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The advent of high-throughput sequencing has facilitated genotype-phenotype
correlations in congenital diseases. This has provided molecular diagnosis and
benefited patient management but has also revealed substantial phenotypic
heterogeneity. Although distinct neuroinflammatory diseases are scarce among the
several thousands of established congenital diseases, elements of neuroinflammation
are increasingly recognized in a substantial proportion of inborn errors of immunity, where
it may even dominate the clinical picture at initial presentation. Although each disease
entity is rare, they collectively can constitute a significant proportion of neuropediatric
patients in tertiary care and may occasionally also explain adult neurology patients. We
focus this review on the signs and symptoms of neuroinflammation that have been
reported in association with established pathogenic variants in immune genes and
suggest the following subdivision based on proposed underlying mechanisms:
autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The
large group of autoinflammatory disorders is further subdivided into IL-1b-mediated
disorders, NF-kB dysregulation, type I interferonopathies, and hemophagocytic
syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in
monogenic diseases and describe the breadth of the clinical spectrum to support
decisions to screen for a genetic diagnosis and encourage further research on a
neglected phenomenon.

Keywords: interferonopathies, primary immunodeficiencies, neuroinflammation, familial hemophagocytic
lymphohistiocytosis (FHL), Mendelian genetic diseases, interleukin-1, type I interferon, autoinflammatory disorders
INTRODUCTION

Amonogenicdiseasemay be suspectedwhenonset is unusually early, there are similarmanifestations in
other family members, or there is consanguinity (1). With affordable high-throughput sequencing it is
now feasible to pursue a genetic diagnosis in individual patients, which adds information on disease
prognosis, potential treatments, and may also facilitate prenatal diagnostics.

The most well-recognized disease with a primary neuroinflammatory etiology is multiple sclerosis
(MS). The pathogenesis is generally assumed to be autoimmune but the antigen specificity of the
org January 2022 | Volume 12 | Article 8278151
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autoreactive lymphocytes thatdrive thedisease remainundefined (2).
Neuroinflammatorydiseases forwhichanautoimmunepathogenesis
ismore substantiated include neuromyelitis optica (NMO) spectrum
disorder and autoimmune encephalitis. Conversely, other forms of
neuroinflammation appear less likely to be driven by autoreactive
lymphocytes but rather dysregulated innate immune cells, such as
those observed in Bechet’s disease, an idiopathic systemic vasculitis
syndrome (3). Moreover, neuroinflammation can cause collateral
damage incentralnervous system(CNS) infection,neurodegeneration,
ischemia, and trauma.

In clinical practice, it is not uncommon that a patient presents with
apparent neuroinflammation, e.g. with subacute onset of CNS
symptoms associated with abnormalities on magnetic resonance
imaging (MRI) and cerebrospinal fluid (CSF) analysis (Figure 1),
butwithoutdistinct features that justifyadefinitediagnosis.Thepatient
will then typically bemanagedunder a presumptive diagnosis until the
clinical picture develops further, which often entails accumulation of
neurological deficits. A prompt molecular diagnosis can thus benefit
treatment. Early clinical presentation and a history consistent with a
hereditary disease may suggest a genetic etiology, warranting genetic
investigations. Furthermore, the increasing affordability implies that
genome sequencing may soon constitute part of the routine first-line
diagnostic work-up of severe neuroinflammation. Recently,McCreary
and colleagues published an extensive panel of neuroinflammation-
associated genes and demonstrated that it could provide a molecular
diagnosis in 20% of unresolved pediatric patients with suspected
genetic neuroinflammation (4). Herein, we review the literature on
neuroinflammatory manifestations associated with monogenic
immune-mediated diseases and discuss the different underlying
immunological mechanisms. Our compilation can concretize what
may constitute amonogenic neuroinflammatory clinical presentation.
AUTOINFLAMMATORY DISORDERS

Autoinflammatory disorders are clinical disorders of the innate
immune system characterized by chronic or periodic
Frontiers in Immunology | www.frontiersin.org 2
inflammation without engagement of adaptive lymphocytes, i.e.
autoreactive antibodies or T cells. The most recognized
monogenic autoinflammatory syndromes are familial
Mediterranean fever (FMF), cryopyrin-associated periodic
syndrome (CAPS), hyperimmunoglobulinemia D syndrome
(HIDS), and tumor necrosis factor receptor-associated periodic
syndrome (TRAPS). IL-1b-driven or -biased inflammation is a
common feature of these four syndromes. In disorders caused by
NF-kB dysregulation the uncontrolled production of cytokines
involves IL-1b as well as several other proinflammatory
cytokines. By comparison, interferonopathies represent a
distinct category of rare diseases characterized by increased
type I IFN signaling and loss of negative regulation. And lastly,
although caused by impaired lymphocyte effector functions, the
most prominent feature of hemophagocytic syndromes is
hyperinflammation with uncontrolled innate immune
activation and they are therefore included under this heading
in this review.

IL-1b-Mediated Autoinflammatory
Disorders
Familial Mediterranean Fever
Familial Mediterranean fever (FMF; MIM: 249100) is classically
regarded as an autosomal recessive disease caused by variants in
MEFV, but one mutant allele is sufficient to cause subclinical
systemic inflammation (5) (Table 1). Furthermore, autosomal
dominant FMF has also been described (MIM: 134610) (55) and
likely involves a distinct subset of MEFV variants (56). MEFV
encodes pyrin, an intracellular pattern recognition receptor that is
expressed mainly by neutrophils and monocytes/macrophages.
Upon its activation, an inflammasome complex forms, leading to
proteolytic maturation of IL-1b as well as IL-18 and their
subsequent extracellular release through a form of programmed
cell death called pyroptosis (57). MEFV variants that cause FMF
represent pyrin gain-of-function variants that lower the activation
threshold of inflammasome formation. Clinically, FMF is
characterized by periodic fever, serositis, arthralgia, and rash.
A feared complication is renal failure due to amyloidosis.
FIGURE 1 | Clinical hallmarks of neuroinflammation. The patient may have a subacute onset of neurological symptoms that may resolve spontaneously or respond
to immunomodulatory drugs. Using magnetic resonance imaging (MRI), acute lesions with blood brain barrier disruption can be visualized as contrast enhancing T1
lesions. Various pathologies can appear as T2 lesions, such as demyelination, axonal damage, and edema. Analysis of cerebrospinal fluid allows quantitative and
qualitative assessment of intrathecal inflammation as well as demonstration of blood brain barrier disruption.
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TABLE 1 | Summary of neuroinflammatory manifestations associated with inborn errors of immunity.

Disease Gene Mutation
type

Mode of
inheritance

Immunopathology Typical presentation Reported neurological
manifestations (estimated

frequency)

Familial Mediterranean fever
(FMF)

MEFV Likely GoF AR/AD Lowered threshold of pyrin
inflammasome activation
leads to excessive IL-1b
release.

Episodic (1-3 days) fever,
serositis, arthralgia, and
rash. Onset in childhood
typically.

Headache [>10% (6)], seizures [4%
(7)], Aseptic meningitis [<1/1000 (8)]
as well as sporadic reports of
demyelination (9), CNS vasculitis (10,
11), and optic neuritis (12).

Hyper-IgD syndrome (HIDS) MVK LoF AR Mevalonate kinase
deficiency leads to
deficiency of cholesterol
derivatives, which results in
inflammasome activation
and excessive IL-1b
release.

Episodic (3-7 days) fever,
enlarged secondary
lymphoid organs, and
rash. Onset in childhood
typically.

Headache [10-40% (13, 14)] and
seizures. Sporadic reports of aseptic
meningitis (13), cerebellar syndrome
(13), and transverse myelitis (14).

Cryopyrin-associated periodic
syndrome (CAPS)

NLRP3 GoF/LoF AD Lowered threshold of
NLRP3 inflammasome
activation leads to
excessive IL-1b release.

Episodic fever, myalgia,
and urticarial rash. Wide
spectrum of severity and
age of onset depending
on type the genetic
variant.

Headache [30-80% (15, 16)],
sensorineural hearing loss [40-70%
(15, 16)], papilledema [30% (15, 16)],
and aseptic meningitis [5% (15)].
Sporadic reports of white matter
lesions (15).

NLRP12-linked
autoinflammatory disease
(NLRP12-AID)

NLRP12 GoF/LoF AD Lowered threshold of
NLRP12 inflammasome
activation leads to excess
IL-1b.

Familial cold
autoinflammatory
syndrome – cold induced
episodes (1-3 days) of
urticarial rash, fever, and
arthralgia.

Transient sensorineural hearing loss
(10%) (17) and sporadic reports of
optic neuritis (18).

Tumor necrosis factor
receptor-associated periodic
syndrome (TRAPS)

TNFRSF1A GoF AD Impaired signaling via the
TNF-receptor results in
enhanced secretion of IL-1,
IL-6, and TNF.

