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Cancer immunotherapy can boost the immune response of patients to eliminate tumor
cells and suppress tumor metastasis and recurrence. However, immunotherapy
resistance and the occurrence of severe immune-related adverse effects are clinical
challenges that remain to be addressed. The tumor microenvironment plays a crucial
role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have
emerged as powerful drug delivery platforms offering good biocompatibility and
biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading
capacity, controlled drug release, and low toxicity. In this review, we summarize the
application of injectable hydrogels as a unique platform for targeting the immunosuppressive
tumor microenvironment.

Keywords: cancer immunotherapy, tumor microenvironment (TME), injectable hydrogels, immunogenic cell death,
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INTRODUCTION

Cancer is a major threat to human health worldwide (1). Cancer immunotherapy has emerged as a
promising cancer treatment approach that can inhibit tumor metastasis and recurrence by boosting
antitumor immune responses (2, 3). Cancer immunotherapies have revolutionized the treatment of
many cancer types in clinical settings. Immunotherapeutic agents include immune checkpoint
inhibitors, vaccines, immunologic adjuvants, adoptive cell transfer, and nonspecific immune-
stimulating factors (e.g., cytokines) (4). Nevertheless, low T cell infiltration levels, the presence of
inhibitory immune cells, and the lack of neoantigens limit response to immunotherapy. Systemic
administration of conventional drugs often requires high dosages or multiple injections, which can
lead to severe immune-related adverse effects and low patient compliance (5–7). Multiple
immunosuppressive factors in the tumor microenvironment (TME) have been shown to affect
the delivery of therapeutic agents and efficacy of T cell-based therapies, thus influencing the
therapeutic efficacy of cancer immunotherapy (8–10). Therefore, modulating or reprogramming the
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immunosuppressive TME can enhance the efficacy of cancer
immunotherapy. Many studies and clinical trials aiming to target
tumor immunosuppressive microenvironment to eradicate
malignant cells are ongoing (10, 11).

Hydrogels with 3D network structures have been widely used
in various fields, especially in biomedicine (7, 12–14). Injectable
hydrogels have attracted considerable attention as vehicles for
sustained drug delivery in situ because of their unique
advantages, including easy delivery by syringe and minimal
surgical wounds (13, 15). Injectable hydrogels can be loaded
with various agents, including chemotherapeutic drugs,
immunotherapeutic agents, antibodies, vaccines, cytokines, and
immune cells (7, 14, 16). Sustained and controlled release of
these therapeutic agents by injectable hydrogels can activate
systemic antitumor immune responses and inhibit tumor
metastasis and recurrence while causing minimal toxicity (7).
Herein, we highlight recent advances in reprogramming the
immunosuppressive TME using injectable hydrogels to
improve the efficacy of cancer immunotherapy (Figure 1).
Frontiers in Immunology | www.frontiersin.org 2
CATEGORIES OF INJECTABLE
HYDROGELS

Injectable hydrogels are usually formed by quick sol-gel phase
transition or chemical polymerization in situ. They can be
directly delivered into the target sites by injection (12, 16).
Injectable hydrogels can be classified into chemically and
physically cross-linked hydrogels based on the gelling
mechanism (13, 16). Chemically cross-linked injectable
hydrogels are generated by introducing covalent linkages
between polymer chains via disulfide formation, photo-
irradiation, enzymes, Schiff’s base reactions, Michael-type
addition reactions, or Diels-Alder reactions (16). On the other
hand, physically cross-linked injectable hydrogels are formed
through intermolecular interactions, such as hydrogen bonds,
hydrophobic interactions, ionic cross-linking, and host-guest
interaction (16). Injectable hydrogels can also be classified as
natural or synthetic hydrogels based on the polymers used for
their preparation (7). Natural injectable hydrogels are typically
FIGURE 1 | Schematic diagram of antitumor therapy platform using hydrogels as platform to elicit antitumor immune response.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Hydrogel Targets Immunosuppressive Tumor Microenvironment
composed of polysaccharides, proteins, and DNA. In contrast,
synthetic hydrogels consist of biodegradable polymers, such as
polypeptides and polyesters (7). Additionally, injectable
hydrogels can be divided into ordinary hydrogels and
smart hydrogels according to their responses to external
stimuli. Ordinary injectable hydrogels are not sensitive to
environmental changes, whereas smart injectable hydrogels can
be affected by temperature, pH, enzyme, and photoelectricity (13,
17). Moreover, injectable hydrogels can be biologically
functionalized with targeting moieties that have an affinity for
unique or overexpressed tumor cell markers for targeted drug
delivery applications (18).

