontal plane and measure changes in droplet
fluorescence over multiple timepoints, termed a stationary
droplet-assay (14) or DropMap (73, 74). DropMap measures
fluorescence relocation to a central line of antibody-capturing
beads aligned using a magnetic field within each droplet. Both
secreted antibody relocation and soluble antigen relocation to the
beadline are measured. The ability to measure relocation over
time within DropMap allows for the determination of both
antibody affinity and secretion rate, in addition to determining
the proportion of antigen-specific and total ASC within a sample
as with other microfluidic techniques. DropMap has been
applied to investigate the physiology of ASC in viral infection
(75), autoimmunity (74), and fundamental ASC biology (73, 76).
In our view, DropMap offers a major advancement in current
capabilities to functionally characterize ASC, particularly for
defining the specificity and affinity repertoire of ASC. An
example alternative strategy to DropMap for affinity repertoire
mapping is to sort large numbers of B cells or ASC for their BCR
sequences, followed by gene synthesis or direct cloning, re-
expression, and kinetic analysis of these antibodies by a
technique such as bio-layer interferometry (BLI) (77–79)
(Figure 2); this approach is significantly more complex, costly,
and time consuming than DropMap. Recently however, we
reported antigen-specific single cell memory B cell in vitro
differentiation into ASC that allowed for fast and large scale
(~400) affinity measurements by BLI from culture supernatants
without costly antibody re-expression (80). Initial sorting for
January 2022 | Volume 12 | Article 821729
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ASC may also bias the antibody repertoire through restrictive
FACS gating strategies unless a direct functional assay is used
prior to directly select for ASC, whereas DropMap offers an
unbiased screen of PBMCs or an enriched B cell pool for ASC.
Another novel approach involving BCR sequencing paired with
liquid chromatography–tandem mass spectrometry proteomics
(81, 82) allows for unbiased molecular assessment of antibodies
from the serum, but requires infrastructure and specialist
supervision, and is currently largely restricted to the most
represented antibodies in the serum.

The major limitation to widespread adoption of functional,
droplet-based assays of ASC is their bespoke nature. Although
droplet microfluidics is a growing field, with most reagents
commercially available, labs must produce their own
consumables for droplet production and the apparatus for assay
observation, which require specialized equipment and expertise.
MOLECULAR ANALYSES

The molecular basis for the behavior of ASC is equally important
to understanding ASC physiology. The molecular aspects of ASC
most investigated are (i) the heavy and light chain variable
reg ions (VH and VL) sequences , formed by gene
rearrangements and sequence diversification mechanisms (83),
encoding the antigen binding domains of antibodies and (ii) the
transcriptional profile of ASCs; these aspects may be probed
using bulk VH-seq or RNAseq, BCR-seq, and increasingly now
single-cell RNAseq (scRNAseq) following either single-cell ASC
Frontiers in Immunology | www.frontiersin.org 5
FACS into 96 or 384 well plates, or microfluidic droplet-based
barcoded scRNAseq (e.g. , 10xGenomics Chromium).
Importantly, BCR sequences can be computationally inferred
from scRNA-seq data using open-source libraries (e.g. BraCeR
(84), VDJPuzzle (85)), linking antibody sequence (i.e., genotype,
clonal information) to transcriptome phenotype. Recent
advances on ASC characterization using RNAseq, ATAC-seq
and ChIP-seq have been reviewed elsewhere (86), as well as
molecular mechanisms leading to plasma cell differentiation
from the germinal center reaction (87). Glaros et al (38)
highlight the capacity for scRNAseq to identify B cell subsets
and observe shifts in differentiation, identifying antigen
availability as a key regulator of the plasmablast response.

A common strategy for molecular ASC clonal identification is
bulk sequencing of VH regions (37), which allows for large
numbers of cells to be assayed without the cost and limitations
imposed by a need for single cell approaches. However, the VL

sequence information is lost, and it is not possible to re-express
the original antibody recombinantly. Alternatively, Price et al
(37) recently used bulk RNAseq to identify unique
transcriptional profiles for IgG, IgM, and IgA ASC subsets,
with the ability to assess both clonality and gene expression.
Such approaches offer insight into the clonal diversity of ASC
responses but have less resolution than paired VH-VL chain
sequencing and have no possibility for functional assessment of
clones within the antibody repertoire. When the full VH-VL