Episodes (5-21 days) of
fever, abdominal pain, and
rash.

Headache (23%), seizures (1%), and
vertigo (1%) (19). Sporadic reports
of diplopia (17), cerebrovascular
lesions (17), paresthesia (20), CSF
pleocytosis (20), white matter lesions
(20),and Tolosa-Hunt syndrome (21).

A20 haploinsufficiency TNFAIP3 LoF AD Loss-of-function variants in
A20, an inhibitor of the NF-
kB signaling pathway, leads
to excessive expression of
pro-inflammatory cytokines.

Mucosal and cutaneous
lesions, gastrointestinal
symptoms, and episodic
fever. Onset typically in
early childhood and
occasionally later, up to
early adulthood.

Sporadically reported
neuropsychiatric SLE with
headache, seizures, cognitive
impairment, ptosis, difficulty with
upward gaze (22), CNS vasculitis
(23), and aseptic meningitis (24).

Aicardi-Goutières syndrome
(AGS) 1

TREX1 LoF AR/AD Defective processing of and
sensing of nucleic acids
results in immune activation
and excessive type I
interferon production.

Early onset
encephalopathy
associated with
intracranial calcifications,
leukoencephalopathy,
cerebral atrophy, CSF
pleocytosis, and
cutaneous manifestations.

Apart from the typical presentation,
sporadically reported encephalitis
(25) and bilateral striatal necrosis
(26).

AGS2 RNASEH2B LoF AR
AGS3 RNASEH2C LoF AR
AGS4 RNASEH2A LoF AR
AGS5 SAMHD1 LoF AR
AGS6 ADAR LoF AR
AGS7 IFIH1 GoF AD
AGS8 LSM11 LoF AR
AGS9 RNU7-1 LoF AR
Pseudo-TORCH syndrome 2 USP18 LoF AR An exaggerated response

to normal levels of type I
interferon leads to immune
activation.

Microcephaly,
hydrocephalus, cerebral
calcification, systemic
sterile inflammation at
birth resembling a
congenital infection, and
cerebral hemorrhage.

Included in typical presentation
Pseudo-TORCH syndrome 3 STAT2 GoF AR

Retinovasculopathy and
cerebralleukodystrophy with
systemic features (RVCLS)

TREX1 GoF AD TREX1 variants with
retained exonuclease
activity but altered cellular
localization lead to retinal
and small vessel cerebral
vasculopathy.

Early onset
cerebrovascular disease,
visual impairment, and
occasionally involvement
of other organs.

White matter lesions (92%), cerebral
calcifications (52%), focal neurologic
defects (56%), migraine (53%),
cognitive impairment (47%),
psychiatric disturbances (39%), and
seizures (14%) (27).

(Continued)
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TABLE 1 | Continued

Disease Gene Mutation
type

Mode of
inheritance

Immunopathology Typical presentation Reported neurological
manifestations (estimated

frequency)

ISG15 deficiency ISG15 LoF AR ISG15 deficiency leads to
increased type I interferon
and decreased type II
interferon signaling.

Moderately severe
interferonopathy with
cerebral calcifications and
increased susceptibility to
mycobacterial infections.

Cerebral calcifications (nearly 100%)
and sporadic reports of seizures
(28).

DNase II deficiency DNASE2 LoF AR Loss of DNase
endonuclease activity leads
to aberrant sensing of self-
DNA and elevated type I
interferon induction.

Neonatal anemia,
glomerulonephritis, liver
fibrosis, deforming
arthropathy, and
increased anti-DNA
antibodies.

Sporadic reports of headache,
cerebral calcifications, white matter
lesions, and learning difficulties (29).

Spondyloenchondrodysplasia
(SPENCD)

ACP5 LoF AR Deficiency of ACP5, which
may be a negative regulator
of type I IFN, results in
excessive type I interferon
signaling.

Bone lesions and short
stature, neurological
manifestations, immune
manifestations such as
autoimmune
thrombocytopenia, SLE,
and vasculitis.

Cerebral calcifications (62%), spastic
paresis (44%), and developmental
delay (28%). Occasionally ataxia,
seizures, psychosis, and neuropathy
(30).

Chronic atypical neutrophilic
dermatosis with lipodystrophy
and elevated temperature
(CANDLE).

PSMB8 LoF AR Plausibly
immunoproteosome
dysfunction leading to
accumulation of damaged
proteins resulting in cellular
stress and type I interferon
induction.

Onset during first year of
life of recurrent fever,
rashes, arthralgia, and
progressive lipodystrophy.

Sporadic reports of cerebral
calcifications and aseptic meningitis
(31).

Familial HLH 2 PRF1 LoF AR Defects in genes involved in
lymphocyte cytotoxicity lead
to aberrant activation of
macrophages and T cells
resulting in excessive
cytokine secretion.

High fever and life-
threatening sepsis-like
disease, often preceded
by an immunological
trigger event.

Pathological brain MRI or signs of
inflammation in CSF (33-91%) (32).
Occasionally ataxia, seizures,
headache, motor impairment, and
visual abnormalities (33).

Familial HLH 3 UNC13D LoF AR
Familial HLH 4 STX11 LoF AR
Familial HLH 5 STXBP2 LoF AR

Griscelli syndrome, type 2 RAB27A LoF AR Deficiency impairs cytotoxic
lymphocyte granule docking
and exocytosis.

Hypopigmentation,
susceptibility to bacterial
infections, and cytopenias.
Predisposition for HLH.

Secondary to HLH: Sporadic reports
of seizures (34, 35), cerebellar
symptoms (36), elevated protein and
cells in CSF, white matter lesions,
motor impairment (37),
encephalopathy (38, 39), and
seizures (40).

X-linked lymphoproliferative
syndrome (XLP) type 1

SH2D1A LoF XLR SAP deficiency inhibits
signaling for lymphocyte
interactions, specifically
impairing control of EBV
infected B cells by CD8+ T
cells and NK cells.

Hypogammaglobulinemia,
B cell lymphoma, and
HLH. Onset is almost
always triggered by an
EBV-infection.

Sporadic reports of CNS vasculitis
manifested as memory deficit, motor
impairment, headache, seizures,
lesions on MRI, and pathological
CSF (41–45).

Immunodysregulation
polyendocrinopathy
enteropathy X-linked (IPEX)

FOXP3 LoF XLR Tolerance defect caused by
impaired development of
Treg cells.

Onset in infancy of
enteropathy, dermatitis,
and autoimmunity such as
insulin-dependent
diabetes mellitus,
hypoparathyroidism, and
autoimmune cytopenias.

Seizures (14%), ventriculomegaly
(14%), and developmental delay
(3%) (46).

Autoimmune
lymphoproliferative syndrome
(ALPS) type IA

FAS LoF AD Defective apoptosis of
thymic lymphocytes
resulting in non-malignant
lymphoproliferation and
autoimmunity.

Lymphadenopathy,
splenomegaly, and
autoimmune cytopenias.
Onset typically during
childhood but occasionally
later.

Sporadic reports of cerebellar
lesions, spinal degeneration,
neuromyelitis optica, and Guillain-
Barré syndrome (47–50).ALPS type IB FASLG LoF AD

ALPS type II CASP10 LoF AD

C1q-deficiency C1QA,
C1QB,
C1QC

LoF AR Deficiency in C1q leads to
defective clearance of
apoptotic cells and immune
complexes resulting in

skin lesions, chronic
infections, increased
susceptibility to bacterial
meningitis, and

Neuropsychiatric lupus (50%) and
seizures (12%) (51). Sporadic
reports of cerebral vasculitis with
motor impairment, encephalopathy,