Over the past decade, many studies have investigated the
antitumor potential of drug-loaded hydrogels (19). The
therapeutic potential of hydrogels has also been investigated in
patients with cancer. Up to September 2021, four clinical studies
related to drug-loaded hydrogels for the treatment of cancer have
been registered in the US registry of clinical trials (https://
clinicaltrials.gov/). Two completed, open-label, dose escalation
clinical studies (NCT02891460, NCT02307487) evaluated the
efficacy of mitomycin C-loaded hydrogels (TC-3) in patients
with bladder cancer. The results of these studies have not been
published yet (Table 1).
IMMUNOSUPPRESSIVE STATUS OF TME

TME is an integral part of tumors and can affect the efficacy of
cancer treatment (9). At different stages of tumor development,
different immune cell types are present in the TME. At an early
stage, tumors are infiltrated by antitumor immune cells,
including macrophages, natural killer (NK) cells, lymphocytes,
and dendritic cells (DCs) (20). However, at later stages of tumor
development, antitumor immune responses are hindered by
immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Tregs), and M2 macrophages
(20, 21). The balance between different types of immune cells
determines the outcome of antitumor immune responses.

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ T helper
(Th) cells are paramount immune cells for tumor cell elimination
(22). Th1 responses, characterized by the production of IFN-g,
TNF-a, and IL-2, are also essential for tumor rejection. However,
Th1 responses can also contribute to tumor escape via IFN-g-
induced expression of the checkpoint molecule programmed
death-ligand 1 (PD-L1) or tumor immunoediting and selection
Frontiers in Immunology | www.frontiersin.org 3
of resistant clones (23). In addition, long-term exposure of tumor
antigens to Th1 cells and other T cell subtypes may promote the
expression of inhibitory receptors, such as PD-L1, lymphocyte
activation gene 3 protein (LAG-3), and T-cell immunoglobulin
(Ig) domain and mucin domain protein 3 (TIM-3) (24). Immune
checkpoint pathways in cancer cells can cause T-cell dysfunction
and immune evasion. Immune checkpoint blockade (ICB),
especially antibodies against cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), programmed cell death protein 1 (PD-1),
and PD-L1, can reverse immunosuppression and prevent
immune evasion (9). ICB has shown remarkable long-term
survival benefits in cancer patients with several types of
tumors, including melanoma, non-small cell lung cancer, and
renal cell carcinoma (16, 25).

However, Tregs, another subset of CD4+ T cells, often inhibit
antitumor immune responses and promote tumor growth. Tregs
can directly interact with CTLs and NK cells or indirectly inhibit
the antitumor activity of CTLs and NK cells by producing
immunoregulatory cytokines, such as IL-10 and TGF-b (10).
Notably, Tregs have been associated with unfavorable survival in
patients with many types of cancer (26). Hence, eliminating
Tregs in the TME may enhance antitumor immune responses.
Th2 cells can also block T-cell-induced tumor rejection by
promoting T-cell anergy, suppressing T-cell-mediated
cytotoxicity, and enhancing humoral immunity (10).

Tumor cells promote the recruitment of bone marrow-
derived cells (BMDCs), which can differentiate into
tumorigenic cell subtypes under certain conditions (20). For
instance, tumor-associated macrophages (TAMs) derived from
BMDCs promote tumor progression by facilitating angiogenesis,
invasion, and metastasis in vivo (27). MDSCs, another type of
BMDCs, can suppress antitumor immune responses by
inhibiting T cells and NK cells and promoting the expansion
of Treg populations within the TME (21).
INJECTABLE HYDROGELS TARGETING
IMMUNOSUPPRESSIVE TUMOR
MICROENVIRONMENT

Targeting Immune Checkpoint Molecules
Immune checkpoint blockade (ICB) immunotherapies,
especially antibodies against CTLA-4, PD-1, and PD-L1, have
revolutionized cancer treatment (28). However, ICBmonotherapies
TABLE 1 | Drugs embedded in hydrogels were used to treat cancers based clinical trials up to September 2021.