sequence is required, single-cell approaches are required, and
currently available techniques for HT BCRseq have been
reviewed by Curtis and Lee (88), who highlight advances in VH
FIGURE 2 | Comparison of DropMap vs a classical pipeline to define affinity repertoires. The affinity repertoire of ASC towards a given antigen is an important metric
for the quality of the ASC response. ASC are commonly isolated from the spleen, bone marrow, or blood of donor/patients or experimental animals. The DropMap
assay (top) offers a platform that within 1 hour can return the affinity repertoire in a single assay, as well as the IgG secretion rate and frequency of ASC according to
direct ex vivo measurement (refer to main text for details); this approach is limited by requiring ASC to secrete antibodies at the time of data acquisition, data can
only be acquired once, and afterwards cells of interest are lost. An alternative strategy (bottom) to yield a similar affinity repertoire first requires cell isolation by FACS,
followed by VH and VL targeted RT-PCR (& BCR-seq if required) and cloning into an expression vector, transfection of the vector into an expression system and cell
culture, purification and finally assessment of the recombinant expressed antibody by BLI or SPR; this pipeline requires 1½ -2 weeks to complete, is significantly
more complex and costly, and can only assess VH-VL pairs that could be successfully amplified, cloned and expressed as recombinant antibodies.
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and VL chain pairing by barcoding (69) or linkage as well as
increased cell-throughput through the use microfluidics.
Moreover, techniques such as LIBRA-seq (89) or CelliGo (69)
allow for assessment of antigen specificity or antigen specificity
coupled to antibody secretion, respectively, integrated within
their BCRseq pipelines. Wang et al (90) used microfluidics to
compartmentalize human plasmablasts as single cells and
generate paired VH-VL repertoires for direct Fab display on
yeast and functional assessment. Notably, Jiang et al (91)
utilized a combination of bulk VH-seq, BCRseq, and full
scRNAseq to identify autoreactive ASC persisting after
treatment with rituximab. Such an approach leverages the
complexity and throughput of each technique with the depth
of information required to address the authors’ underlying
question, saving considerable time, and lowering costs overall.
Using the 10x genomics technology, integrating emulsion-based
single cell separation with barcoded RNAseq (Chromium),
plasmablast-derived mAbs from individuals who received
SARS-CoV-2 spike mRNA vaccine were characterized for
antigen specificity, epitope mapping and neutralization
potential (92).

A final molecular approach worth mentioning is the use of
mass spectrometry to assess the relative abundance of specific
antibodies in serum or a tissue sample, known as Ab-seq (93).
Pairing Ab-seq with any of the RNA-seq approaches above allows
for inferences to be made regarding the contribution of specific
ASC clones to the polyclonal ASC response, providing invaluable
insight into the immunological relevance of ASC clonal diversity.
Lee et al (94) utilized Ab-seq to identify potently neutralizing
antibodies and ASC clones persisting across multiple exposures to
influenza. Ab-seq has also been applied in similar studies for
antibodies against norovirus (95) and HIV-1 (96).
DISCUSSION

Multiplexing Is the Future for High
Throughput Single ASC Analyses
The availability of high throughput methods for the study of ASC
at the single cell level has progressed immensely for both
functional and molecular characterization. Considerable
progress has been made in understanding ASC development
and differentiation, but with limited information regarding the
relationships between population surface marker expression,
transcriptional and metabolic activity, and the functional
“quality” of the ASC (affinity, specificity, secretion rate).

The presence of immunoglobulins within all plasmablasts or
plasma cells does not exclude the possibility for significant
stratification of secretion rates from high to nearly
Frontiers in Immunology | www.frontiersin.org 6
undetectable. As we showed in Eyer et al. (73), antibody
secretion by a seemingly homogenous population of ASC may
vary by several orders of magnitude. The causes of such secretory
diversity remain poorly understood. Current techniques for
direct measurement of single cell immunoglobulin secretion
(spot- and microfluidic-based assays) are currently unable to
distinguish precise B cell populations alone. ASC identified and
isolated from direct functional assays have not been assessed
afterwards with higher parameter techniques such as flow and
mass cytometry or scRNAseq, to interrogate the source of this
secretory diversity.

Ultimately, investigations of ASC physiology should strive to
employ a combination of the techniques discussed. In the context
of antibodies, with only a repertoire of VH-VL sequences the
contribution and quality of a given antibody to the humoral
immune response is difficult to appreciate. Likewise, knowing the
affinity or neutralization repertoire of antibodies from ASC
without knowing their clonality and molecular basis limits
insight into ASC population dynamics and distribution.

Evolution of the existing and emerging methods for HT ASC
phenotypic characterization to readily integrate with the various
single cell molecular techniques should be an immediate goal to
overcome current limitations. HT single cell molecular (scRNA-
seq) techniques are becoming more accessible and affordable,
with great efforts to increase the fidelity and ease of analysis. HT
single cell assays will be central to unravelling how ASC
phenotypic markers relate to their developmental stage,
antibody affinity, and antibody or cytokine secretion rate, and
to what degree these elements are interrelated.
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