(Continued)
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Apart from headache (10%) and seizures (4%), other neurological
manifestations of FMF are very rare (8). Recurrent aseptic
meningitis in FMF is occasionally reported (58–61), as well as a
wide range of other neuroinflammatory manifestations, however
the causal relationship with FMF is uncertain (8). Moreover,
elevated protein in CSF as a sign of meningeal irritation may
occur without clinical evidence of meningitis (6). Whereas MEFV
variants that are associated with FMF are gain-of-function
variants, a subset of rare MEFV variants that result in defective
binding to an inhibitory 14-3-3 protein cause a distinct autosomal
dominant disease termed pyrin-associated autoinflammation with
neutrophilic dermatosis (PAAND), for which neurological
involvement has not been reported (62, 63). Collectively,
awareness that the episodic inflammation in FMF may also
engage the CNS is important.
Mevalonate Kinase Deficiency
Mevalonate kinase deficiency (MKD) consists of the autosomal
recessive syndromes mevalonic aciduria (MVA; MIM: 610377)
and hyperimmunoglobulinemia D syndrome (HIDS; MIM:
260920). Both are caused by loss-of-function variants in MVK,
which encodes the cholesterol biosynthesis enzyme mevalonate
kinase. MVA and HIDS represent opposite ends of a clinical
spectrum associated with absent to subnormal enzyme activity,
respectively (64). The exact pathogenesis is elusive but involves
build-up of mevalonate and loss of pyrin inhibition resulting in
inflammasome activation and excess IL-1b production (65). The
mevalonate pathway produces the substrate for a form of post-
Frontiers in Immunology | www.frontiersin.org 5
translational modification, prenylation, which is involved in the
regulation of TLR-induced phosphoinositide 3-kinase (PI3K)
activation (66). Furthermore, impaired prenylation of RhoA, a
small GTPase, inactivates RhoA, decreases pyrin phosphorylation
and subsequent 14-3-3-mediated negative regulation of pyrin
activity (67). Loss of prenylation in MKD thus contributes to
pyrin activation and the hyperinflammatory phenotype. MVA is
associated with severe developmental delay, ataxia, epilepsy, and
shortened lifespan (65). HIDS is an autoinflammatory periodic
fever syndrome associated with persistently elevated IgD and
increased mevalonic acid in the urine during attacks (13).
Common clinical manifestations of HIDS include rash,
hepatosplenomegaly, and lymphadenopathy. The most common
neurological manifestation is headache (10-40%), which may be
present independent of the fever episodes (65). Sporadic reports of
seizures, transverse myelitis, cerebellar syndrome, and aseptic
meningitis exist (13, 14). Although the exact pathogenesis of
FMF and HIDS are not completely understood, similarities in
the affected pathways are consistent with a similar pattern of CNS
engagement that mainly involves headache and only rarely
overt neuroinflammation.
Cryopyrin-Associated Periodic Syndrome
Cryopyrin-associated periodic syndrome (CAPS) can be
regarded as a continuum of three phenotypes that were
described before the common disease-causing gene was
identified – from the milder familial cold autoinflammatory
syndrome (FCAS, MIM: 120100), via Muckle-Wells syndrome
TABLE 1 | Continued

Disease Gene Mutation
type

Mode of
inheritance

Immunopathology Typical presentation Reported neurological
manifestations (estimated

frequency)

immune activation and
autoimmunity.

autoimmune diseases
(particularly SLE).

tremor, infarcts, transverse myelitis
(51), cerebral calcifications (52), and
pathological CSF (53).

Mendelian predisposition to
herpes simplex encephalitis

TLR3,
UNC93B1,
TRIF,
TRAF3,
TBK1,
IRF3,
NEMO,
IFNAR1,
STAT1

LoF AR, AD,
XLR

Impaired recognition of
double-stranded viral DNA
by TLR3 or impaired type I
interferon receptor
signaling.

Susceptibility to herpes
simplex virus 1
encephalitis. IFNAR1 and
STAT1 defects also result
in susceptibility to
mycobacterial infections.

Included in typical presentation

GATA2-deficiency GATA2 LoF AD Defective stem/progenitor
cell renewal and
differentiation, leading to
monocyte, B cell, and NK
cell deficiency.

Cytopenias, susceptibility
to infections, and MDS/
AML.

Sporadic reports of intellectual
disability, transient ischemic cerebral
palsy, and progressive multifocal
leukoencephalopathy (PML) (54).

RANBP2-deficiency RANBP2 LoF AD Acute necrotizing
encephalopathy (ANE) may
occur in otherwise healthy
children after common viral
infections. The mechanistic
link between RANBP2 and
ANE is not known.

Multifocal symmetric brain
lesions, focal neurologic
symptoms, and seizures.

Included in typical presentation.
January
GoF, gain of function; LoF, loss of function; AR, autosomal recessive; AD, autosomal dominant; XLR, X-linked recessive.
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(MWS, MIM: 191900), to the most severe form chronic infantile
neurological cutaneous and articular syndrome (CINCA, MIM:
607115). All three are caused by autosomal dominant variants in
NLRP3 (68–70). Analogous to MEFV, NLRP3 encodes an
intracellular pattern recognition receptor, cryopyrin, and the
CAPS-associated gain-of-function variants lower the threshold
of inflammasome activation leading to excessive IL-1b
production and release. Additionally, NLRP3 acts as a negative
regulator of NF-kB signaling and loss-of-function NLRP3
variants are also reported as the cause of autoinflammation
(71). Clinically, CAPS is characterized by periodic fever,
urticarial rash, conjunctivitis, and arthralgia. Neurological
symptoms are common and most frequently consist of
headache (30-80%), sensorineural hearing loss (40-70%), and
papilledema (30%) (15, 72, 73). Less common neurological
manifestations include aseptic meningitis (5%) and
hydrocephalus, seizures, chorea, white matter lesions, and CSF
pleocytosis have sporadically been reported (16, 74–76). A case
has been described that mimicked Tolosa-Hunt syndrome with
steroid-responsive periorbital pain, diplopia, and granulomatous
inflammation (77). Neuroradiological manifestations are not
well characterized, but a case report in which serial imaging
was performed showed enhancement in leptomeninges, cochlea,
and cranial nerves (78). The higher frequency of neurological
symptoms in CAPS compared to the other IL-1b-mediated
autoinflammatory disorders may be linked to the increasingly
appreciated role of NLRP3 in microglia as the main contributor
to neuroinflammation in neurodegeneration, infection, and
stroke (79).
TNF Receptor-Associated Periodic Syndrome
TNF Receptor-Associated Periodic Syndrome (TRAPS; MIM:
142680) is an autosomal dominant periodic fever syndrome that
is caused by gain-of-function variants in TNFRSF1A, which
encodes one of the major TNF receptors (80). Despite that
variants associated with TRAPS impair signaling via the TNF
receptor, inflammation is enhanced with increased IL-1b, IL-6,
and TNF secretion, likely due to intracellular accumulation of
misfolded protein (81). Approximately 10% of cases have adult
onset. The clinical presentation typically consists of fever,
abdominal pain, arthralgia, myalgia, and a migratory rash.
Neurological symptoms are not core features of TRAPS, but
approximately 20% of patients manifest headache and to lesser
extent seizures (1%), vertigo (1%), diplopia, and cerebrovascular
lesions (17, 19, 21). Occasionally paresthesia, CSF pleocytosis,
white matter lesions (20), and Tolosa-Hunt syndrome have been
reported (21).
Other IL-1b-Mediated Autoinflammatory Disorders
Variants in NLRP12 can also cause an autoinflammatory
syndrome characterized by excessive IL-1b secretion (MIM:
611762). Like NLRP3, both gain-of-function and loss-of-
function variants have been described that cause increased
inflammasome activation and loss of NF-kB inhibition,
respectively (18, 82, 83). NLRP12-associated disorders are very
Frontiers in Immunology | www.frontiersin.org 6
rare and reported symptoms primarily include inflammation in
skin and bone. Neuroinflammatory manifestations such as
headache and sensorineural hearing loss are occasionally
observed (17) and rare reports of optic neuritis exist (18). In
addition, loss-of-function mutations in IL1RN, encoding the IL-1
receptor antagonist, also cause excess IL-1b signaling. These
patients primarily have autoinflammatory manifestations in skin
and bone but a patient with CNS vasculitis has also been
reported (84).
NF-kB Dysregulation
NF-kB constitute a ubiquitously expressed family of transcription
factors that have been conserved throughout eukaryotes and that
serve as key mediators of inflammatory responses (85). Upon
activation, IKK phosphorylates the NF-kB inhibitor IkBa at two
N-terminal serines, thereby triggering ubiquitin-dependent,
proteasome-mediated IkBa degradation, resulting in rapid and
transient nuclear translocation of canonical NF-kB members that
can induce transcription of a variety of pro-inflammatory cytokine
genes. Low penetrance variants in TNFAIP3, encoding A20, have
been associated with many different complex immune mediated
diseases (86), but more recently, heterozygous loss-of-function
variants have established an autoinflammatory disease entity
termed A20 haploinsufficiency (MIM: 616744), with similarities to
Bechet’s disease and autoimmune lymphoproliferative syndrome
(ALPS) (23, 87, 88). A20 is a ubiquitin editing enzyme and a
potent inhibitor of NF-kB (89). Most cells express baseline
amounts of A20 but expression is upregulated in pro-inflammatory
settings (86). Deficiency of A20 consequently results in insufficient
suppression of NF-kB and dysregulated innate immunity via
overproduction of cytokines such as TNF, IL-1b, IL-18, and IL-6
(24). Sporadic reports exist of A20 haploinsufficiency with
neurological symptoms, such as aseptic meningitis, and CNS
vasculitis (23, 24). Furthermore, a frameshift variant in TNFAIP3
has been reported as the cause of neuropsychiatric SLE manifested as
headache, seizures, cognitive impairment, ptosis, and difficulty with
upward gaze (22). The pathogenesis may involve an influence on
blood brain barrier (BBB) permeability from the disease associated
variant (22). Although Tnfaip3-/- mice are prone to fulminant
neuroinflammation involving the NLRP3 inflammasome (90), the
neurological spectrum in human TNFAIP3 haploinsufficiency
suggests that species differences exist or that one TNFAIP3 allele is
sufficient to restrain inflammation in the CNS.