Study title Conditions Status Identifier

A Prospective Open Label Comparative Dose Ranging Study Evaluating the Effect of Pre-TURBT Intravesical Instillation of
Mitomycin C (MMC) Mixed with TC-3 Gel in Patients with Non Muscle Invasive Bladder Cancer (NMIBC)

Bladder
Cancer

Withdrawn NCT01799499

Safety and Tolerability Study Which Evaluate Intravesical Instillation with Mitomycin C Mixed with TC-3 Drug Retaining
Hydrogel Device in Patients with Muscle Invasive Bladder Cancer

Bladder
Cancer

Completed NCT02891460

Safety of Pre-TURBT Intravesical Instillation of Escalating Doses of TC-3 Gel and MMC in NMIBC Patients Bladder
Cancer

Completed NCT02307487

Safety and Efficacy of Doxorubicin-eluting-bead Embolization in Patients with Advanced Hepatocellular Carcinoma Hepatocellular
Carcinoma

Unknown NCT02525380
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show limited efficacy in most patients and may cause significant
toxicity (6, 9, 29). Therefore, more effective and safer combination
therapies involving ICB are under development. PD-L1 expressed
on the surface of tumor cells and on antigen-presenting cells can
interact with PD-1 expressed on activated T cells, promoting T-cell
apoptosis, anergy, and exhaustion (30, 31). Blocking the PD-1/PD-
L1 pathway with anti-PD-1 or anti-PD-L1 antibodies has
demonstrated promising therapeutic efficacy in a variety of
tumor types (32–35); however, response rates are only 10%–30%
(29, 36). Low neoantigen burden, insufficient infiltration of tumor-
specific T cells, and low expression of PD-L1 may contribute to the
low response rates in cancer patients treated with ICB (20, 37–41).
Moreover, multiple administration cycles of anti-PD-1 antibodies
can induce severe immune-related side effects (42–44); local
delivery of antibodies can minimize off-target effects and increase
drug bioavailability (45).

Wang et al. developed a drug-based supramolecular hydrogel
for local delivery of immune checkpoint inhibitors (ICIs) to
boost the host’s immune system against tumors (Figure 2) (46).
They first synthesized the amphiphilic prodrug, diCPT-
PLGLAG-iRGD, by conjugating a hydrophilic iRGD. This
Frontiers in Immunology | www.frontiersin.org 4
prodrug can spontaneously assemble into supramolecular
nanotubes (P-NTs). By mixing a therapeutic dose of anti-PD-1
antibodies and P-NTs, they developed a hydrogel loaded with
anti-PD-1 antibodies. Wang et al. found that this formulation
could serve as a reservoir for long-term release of camptothecin
(CPT) and anti-PD-1 antibodies within the TME, thereby
inducing a potent antitumor immune response. They also
found that local P-NT-anti-PD-1 treatment in GL-261 brain
cancer and CT 26 colon cancer models led to tumor regression in
100% of mice.

The low immunogenicity of some tumor types and the body’s
decreased immune responses to tumor limit the development of
immunotherapy. Immunogenic cell death (ICD), featured by the
release of tumor-associated and tumor-specific antigens, danger-
associated molecular patterns, and pro-inflammatory cytokines,
plays an essential role in cancer immunotherapy (47). Recent
evidence suggests that neoadjuvant chemotherapy and the use
of biomaterials-based delivery systems both enhance the
therapeutic efficacy of immunotherapy owing to the induction
of ICD (48, 49). Gu et al. engineered an injectable reactive oxygen
species (ROS)-responsive hydrogel co-loaded with gemcitabine
A