ITCH, RNF11, and TAX1BP1 comprise additional essential
components of the ubiquitin-editing protein complex that
normally ensures the transient nature of inflammatory NF-kB-
mediated signaling pathways (85). Autosomal recessive
mutations in ITCH are associated with syndromic multisystem
autoimmune disease (MIM: 613385) (91). Although ITCH is
highly expressed in the brain, neurological symptoms are not a
prominent feature of patients with ITCH deficiency. Altogether,
excessive NF-kB activation is associated with autoinflammation
and a low incidence of neuroinflammation. Furthermore, loss-of-
function variants in several additional components of the NF-kB
signaling pathway have been described with immunodeficiency,
but where neuroinflammation is not a prominent feature.
January 2022 | Volume 12 | Article 827815
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Comment on Neuroinflammation in IL-1b-
Mediated Autoinflammatory Disorders
Headache is the most common neurological manifestation in the
IL-1b-mediated autoinflammatory disorders. This is consistent
with the emerging role for inflammasomes in migraine (92) and
the association of MEFV variants with the risk of migraine (93).
Moreover, seizures is another commonly reported neurological
manifestation of these diseases. Importantly, both acute and
chronic neuroinflammation has been linked to epileptogenesis
(94) and in experimental systems TNF-blockade has reduced
epileptic activity (95). Interestingly, the frequency of seizures in
FMF patients (4%) appears to be higher than in the other
disorders. This may be a consequence of unique aspects of the
pyrin inflammasome such as sensing of bacterial modification/
inactivation of Rho GTPases (96).

Pathogenic insights can be gained not only from studying
cellular processes but also from clinical observations of what
drugs have efficacy treating specific inborn errors of immunity.
Most autoinflammatory diseases have been reported to respond
to anti-IL-1 therapy (97). Moreover, first-line treatment for FMF
is colchicine, which likely acts by interfering with the cytoskeletal
changes required for inflammasome assembly, also implicating
IL-1 (98). Colchicine-resistance is observed in approximately
10% of all FMF patients, which generally receive anti-IL-1
therapy as second-line treatment (99). Anti-IL-6 and anti-IL-
18 therapy are occasionally used for autoinflammatory diseases
in general (98). Anti-TNF therapy has been mainly used for
TRAPS with inconsistent results. Anti-TNF may even provoke
an inflammatory flair in TRAPS, akin to experience from MS
(100, 101). A20 haploinsufficiency frequently responds to
colchicine but a very wide range of treatments have been used
in reported cases (102). Interestingly, experience from A20
haploinsufficiency suggests that patients who carry the same
pathogenic mutation do not necessarily respond to the same
treatment implying a role for genetic background and/or
environment (102).

Most cells produce IL-1b to some degree but during
neuroinflammation major contributors are T cells, infiltrating
myeloid cells, and microglia (Figure 2) (103). Physiological IL-1
signaling in the CNS has a role in, for example, memory
performance or neuronal survival (104) but elevated IL-1
signaling has a wide range of pathological effects (103). Which
cell types in the CNS that respond to IL-1b is controversial, but
sequential deletion of the IL-1 receptor in mouse CNS cells
suggests that endothelial cells in the BBB as well as in cerebral
ventricles are the major targets (105, 106). Microglia are
activated by IL-1b in vivo but this may be an indirect effect via
s ignal ing from endothel ia l ce l l s (105) . For ster i le
neuroinflammation in general, the inciting factor that triggers
inflammation is rarely understood. An inflammatory cascade
that starts in the periphery and then migrates across the BBB is
often hypothesized (107). In the case of IL-1b-mediated
autoinflammation, a wide range of pathogen associated
molecular patterns (PAMP) and damage associated molecular
patterns (DAMP) can elicit IL-1b secretion with insufficient
regulatory feedback mechanisms for resolution. IL-1b
Frontiers in Immunology | www.frontiersin.org 7
promotes the differentiation of IL-17 and GM-CSF-secreting T
helper cells, which are implicated in the pathogenesis of MS as
well as other autoimmune diseases and can cross the BBB (108–
110). Once inflammation has spread to the CNS, a vicious cycle
can potentially be established including IL-1b-mediated immune
cell chemotaxis to the CNS via activated endothelial cells,
skewing of T helper cells and astrocytes towards encephalitogenic
phenotypes (111), as well as neuronal excitotoxicity and subsequent
synaptopathy (Figure 2) (112).

The wide range of observed neurological presentations is
intriguing considering the common pathogenesis of dysregulated
inflammasomes andmay reflect differences in genetic background,
comorbidities, or environmental exposures. Furthermore, apart
from constitutional neurological symptoms such as headache, the
neuroinflammatory manifestations reported in association with
IL-1b-associated autoinflammatory diseases are rare and could
potentially reflect separate disease entities with complex etiology
for which the autoinflammatory disease gene variants act as risk-
factors. Interestingly, several of the autoinflammation associated
variants are commonly implicated as modifyers of complex
diseases. Bechet’s disease has similarities with FMF regarding
both symptomology and treatment, which in 3-30% of cases is
complicated by neuroinflammation (113). Patients with neuro-
Bechet’s disease and the closely related neuro-Sweet’s disease that
carry mutations in MEFV have more pronounced neurological
manifestations such as headache and neuroimaging findings such
as white matter lesions and non-parenchymal lesions (114, 115).
Notably, co-occurrence of MS in carriers of homozygous or
heterozygous pathogenic MEFV variants is well described (8,
116–118). Moreover, NLRP12 has recently been reported as a
candidate gene for familial MS (119) and NLRP3 as well as
TNFRSF1A variants appear to modify susceptibility and/or
severity of MS (118). Thus, autoinflammatory susceptibilities
can likely fuel other neuroinflammatory processes, triggering or
exacerbating disease.
Type I Interferonopathies
Aicardi-Goutières Syndrome
A subset of the autoinflammatory disorders called type I
interferonopathies is distinguished by excess IFNa/b signaling
(25). In 1984, Jean Aicardi and Françoise Goutières described a
form of severe familial progressive encephalopathy in children
(120). A majority of these patients have signs of upregulated type I
interferon signaling, often assessed using a panel of interferon-
stimulated genes as a proxy measure (121). To date, variants in at
least 9 genes have been identified, which together underlie most
cases of Aicardi–Goutières syndrome (AGS): TREX1 (MIM:
225750), RNASEH2A (MIM: 610333), RNASEH2B (MIM:
610181), RNASEH2C (MIM: 610329), SAMHD1 (MIM: 612952),
ADAR1 (MIM: 615010), IFIH1 (MIM: 615846), LSM11 (MIM:
619486), and RNU7-1 (MIM: 619487) (122–127). Loss-of-
function variants in these genes cause autosomal recessive
disease inheritance, except for IFIH1 and TREX1. Gain-of-
function variants in IFIH1 are associated with autosomal
dominant inheritance, whereas for TREX1 both recessive and
January 2022 | Volume 12 | Article 827815

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lindahl and Bryceson Neuroinflammation in Primary Immunodeficiencies
dominant inheritance has been reported. Disease mechanisms
include accumulation or modification of endogenous nucleic
acids, enhanced activity of nucleic acid sensor or other
components in the interferon signaling pathway triggering
excessive type I IFN production, and loss of negative regulation
(128). TREX1 encodes an exonuclease that cleaves nucleic acids in
the cytosol, thereby preventing their accumulation and triggering
of a type I interferon associated inflammatory response (129),
which is toxic to neurons (130). Cardinal features of AGS are early
onset of a severe neurological disorder with intracranial
calcification, leukoencephalopathy, cerebral atrophy,
cerebrospinal pleocytosis, as well as cutaneous manifestations.
As more data have been gathered, a wider range of neurological
and other clinical phenotypes have been associated with TREX1
variants (26, 131). Phenotype-genotype associations exist to some
extent in AGS and regarding the neurological manifestations,
Frontiers in Immunology | www.frontiersin.org 8
variants in TREX1 appear more prone to have an encephalitic
presentation (25). Furthermore, ADAR1 variants have been linked
to the pediatric neurodegenerative disorder bilateral striatal
necrosis (BSN) (132). BSN is clinically characterized by acute or
subacute onset of dystonia and radiological symmetrical
abnormalities in the striatum. Onset can be as late as in
adolescence, often with an infectious trigger. Although clinically
distinct from AGS, BSN patients with ADAR1 variants have signs
of interferonopathy such as upregulated interferon-stimulated
genes and may have brain calcifications and signs of
neuroinflammation such pleocytosis, elevated neopterin in CSF,
and spinal cord involvement (132, 133). In summary, excessive
type I interferon signaling frequently causes neuropathology but
the phenotypic heterogeneity associated with these genetic
variants suggests that unrecognized modifying factors have a
significant influence on individual outcome.
FIGURE 2 | Pathogenic roles of interleukin (IL)-1-signaling in neuroinflammation. Examples of disorders with exaggerated IL-1-signaling include familial Mediterranean
fever (FMF), mevalonate kinase deficiency (MKD), cryopyrin-associated periodic syndrome (CAPS), and TNF receptor-associated periodic syndrome (TRAPS). IL-1 in the
periphery contributes to skewing of activated T cells towards an encephalitogenic phenotype. The T cells cross the blood brain barrier and in the central nervous system
(CNS) they are activated by resident antigen presenting cells via MHC interactions and cytokines. The T cells activate microglia, which produce IL-1 that triggers a pro-
inflammatory response in astrocytes and activates endothelia resulting in further immune cell infiltration. Maladaptive CNS-inflammation can cause irreversible damage
such as loss of neurons and oligodendrocytes.
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Pseudo-TORCH
An early-onset syndrome caused by severe congenital infections
goes under the acronym TORCH, which stands for
Toxoplasmosis, Other agents, Rubella, Cytomegalovirus, and
Herpes simplex. The term pseudo-TORCH is used for the
same clinical picture when no infection is detected. Three
genetically defined forms of pseudo-TORCH exist to date
caused by recessive variants in OCLN (MIM: 251290), USP18
(MIM: 617397), and STAT2 (MIM: 618886), respectively, of
which the latter two are type I interferonopathies. All three
disorders cause brain malformations, intracranial calcifications,
and severe developmental delay. Most reported cases have died at
an early age from cerebral hemorrhage. AGS is a common
differential diagnosis. Features that are more consistent with
pseudo-TORCH are microcephaly, thrombocytopenia, liver
dysfunction, and hepatosplenomegaly. OCLN codes for
occludin, a tight junction protein. Occludin deficiency may
cause BBB dysfunction but the pathophysiology of this disease
remains unclear (134). The clinical features suggest elevated type
I interferon signaling but this has not been demonstrated. USP18
is a STAT2-dependent negative regulator of type I interferon
signaling and lack of USP18 or a STAT2 variant that is unable to
interact with USP18 consequently result in prolonged signaling
downstream of the type I interferon receptor (135–137). In the
initial report of STAT2 variant pseudo-TORCH, a severe
multisystemic inflammatory disorder developed at the age of 8
months, which included marked neuroinflammation in the form
of brain calcifications as well as white matter and cerebellar
abnormalities (137). Pseudo-TORCH therefore encompasses
genetic diagnoses with considerable clinical overlap with AGS
and that may present with neuroinflammation.

Vasculopathies
Pathologic type I interferon signaling is associated with
cerebrovascular disease, both in monogenic interferonopathies
and typically more complex genetic diseases such as SLE (138,
139). In addition to AGS, TREX1 variants have been associated
with the adult onset disorder retinovasculopathy and cerebral
leukodystrophy with systemic features (RVCLS, MIM: 192315)
(140). However, unlike AGS, TREX1 variants associated with
RVCLS do not disrupt exonuclease activity but rather manifest as
gain-of-function variants with dominant inheritance. The
underlying pathology of RVCLS can be vasculitis, thrombotic
microangiopathy, or aneurysmal dilatation and occurs in both
small and large vessels (141, 142). Moreover, TREX1 variants
have been suggested as the genetic basis of patients with cerebral
small vessel disease with cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL)-like phenotype (143) and monogenic SLE.

Gain-of-function variants in STING1 cause the type I
interferonopathy STING-associated vasculopathy with onset in
infancy (SAVI, MIM: 615934) (144, 145). Core manifestations of
SAVI are early-onset systemic inflammation, skin vasculopathy, and
interstitial lung disease. Consistent with other interferonopathies
cerebral calcifications are observed as a sign of CNS involvement.
Occasionally CSF pleocytosis or overt neurological symptoms such
as spastic paresis and seizures have been reported (27, 146).
Frontiers in Immunology | www.frontiersin.org 9
Other Interferonopathies
Autosomal recessive loss-of-function variants in ISG15 cause a
syndrome termed ISG15-deficiency (MIM: 616126)103. ISG15 is
an intracellular ubiquitin-like protein induced by type I interferon
that in humans stabilizes USP18 in a feedback inhibition loop.
ISG15-deficiency consequently leads to an interferonopathy but
results in a milder neurological phenotype compared to pseudo-
TORCH (28, 147). Moreover, ISG15 acts as an extracellular inducer
of type II interferon and its deficiency is consequently also
associated with increased susceptibility to mycobacterial disease.
All described ISG15-deficient patients have cerebral calcifications, a
sign of elevated type I interferon signaling, and seizures have
frequently been reported. DNase II deficiency underlies a distinct
clinical syndrome of autoinflammation and elevated type I
interferon signaling. Neurological manifestations include cerebral
calcifications and white matter hyperintensities (29). Loss-of-
function variants in ACP5 has been identified as a cause of
spondyloenchondrodysplasia with immune dysregulation
(SPENCDI, MIM: 607944), a rare autosomal recessive syndrome
characterized by skeletal and immune abnormalities (30, 148).
ACP5 encodes an enzyme that regulates the activity of
osteopontin and is involved in non-nucleic acid dependent type I
interferon induction. A wide spectrum of immune dysregulation
associated with SPENCDI has been described, including
development of SLE. Neurological manifestations include
developmental delay, spastic paresis, and intracranial calcifications
(149). Mutations in PSMB8 is a cause of a disorder previously called
chronic atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature (CANDLE). The disease now belongs to a
subcategory of interferonopathies called proteasome-related
autoinflammation (PRAAS, MIM: 256040) and is called PRAAS1.
Like other interferonopathies cerebral calcifications have been
reported but also aseptic meningitis (31, 150, 151). Thus, disease-
causing variants in an increasing spectrum of genes are being linked
to interferonopathies with neuroinflammatory manifestations.
Comment on Neuroinflammation in Type I
Interferonopathies
Unlike the IL-1b-mediated autoinflammatory diseases where
conspicuous neuroinflammation is rare, most interferonopathies
have signs of CNS involvement. Assuming that the intracranial
calcifications observed in virtually all interferonopathies are
caused by type I interferon, this can either be a result of direct
interferon signaling in cells of the brain or of signals transduced
from CNS cells that are in contact with the peripheral circulation.
Notably, in homeostatic conditions, neither IFN-a nor IFN-b
readily cross the BBB and reach the brain parenchyma (152–154)
but as the barrier opens in inflammatory settings, cytokines and
cells can gain access to the CNS. Although all somatic cells can
produce type I interferons, the major contributors are the
plasmacytoid dendritic cells (DC) (155, 156). In a mouse model
of AGS, Trex1 deletion restricted to the hematopoietic
compartment was sufficient for full disease, whereas deletion
restricted to DCs yielded less pronounced manifestations (157).
On the other hand, transfer of wild type bone marrow into
irradiated Trex1-/- mice did not rescue inflammation, implying
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that non-hematopoietic cells also are sufficient to trigger the type I
IFN-mediated pathology (158). In inflammatory settings, CNS
cells that produce type I interferon include microglia, astrocytes,
and neurons. During homeostasis, microglia present in white
matter receive a constant interferon signal, which may be
necessary to increase housekeeping functions like phagocytosis
of myelin debris (159). Furthermore, constitutive interferon
signaling is required for the homeostasis of neurons in mice
demonstrated by the development of age associated
neurodegeneration with similarities to Parkinson’s disease and
Lewy body dementia in Ifnb–/– mice, with a likely contribution
from defective autophagy (160). Humans that lack type I
interferon signaling are rare and reported examples of IFNAR1
and IFNAR2 deficiencies have all been in children (161–163) or
young adults not specifical ly assessed for signs of
neurodegenerative disease (164).

In inflammatory settings, most CNS cells including
infiltrating immune cells have the potential to respond to type
I interferon (165). In a mouse model of MS, USP18 expression
specifically in microglia has an important role in dampening
excessive interferon input that otherwise would result in
pathological microglia activation, which reflects the human
interferonopathy caused by USP18 deficiency (135). In
contrast, IFN-b is a well-established therapy for MS (166) and
has been reported to reduce the severity of mouse models of the
disease (167). Notably, not all MS patients respond to IFN-b, and
exacerbations have been described (168, 169). Moreover, NMO,
as well as several autoimmune diseases that do not primarily
affect the CNS, are likely worsened by type I interferon and it has
been hypothesized that IFN-b is an effective treatment in Th1-
biased but not in Th17-biased diseases or disease subphenotypes
(170). Although it is not definitively established that type I
interferons are driving the disease manifestations of the
interferonopathies it is at least likely. AGS and MS are
immunologically and clinically very different and the proposed
T helper cell polarizing effect of IFN-b in MS is probably not a
dominant feature in the type I interferonopathies.