B C D

FIGURE 2 | Schematic illustration of the in situ formed P-NT-anti-PD-1 hydrogel. (A) In situ formation of P-NT-anti-PD-1 hydrogel, which enables localized CPT and
anti-PD-1 delivery and promotes the activation of CD4 and CD8 T cells in the tumor microenvironment. (B) Representative transmission electron microscopy (TEM)
image of the networks of the P-NT hydrogel. (C) Circular dichroism (CD) spectrum of camptothecin (CPT) solution. (D) Photographs of liquid P-NT transformed into
hydrogel after the addition of phosphate-buffered saline (PBS). Reprinted with permission from Science Advances (46).
January 2022 | Volume 12 | Article 832942
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(GEM) and anti-PD-L1 antibodies for in situ chemo-
immunotherapy (50). As the scaffold consists of ROS-
degradable hydrogel and the TME contains high levels of ROS,
GEM and anti-PD-L1 antibodies can be specifically released in
the TME. In B16-F10 melanoma and 4T1 breast tumor (low-
immunogenic) mouse models, local GEM delivery increased
tumor immunogenicity and augmented the antitumor efficacy
of ICB, thereby promoting tumor regression and suppressing
tumor recurrence. To enhance the expression of tumor-
associated antigens, Ruan et al. developed an in situ formed
dual-bioresponsive gel depot for co-delivery of anti-PD-1
antibodies and zebularine (Zeb), a demethylation agent that
enhances the expression of tumor-associated antigens (51).
Anti-PD-1 antibodies were loaded into pH-sensitive CaCO3

nanoparticles (anti-PD1-NPs) and encapsulated with Zeb in
the ROS-responsive hydrogel (Zeb-anti-PD-1-NPs-Gel). Local
release of Zeb increased the immunogenicity of cancer cells and
decreased immunosuppression. By doing so, Zeb boosted the
ability of anti-PD-1 antibodies to induce T cell-mediated
antitumor immune responses, inhibiting tumor growth and
prolonging survival in mice bearing B16-F10 tumors. In
addition to direct use of anti-PD-1 antibodies to block the PD-
1/PD-L1 pathway, targeting of a specific pathway that involves
PD-L1 transcriptional repressors is also practicable. Li et al.
reported a cancer cell membrane-derived hydrogel scaffold
loaded with Ca2+ channel inhibitor dimethyl amiloride (DMA)
and cyclin-dependent kinase 5 inhibitor roscovitine for cancer
treatment. In this system, cancer cell membrane, DMA and
roscovitine were chosen with the aim of creating an antigen
depot, suppressing Ca2+-governed exosome secretion and down-
regulating tumor cell PD-L1 expression, respectively (52).

CTLA-4 is expressed on activated Th1 cells and CTLs, and
binds to co-stimulatory molecules CD80 and CD86 of antigen-
presenting cells, thereby inhibiting the activation and proliferation
of T cells (53). Although blocking CTLA-4 signaling unleashes
antitumor immune responses, systemic administration of anti-
CTLA-4 antibodies may cause severe immune-related adverse
events (5, 54–57). Chung et al. evaluated thermosensitive
poloxamer 407 (P407) hydrogels as a slow-release system for
optimizing anti-CTLA-4 therapy (58). They found that P407
hydrogel-mediated delivery of anti-CTLA-4 antibodies reduced
serum antibody levels, mitigated the side effects of ICB, and
exerted antitumor effects in mice bearing CT26 tumors.
Similarly, Harui et al. found that local administration of
hydrogel-encapsulated anti-CTLA-4 antibodies exhibited
enhanced efficacy and minimal systemic toxicity in mice with
MC-38 tumors (59). Peritumoral administration of 100 µg of anti-
CTLA-4 antibodies loaded in hydrogels had similar or greater
effects than systemic administration of 600 µg of antibodies. While
preserving antitumor activity, serum exposure following the
administration of hydrogel-encapsulated anti-CTLA-4 was only
1/16th of that following systemic therapy.

Song et al. developed an injectable PEG-b-poly(L-alanine)
(PEA) hydrogel to co-deliver a tumor vaccine consisting of
tumor cell lysates (TCLs), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and anti-CTLA-4 antibodies and
Frontiers in Immunology | www.frontiersin.org 5
anti-PD-1 antibodies (60). TCLs, GM-CSF, anti-CTLA-4
antibodies, and anti-PD-1 antibodies were encapsulated into
the porous PEA hydrogel by mixing these agents with PEA
aqueous solution. Sustained release of tumor antigens and GM-
CSF promoted the recruitment and activation of DCs in vivo,
inducing tumor-specific CTL responses. The extended release of
ICIs from the hydrogel further enhanced T-cell activation and
reduced Treg levels in the TME by blocking PD-1 and CTLA-4
pathways. Notably, the hydrogel-based combination therapy
exhibited greater antitumor effects than the vaccine alone or
ICB monotherapy in melanoma and 4T-1 mouse models.
Targeting Tumor-Associated
Macrophages
Tumor-associated macrophages (TAMs) are a key component of
the TME and play a significant role in tumor progression (61, 62).
There are two main subtypes of TAMs: classically activated M1
macrophages (M1-TAMs) and alternatively activated M2
macrophages (M2-TAMs). M1-TAMs, which express high levels
of IL-12 and IL-23, can scavenge foreign antigens and kill tumor
cells (63). Tumor cells typically promote polarization of TAMs
towardM2 in TME, facilitating IL-10 production and tumor growth
(8). The balance between M1 and M2 TAMs has been associated
with drug resistance, angiogenesis, and immunosuppression in
tumors (8). Most macrophage-targeting therapies have three goals
(9, 64): (1) inhibit macrophage recruitment by blocking the C-C
motif chemokine ligand 2 (CCL2)/C-C motif chemokine receptor 2
(CCR2) axis (65, 66); (2) deplete macrophages or block -factor
(CSF)-1/CSF-1R signaling (67, 68); (3) reprogram TAMs toward an
M1-like phenotype using melittin (69), IFN-g (70), CD40 agonists
(71), or tumor hypoxia-targeting agents (72). As macrophages are
present throughout the body, systemic modulation of macrophages
can lead to off-target effects and systemic toxicity (73). Furthermore,
CCL2/CCR2- and CSF-1/CSF-1R-targeting strategies often result in
the development of monocyte and macrophage populations that
enhance neoangiogenesis and metastasis (74, 75).

M2-TAM depletion has proved effective in promoting tumor
regression by suppressing TAM-associated immunosuppression
(8). Although melittin is a potent anticancer agent, its hemolytic
effects limit its clinical application. To overcome this obstacle, we
developed a melittin-RADA32 hybrid peptide hydrogel. The
melittin- and doxorubicin (DOX)-loaded peptide hydrogel
(melittin-RADA32-DOX, or MRD hydrogel) exerted potent
anti-melanoma effects by modulating the TME (76). Moreover,
MRD hydrogels loaded with melittin and DOX exhibited direct
cytotoxic effects, specifically depleted M2-like macrophages, and
induced robust and long-lasting innate and adaptive immune
responses. Notably, a single injection of the formulation
significantly reduced the growth of primary melanoma tumors.

External stimuli can stimulate the reprogramming of M2-
TAMs into M1-TAMs, which have tumoricidal effects (77).
KN93, a specific inhibitor of CAMKII, was found to have a
direct tumoricidal activity and the ability to induce macrophage
reprogramming (78). To further potentiate these effects of the
January 2022 | Volume 12 | Article 832942
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melittin-RADA32 hydrogel, we designed a melittin-RADA24
peptide hydrogel loaded with KN93 (MR52-KN93; MRK
hydrogel) (79). Compared with free KN93, the MRK hydrogel
was more potent in eliminating tumor cells and inducing
immunogenic cell death. Moreover, MRK significantly reduced
the portion of M2-like TAMs and increased the ratio of M1-like
to M2-like TAMs in the TME (Figure 3).