Signal transduction downstream of the type I interferon
receptor involves activation of JAK1 and TYK2 followed by
activation of STAT1 and STAT2, which together with IRF9
translocate to the nucleus to initiate transcription of interferon
stimulated genes (ISG). Increasing experience suggests that
treatment with JAK inhibitors is efficacious in some patients
with interferonopathies (171). However, in one study, treatment
with JAK inhibition before onset of symptoms did not prevent
development of AGS (172). Additionally, based on the
hypothesis that endogenous retroelements drive interferon
signaling in AGS, a small (n=8) open-label pilot study of
reverse transcriptase inhibitor therapy has been conducted
with promising results (173).

In summary, interferon-related autoinflammation is
qualitatively different from the classical autoinflammatory
disorders with prominent IL-1b-biased inflammation. The
neuroinflammation observed in interferonopathies is likely less
dependent on recruitment of innate or adaptive immune cells.
Although the pathogenesis is clearly related to excess type I
Frontiers in Immunology | www.frontiersin.org 10
interferon signaling, what part of this complex system is
appropriate to target pharmacologically for these disorders is
not well understood.
Hemophagocytic Syndromes
Familial Hemophagocytic Lymphohistiocytosis
Hemophagocytic lymphohistiocytosis (HLH) is a rare
hyperinflammatory syndrome characterized by fever,
cytopenias, and splenomegaly, which often leads to a sepsis-
like condition with multiple organ dysfunction. HLH can be
divided into familial HLH (FHL) caused typically by recessive
mutations and secondary non-Mendelian forms. FHL is most
frequently caused by loss-of-function variants in genes required
for lymphocyte cytotoxicity, including genes that are required for
CD8+ T cell and NK cell exocytosis. To date, mutations in PRF1
(MIM: 603553), UNC13D (MIM: 608898), STX11 (MIM:
603552), STXBP2 (MIM: 613101), and RHOG have been linked
to FHL (174–178). Both FHL and secondary HLH often have an
apparent triggering event, for example an infection or
malignancy, leading to uncontrolled immune stimulation. The
defective killing of target cells makes the host unable to clear the
antigenic stimulus and control activated immune cells. This
results in persistence and amplification of the immune
response with excessive secretion of pro-inflammatory
cytokines. In turn, the pro-inflammatory cytokines activate
macrophages and mediate much of the tissue damage.
Diagnostic HLH criteria have been established and a diagnosis
is made based on the fulfillment of 5/8 of the criteria (179).
Neuroinflammatory manifestations occur at any time during the
disease course in FHL or secondary HLH but are not part of the
diagnostic criteria. In pediatric HLH, neurological symptoms or
signs have been reported in 13-73% of patients and pathological
MRI or CSF findings in 33-91% (32). Importantly, when the
disease presents as an isolated neuroinflammatory disorder,
perhaps without the diagnostic criterion cytopenia, HLH may
not be included as a differential diagnosis (180, 181). An
international survey and literature review of confirmed FHL
cases that presented as an isolated neuroinflammatory disease
(CNS-HLH) has been reported (33). Common symptoms at
presentation in this case series were ataxia, seizures, headache,
motor impairment, and visual abnormalities. Brain MRI findings
were non-specific and included a range of multifocal bilateral
abnormalities including demyelination in the hemispheres, basal
ganglia, cerebellum, or brain stem. Occasionally MRI may reveal
a single mass-like lesion (182) or may mimic septic embolization
(183). MRI abnormalities have been reported in FHL due to
PRF1 variants even in the absence of neurological symptoms
(184). Therefore, CNS-HLH is frequently initially diagnosed as
acute demyelinating encephalomyelitis (ADEM), CNS vasculitis,
meningitis, leukodystrophy, or MS (38, 185–188). The mean
time from onset of symptoms of CNS-HLH to confirmed
molecular diagnosis is more than two years in published cases
and it is recognized that a fully developed HLH disease can arise
several years after onset of CNS-HLH (33). Two patients with
cerebellar involvement on MRI and consistent symptoms in the
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form of ataxia and dysarthria were shown to have had a FHL-
associated biallelic PRF1 mutations without developing FHL
before dying at the age of 1 and 5 years, respectively (189).
Conversely, when in remission and off treatment for typical FHL,
a relapse may present as isolated CNS-HLH (190). Importantly,
compared to most of the other disorders reviewed herein, FHL is
prone to rapidly develop into a life-threatening inflammatory
condition and vigilance is required regarding early symptoms,
which may be from the CNS.
Familial Hemophagocytic Lymphohistiocytosis-
Related Disorders
An additional set of inherited disorders also frequently cause
HLH. These include Griscelli syndrome type 2 (GS2, MIM:
607624), Chediak-Higashi syndrome (CHS, MIM: 214500), X-
linked lymphoproliferative syndrome (XLP) type 1 (XLP1; MIM:
308240) and XLP type 2 (XLP2; MIM: 300635).

A distinct feature of GS2 andCHS is hypopigmentation because
of defective granule transport in melanocytes. GS2 is an autosomal
recessive disease caused by loss-of-function variants in RAB27A,
which encodes a protein that facilitates secretory lysosome
trafficking and exocytosis in several cell types (191). The impaired
cytotoxic activity in T and NK cells can result in increased
susceptibility to infections as well as failure to control immune
responses and development of HLH. Microglial dependence on
Rab27a for migration towards sites of injury in the CNS suggests a
possible mechanism for neuroinflammation in the setting of
Rab27a deficiency (192). A GS2 patient with isolated CNS-HLH
presenting with developmental regression, seizures, and eventually
status epilepticus has been described (193).Other cases ofGS2 have
been reported with neurological involvement in the form of
encephalopathy, headache and tonsillar herniation, focal seizures,
multifocal or diffuse white matter lesions, and pathological CSF
(38–40). An atypical case of GS2 without hypopigmentation
describes a 14-year old male that presented with myoclonus,
dysmetria, dysarthria, ataxia, fever, and pancytopenia (37). The
neuroinflammatory manifestations resolved within 3 months
despite conservative management but returned after 2 months
with hemiparesis, abducens nerve palsy, fever, and pancytopenia.
Chediak-Higashi syndromemay have neurological manifestations,
but these are almost always neurodegenerative, and MRI typically
reveal atrophy but no focal lesions (194, 195).

Loss-of-function variants in SH2D1A and XIAP cause XLP
type 1 and 2, respectively, both with X-linked recessive
inheritance. SH2D1A codes for an adaptor protein expressed in
T cells but its role in the pathogenesis of XLP1 is not fully
established (196). Deletion of SH2D1A may result in mild
immunodeficiency early in life in males but can also present as
early-onset HLH. Clinical manifestations of XLP1 are typically
triggered by Epstein-Barr virus (EBV) infection, resulting in
deficient humoral immunity, polyclonal proliferation of B and
T cells, lymphoma, and HLH. A case of Burkitt lymphoma in a
14-year old male with hypogammaglobulinemia followed by fatal
CNS vasculitis has been reported (41). The CNS vasculitis
manifested as short-term memory deficit and MRI revealed
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mult iple edematous and hemorrhagic les ions . The
symptomatology of other reported cases of XLP and CNS
vasculitis includes headache, blurred vision, seizures, memory
impairment, motor deficits. CSF analysis may reveal elevated
white cells and protein. MRI often show aneurysms, T2
hyperintensities, and hemorrhagic lesions (42–45). Thus, severe
neuroinflammatory symptoms are not isolated to FHL patients
with defective lymphocyte cytotoxicity.
Comment on Neuroinflammation in
Hemophagocytic Syndromes
Although all characterized gene variants that underlie FHL result
in impaired lymphocyte cytotoxicity, the tendency for CNS
involvement in FHL subtypes likely differ. Neuroinflammation
in FHL due to PRF1 variants was observed in 36% of 124 cases in
a multi-center study (197). The corresponding proportion
associated with UNC13D variants was estimated at 60% (198,
199) and with STXBP2 variants at approximately 50% (34).
Estimates were less certain for other FHL types but a study
suggests that CNS involvement is less frequent in FHL due to
STX11 variants (200). Furthermore, it is becoming increasingly
recognized that hypomorphic variants with some residual
function, often cause FHL with later onset and atypical clinical
presentations, for example isolated CNS involvement (201–206).