The TME is usually acidic due to the presence of hypoxia and
glycolytic metabolism (79, 80). Cancer cell-derived lactate plays a
critical role in the polarization of macrophages from the M1
phenotype to the M2 phenotype, which promotes tumor growth
Frontiers in Immunology | www.frontiersin.org 6
and metastasis (80). Liao et al. found that methylcellulose
hydrogels loaded with lactate oxidase promoted lactate depletion
and lactate-mediated repolarization of macrophages (81).

Several recent studies reported the direct involvement of
TAMs in tumor resistance to ICB. By comparing the TME of
ICB-resistant and ICB-sensitive murine tumors, Muraoka et al.
found that TAMs in resistant tumors lacked antigen-presenting
activity (82). They also found that cholesteryl-modified pullulan
nanogels could efficiently deliver large peptides to TAMs and
that upon TLR stimulation, the nanogel system elicited antigen-
presenting activity in TAMs (82). By modulating TAMs, this
A

B C

D E

FIGURE 3 | In vivo activation of the immune system of tumor-bearing mice by MRK. (A) Schematic diagram summarizing the therapeutic effects of the MRK
hydrogel alone or combined with anti-PD-1 antibodies. Subcutaneous injection of MRK stimulates dendritic cell maturation and T cell activation in the lymph nodes.
Activated T cells eliminate tumor cells. MRK can also stimulate M1-type polarization of tumor-associated macrophages, activating Th1 cells and cytotoxic T
lymphocytes. MRK combined with PD-1 alleviates hepatocellular ascites in mice. (B, C) Comparison of the production of M2-type macrophages (B) and dendritic
cells (C) in each group. (D, E) Tumor volume (D) and weight (E) in different groups. Reprinted with permission from Theranostics (78). **P < 0.01, ***P < 0.001.
January 2022 | Volume 12 | Article 832942
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formulation transformed ICB-resistant tumors into ICB-
sensitive tumors. These results strongly support targeting
TAMs as a promising strategy for enhancing the efficacy of
cancer immunotherapy.

Because M1-TAMs can promote tumor rejection, direct
injection of M1-TAMs can significantly cause tumor regression
in vivo; however, the induction of acute inflammatory responses
limits the clinical translation of this approach (83). To improve
this strategy, Guerra et al. employed a synthetic extracellular
matrix (ECM) system consisting of cross-linked PEGdA and
Gel-PEG-Cys as a carrier for local delivery of activated M1
macrophages. They found that M1-loaded hydrogels promoted
apoptosis in hepatocellular carcinoma cells and tumor regression
in vivo while exhibiting low immunogenicity, high
biocompatibility, and improved release kinetics (84).
Targeting the Tumor Vasculature
Normal vascularization is critical for nutrients and oxygen
supply, as well as metabolic waste removal. However, abnormal
vascularization characterized by immature, disorganized, and
permeable blood vessels creates a hostile TME characterized by
hypoxia, low pH, low interstitial fluid pressure, decreased
immune cell infiltration and activity, and increased risk of
metastasis (85, 86). Furthermore, abnormal vascularization
reduces the diffusion of chemotherapeutic drugs and impairs
the efficacy of radiotherapy (86). Therefore, vascular
normalization could restore tumor perfusion and oxygenation
and enhance the efficacy of chemotherapy and radiotherapy
(87, 88).

Antibodies against vascular endothelial growth factor (VEGF)
have emerged as a promising therapeutic strategy for solid tumors,
as tumor growth and metastasis require neoangiogenesis (89).
Targeting VEGF signaling induces tumor vasculature
normalization, further reprogramming the immunosuppressive
TME and increasing the number of tumor-infiltrating
lymphocytes (TILs) (90, 91). Bevacizumab, the first approved
anti-VEGF drug to inhibit tumor angiogenesis in the United
States, has a limited half-life and membrane permeability. To
overcome these limitations, Ferreira and coworkers designed a
bevacizumab-loaded alginate hydrogel for localized anti-VEGF
cancer therapy by mixing alginate solution with bevacizumab and
cross-linking it with calcium chloride (92). The tridimensional
hydrogel increased drug stability, especially in acid environments,
and provided slow and continuous drug release to the tumor and
surrounding tissues after local application. Moreover, with the
development of photodynamic therapy (PDT), it has shown the
potential to trigger local and systemic antitumor immune
responses. However, abnormal angiogenesis and hypoxia in
TME promote immunosuppression. The immune response after
routine PDT is usually insufficient to cause tumor regression,
which limits the efficacy of PDT. Based on this, Zhou et al.
developed a prolonged oxygen-generating phototherapy
hydrogel (POP-Gel) system by combining the photosensitizer-
loaded thermosensitive hydrogel with calcium superoxide and
catalase to relieve tumor hypoxia. Long-term effective oxygen
Frontiers in Immunology | www.frontiersin.org 7
supply improved the hypoxic state of TME and down-regulated
the expression of HIF-1a and VEGF, further inducing a robust
antitumor adaptive immune response (93).

RNA interference (RNAi) enables robust and specific gene
silencing, providing a promising therapeutic avenue for cancer
treatment. However, efficient drug delivery systems for short
interfering RNAs (siRNAs) are lacking (94–96). Fujii et al.
developed a self-assembled nanogel of cholesterol-bearing
cycloamylose with a spermine group (CH-CA-Spe) as a carrier
to deliver VEGF-specific siRNAs (siVEGFs) into tumor cells.
This system showed low toxicity in patients, efficient intratumor
delivery, and high stability in vivo (97). The siVEGF-nanogel
complex was taken up by tumor cells via the lysosomal pathway
and suppressed VEGF expression in renal cell carcinoma cells.
Intratumoral injections of the complex effectively suppressed
tumor growth and neovascularization. The treatment also
significantly suppressed MDSC infiltration and IL-17A
production in the spleen, suggesting that silencing of VEGF
locally in the tumor may modulate systemic immune responses.

Despite promising findings in preclinical models, the efficacy
of anti-angiogenic therapies in the clinic has been disappointing,
as most patients exhibit innate or acquired resistance to the
treatment (98). However, anti-angiogenic therapeutics can
increase the efficacy of immunotherapy (99). Additionally, low
doses of anti-VEGF antibodies can induce vascular
normalization, prevent the differentiation of TAMs toward an
immune inhibitory M2-like phenotype, and block VEGF-
mediated inhibition of DC maturation (90). Therefore, vascular
normalization with anti-angiogenic therapies in combination
with other therapies may be an attractive therapeutic strategy.
Pal et al. developed a biocompatible self-assembled lithocholic
acid dipeptide-derived hydrogel (TRI-Gel), which provided
sustained delivery of DOX, anti-angiogenic combretastatin-A4
(CA4), and dexamethasone (100). TRI-Gel therapy inhibited
cancer cell proliferation, angiogenesis, and inflammation at the
tumor site, thereby suppressing tumor progression and
prolonging median survival with reduced drug resistance (100).
Yu et al. designed an in situ thermo-gelling hydrogel (mPEG-b-
PELG) to co-deliver combretastatin A4 disodium phosphate
(CA4P) and cisplatin (CDDP) for the local treatment of colon
cancer (101). Compared with the free drugs, the CA4P and
CDDP co-loaded gel induced less tumor cell death in vitro, while
its antitumor effect was highest in C26 tumor-bearing mice after
peritumoral injection (101).