The immunopathogenesis of HLH is described as a cytokine
storm. Several genetic defects that predispose to HLH impair the
delivery of cytotoxic granules from CD8+ T cells and NK cells,
which is essential both for clearance of pathogens but also of
activated antigen presenting cells. A feed-forward loop is initiated
with increasing tissue infiltration and activation of immune cells
that secrete a plethora of pro-inflammatory cytokines, most
notably IFN-g, TNF, IL-1, IL-2, IL-6, IL-10, IL-12, IL-18, and
GM-CSF. Consequently, the established treatments for HLH
involve broad immunosuppression to achieve remission while
hematopoietic stem cell transplantation is needed to cure
primary HLH (207). Animal models of FHL imply that IFN-g
derived from CD8+ T cells drive the pathogenesis (208, 209).
However, HLH-like disease in the absence of IFN-g has also been
reported recently (210). There is a large body of work on the role
of IFN-g in neuroinflammation. Although protective effects have
been suggested, most data point towards a pathogenic role. An
early trial in MS patients showed that administration of IFN-g
worsened disease (211). Briefly, in experimental conditions, low
doses of IFN-g generally exert protective effects on neurons,
microglia and oligodendrocytes whereas high doses appear to
have the opposite effect (211). Although neutralization of specific
cytokines such as TNF and IL-1 have been used as second line
treatment for HLH, their efficacy is unknown. Novel treatment
strategies that are being pursued include anti-IFN-g and JAK-
inhibition (212, 213).

In summary, the CNS is vulnerable to the hyperinflammation
associated with FHL and related disorders, but even severe cases
can have a good outcome if diagnosed early so that appropriate
treatment can be initiated in parallel with arrangements for a
hematopoietic stem cell transplantation.
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TOLERANCE DEFECTS

Loss-of-function variants in FOXP3, a key transcription factor in
thedevelopmentof regulatoryT (Treg) cells, is the causeofX-linked
recessive immunodysregulation polyendocrinopathy enteropathy
X-linked (IPEX,MIM: 304790). The Treg cell defect leads to loss of
peripheral tolerance manifested as enteropathy, dermatitis, type I
diabetes mellitus, hypoparathyroidism, autoimmune cytopenias,
and other autoimmune diseases. IPEX-like syndromes may also
arise due to defects in other Treg cell related genes such as loss-of-
function variants in IL2RA2, CTLA4, and LRBA, or gain-of-
function variants in STAT1 and STAT3 (214). A cohort of 173
patients with IPEX or IPEX-like syndrome have been reported and
approximately 25% in both groups had neurological symptoms,
which included seizures, ventriculomegaly, and developmental
delay (46).

ALPS (MIM: 601859) is an autosomal dominant disease
characterized by abnormal lymphocyte survival resulting in
lymphoproliferation, autoimmunity, and secondary malignancies.
Loss-of-function variants in Fas is the most common cause followed
by FasL, and caspase-10. Autoimmunity typically manifests as
autoimmune cytopenia but essentially any organ can be affected
including the nervous system (47). ALPS without a specified genetic
basis has been associated with NMO and Guillain Barré syndrome
(47, 48).

Loss-of-function variants in CTLA4, a negative regulator of T
cell activation has been described as a cause of ALPS (ALPS type
V, MIM: 616100) but has more recently been defined as a disorder
of its own. CTLA4 haploinsufficiency may cause a range of
autoimmune and lymphoproliferative manifestations. In a series
of 133 patients with CTLA-4 insufficiency, a penetrance of 67%
was observed and upper range of age of onset was 50 years (215).
Among the affected, 29% had neurological features. A wide range
of neurological syndromes were observed including autoimmune
encephalitis, demyelination, increased intracranial pressure,
ischemic or hemorrhagic lesions. Others have described
cerebellar lesions and spinal cord degeneration (49, 50).
Altogether, neuroinflammatory manifestations are thus a feature
in up to a third of patients with defects in immune tolerance.
IMMUNODEFICIENCY DISORDERS

The complement system consists of approximately 30 different
components and deficiencies have been described for all of them.
The clinical consequences depend on which component is affected,
but the spectrum broadly involves susceptibility to infections,
autoimmunity, cardiovascular disease. Loss-of-function variants
in any of the three subcomponent genes for C1q, i.e. C1QA,
C1QB, or C1QC, cause the autosomal recessive condition C1q-
deficiency (MIM: 613652), which stands out among the
complement component deficiencies for being strongly linked to
development of SLE. One study found that neurological symptoms
at disease presentation occur to a similar extent in C1q-deficient
and C1q-sufficient SLE/SLE-like patients (216) but C1q-deficient
patients with SLE appear to relatively often present with
neuropsychiatric symptoms (51). Seizures are a common
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manifestation of neuropsychiatric-SLE but encephalopathy,
infarcts, and transverse myelitis have also been described (217).
Neuroimaging findings include calcifications or ischemic lesions in
the basal ganglia, vasculitis, and brain atrophy. Intracranial
calcifications, a cardinal feature of the interferonopathies, allude
to increased type I interferon also having an influence on the CNS
in this SLE subset, possibly explained by the observed inhibitory
role of C1q on type I interferon induction (52, 53, 218). C1q is
expressed by neurons and opsonizes unwanted synapses for
removal by microglia (219). Plausible indirect mechanisms for
the observed neurological involvement include C1q-dependent
removal of apoptotic cells or immune complexes. Most
complement deficiencies are associated with increased
susceptibility to bacterial meningitis due to the important role of
complement for the elimination of encapsulated bacteria, such as
meningococci (220). Aseptic meningitis has also been associated
with several of the complement deficiencies, which often manifests
as neutrophilic inflammation, making the distinction from septic
meningitis difficult (51, 221–223).

Variants in TLR3 as well as TRIF, TRAF3, TBK1, IRF3, and
NEMO that code for mediators downstream of TLR3, and
UNC93B1 that is involved in TLR3 trafficking, all reduce type I
interferon signaling and are reported genetic causes of herpes
simplex encephalitis (HSE) (224–229). Disease penetrance is
incomplete and very few HSE multiplex families have been
described. Interestingly, even complete absence of TLR3
signaling does not appear to increase susceptibility to other
infections than herpes simplex (230). Autoimmune encephalitis
relatively often occurs after HSE, likely due to bystander
activation and breaking of tolerance in the CNS (231). Thus,
one can speculate that the risk of CNS autoimmunity is elevated
in patients with type I interferon deficiencies.

Heterozygous loss-of-function variants in GATA2 (MIM:
614172) cause a wide range of defects including cytopenias,
particularly affecting monocytes, B cells and NK cells, resulting
in susceptibility to infections in addition to a risk of developing
myelodysplastic syndrome/acute myeloid leukemia (232). GATA2
is an essential transcription factor for hematopoietic stem/
progenitor cell renewal and differentiation (233). In a survey
with 79 patients, the median age of onset was early adulthood
and 8% were symptom-free at the age of 40 (54). Three of these
patients (4%) presented with neurological symptoms in the form
of intellectual disability, transient ischemic cerebral palsy, and
progressive multifocal leukoencephalopathy (PML), respectively.
PML is an often fatal neuroinflammatory consequence of
reactivation of latent JC-virus, which is observed in patients
with immunodeficiency, primary or secondary to a wide range
of immunosuppressive drugs (234).

COPA encodes a protein involved in endoplasmic reticulum
(ER)-Golgi transport. Variants in the gene cause the rare COPA-
syndrome (MIM: 616414),mostly associatedwithmanifestations in
the lungs, kidneys, and joints. However, a case of COPA-syndrome
and NMO has been described (235). The patient had bacterial
meningitis at the age of 2 and onset of NMO at the age of 6.
Immunological findings associated with loss of function COPA-
variants include Th17 polarization and humoral autoimmunity
consistent with the immunopathology of NMO (236, 237).
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Loss-of-function variants in RANBP2 are associated with the
autosomal dominant post-infectious and often fatal complication
acute necrotizing encephalopathy type 1 (ANE1, MIM: 608033)
(238, 239). Many different viruses and some bacteria have been
implicated but no association appears to exist to severity of
ANE1, suggesting that genetic or other factors are more
influential after the initial trigger. RANBP2 encodes the nuclear
pore protein RAN binding protein 2 that is ubiquitously
expressed and has several described cellular functions.
Hypothesized pathogenic mechanisms include metabolic and
mitochondrial dysfunction as well as induction of a cytokine
storm. TNF and IL-6 are elevated in the serum and CSF of ANE1
patients, but elevated cells in the CSF is not typically observed
(239). Taken together, the rarity of these immunodeficiency
disorders makes a causal relationship to any observed CNS
involvement difficult to establish but for several of them there
are plausible neuropathological mechanisms that lend some
support to the presence of etiological links.
Comment on Neuroinflammation
in Tolerance Defects and
Immunodeficiency Disorders
Several of the neuroinflammatorymanifestations described in these
sections result from immune deficiencies leading to defective
tolerance mechanisms and autoimmunity. IPEX and ALPS are
prototypical autoimmune syndromes caused by defective Treg cell
formation and lymphocyte apoptosis, respectively. The
complement system contributes to clearance of potential
autoantigens and type I interferon defects lead to fulminant
infections, possibly resulting in bystander activation of
autoreactive lymphocytes. However, these and other autoimmune
syndromes are primarily associated with involvement of other
organs than the CNS. Similarly, the observation that autoimmune
diseases tend to cluster in families does not apply to CNS
autoimmunity such as MS to the same extent (240). Together this
implies that distinct requirements are needed for tolerance in the
CNS to break. AlthoughCNS surveillance of adaptive immune cells
iswell-described the threshold of activation is higher inside theBBB
(241). Moreover, activation of innate immune cells locally by
PAMPs or DAMPs does not elicit infiltration of neutrophils or
monocytes, as is the case in most other tissues (242).

The mechanisms that underlie neuroinflammation in COPA
or RANBP2 deficiency are unknown. These genes are expressed
in most tissues throughout the body including the CNS
(gtexportal.org) and therefore a neuroinflammatory cascade
that originates within the CNS may be hypothesized, in
contrast to most other gene defects described herein that
clearly have major direct consequences on immune cells, thus
making an inflammatory reaction that is initiated in the
periphery and then spills over to the CNS a more likely scenario.

In brief, the pathogenic mechanisms that underlie
neuroinflammation in disorders of immune tolerance or defense
are elusive and likely heterogeneous. There is notmuch evidence that
supports the involvement of actual autoreactive encephalitogenic
lymphocytes in neuroinflammation related to tolerance defect
disorders or any other disease category reviewed herein. New single
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cell methodologies can potentially shed light on pathophysiologic
mechanisms underlying these sets of immune disorders.
CONCLUSION

With the growing use of high-throughput exome and genome
sequencing in clinical practice, it has become increasingly
recognized that adult onset of monogenic disease is not
necessarily uncommon (243). Moreover, genetic variants
associated with early and late onset Mendelian diseases may not
be the same and adjustment of filtering criteria may be needed
when analyzing the sequencing data (244). As genome sequencing
is increasingly applied for clinical diagnostics, more disease-causing
variants will be identified. The task of filtering through the large
number of variants that likely have no clinical significance will
continue to be a challenge. One important consideration when
assessing the possible causative role of disease-associated variants is
whether they are consistent with the patient’s phenotype. Herein
we have summarized reported neuroinflammatory phenotypes
observed in association with monogenic diseases. These CNS-
manifestations are often not part of the typical disease
description and therefore relevant pathogenic variants may be
overlooked when tasked with matching sequencing results with a
clinical neuroinflammatory presentation.

Based on available reports, some conclusions can be drawn
regarding the distinguishing features of neuroinflammation in
relation to the underlying immunopathogenesis. For example:
IL-1b driven autoinflammation is often associated with headache
and to a lesser extent seizures and aseptic meningitis,
interferonopathies with chronic cerebral abnormalities such as
calcifications and developmental defects, and HLH with
prominent but unspecific signs neuroinflammation on MRI
and in CSF. As awareness increases regarding the potential
CNS involvement in inborn errors of immunity, the clinical
characterization of reported cases will improve. This will help
better define what is a typical neuroinflammatory manifestation
in relation to the various types of immune defects, which in turn
will facilitate the process of making a genetic diagnosis.
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145. Frémond M-L, Hadchouel A, Berteloot L, Melki I, Bresson V, Barnabei L,
et al. Overview of STING-Associated Vasculopathy With Onset in Infancy
(SAVI) Among 21 Patients. J Allergy Clin Immunol Pract (2021) 9:803–
18.e11. doi: 10.1016/j.jaip.2020.11.007
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168. Rıó J, Nos C, Tintoré M, Téllez N, Galán I, Pelayo R, et al. Defining the
Response to Interferon-Beta in Relapsing-Remitting Multiple Sclerosis
Patients. Ann Neurol (2006) 59:344–52. doi: 10.1002/ana.20740

169. Wang A-G, Lin Y-C, Wang S-J, Tsai C-P, Yen M-Y. Early Relapse in
Multiple Sclerosis-Associated Optic Neuritis Following the Use of Interferon
Frontiers in Immunology | www.frontiersin.org 18
Beta-1a in Chinese Patients. Jpn J Ophthalmol (2006) 50:537–42.
doi: 10.1007/s10384-006-0359-4

170. Axtell RC, Raman C, Steinman L. Type I Interferons: Beneficial in Th1 and
Detrimental in Th17 Autoimmunity. Clin Rev Allergy Immunol (2013)
44:114–20. doi: 10.1007/s12016-011-8296-5

171. Montealegre Sanchez GA, Reinhardt A, Ramsey S, Wittkowski H, Hashkes
PJ, Berkun Y, et al. JAK1/2 Inhibition With Baricitinib in the Treatment of
Autoinflammatory Interferonopathies. J Clin Invest (2018) 128:3041–52.
doi: 10.1172/JCI98814

172. Neven B, Al Adba B, Hully M, Desguerre I, Pressiat C, Boddaert N, et al. JAK
Inhibition in the Aicardi-Goutières Syndrome. N Engl J Med (2020)
383:2190–1. doi: 10.1056/NEJMc2031081

173. Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N, Semeraro M, et al.
Reverse-Transcriptase Inhibitors in the Aicardi–Goutières Syndrome. N Engl
J Med (2018) 379:2275–7. doi: 10.1056/NEJMc1810983

174. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew
PA, et al. Perforin Gene Defects in Familial Hemophagocytic
Lymphohistiocytosis. Science (1999) 286:1957–9. doi: 10.1126/
science.286.5446.1957

175. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C, et al.
Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a
Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3). Cell (2003)
115:461–73. doi: 10.1016/s0092-8674(03)00855-9

176. zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter J-I, et al.
Linkage of Familial Hemophagocytic Lymphohistiocytosis (FHL) Type-4 to
Chromosome 6q24 and Identification of Mutations in Syntaxin 11.HumMol
Genet (2005) 14:827–34. doi: 10.1093/hmg/ddi076

177. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, et al. Familial
Hemophagocytic Lymphohistiocytosis Type 5 (FHL-5) Is Caused by
Mutations in Munc18-2 and Impaired Binding to Syntaxin 11. Am J Hum
Genet (2009) 85:482–92. doi: 10.1016/j.ajhg.2009.09.005

178. Kalinichenko A, Perinetti Casoni G, Dupré L, Trotta L, Huemer J, Galgano
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GLOSSARY

MS multiple sclerosis
NMO neuromyelitis optica
CNS central nervous system
MRI magnetic resonance imaging
CSF cerebrospinal fluid
FMF familial Mediterranean fever
CAPS cryopyrin-associated periodic syndrome
MKD mevalonate kinase deficiency
MVA mevalonic aciduria
HIDS Hyperimmunoglobulinaemia D syndrome
TRAPS TNFR-associated periodic syndrome
PAAND Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis
FCAS familial cold autoinflammatory syndrome
MWS Muckle-Wells syndrome
CINCA
syndrome

chronic infantile neurological cutaneous and articular syndrome

ALPS Autoimmune lymphoproliferative syndrome
BBB blood brain barrier
PAMP pathogen-associated molecular pattern
DAMP damage-associated molecular pattern
AGS Aicardi-Goutières syndrome
BSN bilateral striatal necrosis
TORCH Toxoplasma gondii, other agents, rubella, cytomegalovirus
RVCLS Retinovasculopathy and cerebral leukodystrophy with systemic

features
CADASIL Cerebral autosomal dominant arteriopathy with subcortical infarcts

and leukoencephalopathy
SAVI STING-associated vasculopathy with onset in infancy
SPENCDI Spondyloenchondrodysplasia with immune dysregulation
CANDLE Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and

Elevated Temperature
PRAAS proteasome-associated autoinflammatory syndrome
DC dendritic cell
ISG interferon-stimulated gene
HLH Hemophagocytic lymphohistiocytosis
FHL familial haemophagocytic lymphohistiocytosis
ADEM Acute disseminated encephalomyelitis
GS2 Griscelli syndrome type 2
CHS Chediak-Higashi syndrome
XLP X-linked lymphoproliferative syndrome
EBV Epstein-Barr virus
Treg regulatory T cell
IPEX Immunodysregulation polyendocrinopathy enteropathy X-linked

syndrome
HSE Herpes simplex encephalitis
PML Progressive multifocal leukoencephalopathy
ER endoplasmic reticulum
ANE1 Acute necrotizing encephalopathy type 1
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