Starvation therapies can inhibit tumor progression by
decreasing nutrient supply indispensable for tumor growth
(102, 103). Blood vessel occlusion can permanently occlude
blood and nutrition supply to the tumor. However, this
strategy is often associated with poor persistence, frequent
tumor metastasis and recurrence, and embolism in normal
blood vessels . Zhang and coworkers established an
extravascular gelation shrinkage-derived internal stress strategy
to narrow blood vessels, occlude blood and nutrition supply,
reduce vascular density, induce hypoxia and apoptosis, and
ultimately promote starvation of the tumor (104). To this end,
they engineered an organic-inorganic composite hydrogel
January 2022 | Volume 12 | Article 832942
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consisting of PEG-SH-modified gold nanorods (GNR-PEG-SH)
and thermal-sensitive hydrogel mixture (chitosan (CS)/mPEG-
Mal/pNIPAAm-co-AAc; hydrogel-GNR). When irradiated with
an 808 nm laser, hydrogel-GNR induced internal stress, which
narrowed intratumor and adjoining blood vessels in a GNR-
dependent manner. This starvation therapy inhibited tumor
progression in both PANC-1 pancreatic cancer and 4T1 breast
cancer mouse models. Importantly, this starvation strategy
suppressed tumor metastasis and tumor recurrence by
reducing vascular density, occluding blood and nutrition
supply (Figure 4).
Targeting Other Immunoregulatory Cells
and Factors
In view of the strong immunosuppressive effect of Tregs in the
TME, targeting Tregs has emerged as an attractive strategy to
unleash antitumor immune responses and reenforce
immune-mediated tumor rejection (10). Tumor-specific Tregs
Frontiers in Immunology | www.frontiersin.org 8
residing at the TME express high levels of CTLA-4 and
OX40, and in situ injection of anti-CTLA-4 and anti-OX40
together with CpG can deplete tumor-infiltrating Tregs (104).
This in situ immunomodulation approach activates systemic
antitumor immune responses more effectively than systemic
immunomodulation strategies (105). The co-delivery of tumor
anti-CTLA-4, anti-PD-1, and tumor vaccines using injectable
PEG-b-poly(L-alanine) hydrogels increased the efficacy of
immunotherapy by reducing the number of Tregs and increasing
the number of activated CD8+ T cells in the TME (60). In addition
to directly killing tumor cells, some chemotherapeutic agents can
regulate the immune system through various mechanisms,
including the modulation of Tregs (106–112). Co-delivery of
DOX and CpG self-crosslinking nanoparticles (CpG NPs) using
injectable a-cyclodextrin/polyethylene glycol hydrogels increased
the number of cytotoxic CD8+ T lymphocytes and decreased the
numbers of MDSCs, M2-TAMs, and Tregs in the TME (107).
Additionally, although chemotherapy alone reduced the number of
Tregs to some extent, combination therapy using a-cyclodextrin/
FIGURE 4 | Occlusion of blood supply in ex vivo and in vivo artery models. (A) Schematic of the experimental apparatus for evaluating vessel occlusion ex vivo in
blood vessels (with an inner diameter of 1.00 mm) treated with the gelation shrinkage-induced internal stress platform. (B) Traversed volume of DMEM in the ex vivo
blood vessel model before (left) and after (right) gelation of hydrogel-GNR. (C–F) Collected blood volume (C), red blood cells (D), blood platelet (E), and white blood
cells (F) traversed through ex vivo blood vessels using rabbit blood containing heparin. **P<0.01 and ***P<0.001 compared to pre-gelation; determined using
Student’s t-test. (G) Schematic representation of the extravascular gelation shrinkage-induced internal stress system irradiated with 808 nm laser. (H) CDFI images
of abdominal arteries of nude mice treated which hydrogel-GNR. CDFI images were captured before and after irradiation with an 808 nm laser. White arrows indicate
the blood vessels of the abdominal artery. Reprinted with permission from Springer Nature (104).
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polyethylene glycol hydrogels-CpG NP-DOX remarkably reduced
the number of Tregs in the TME (107).

The balance between different immune cell subsets, immune
factors, and signaling molecules determine the outcome of
antitumor immune response. Intratumoral delivery of
immunomodulatory cytokines has been tested in the clinic as a
strategy to augment antitumor immune responses (10). To elicit
a therapeutic response, sufficient concentrations and long-lasting
release of cytokines in TME are necessary, along with a non-toxic
concentration of the cytokine outside of TME. GM-CSF, IL-2,
IL-12, and IFN-g are among the several cytokines tested for local
cancer treatment based on injectable hydrogels (16). Son et al.
demonstrated that GM-CSF improved the function of antigen-
presenting cells and enhanced antitumor immune responses
(113). Co-delivery of GM-CSF and anticancer drugs using a
chitosan-based hydrogel system resulted in a synergistic
anticancer effect, as tumor-specific CD8+ T cell responses were
significantly enhanced (113). Den Otter et al. developed
physically crosslinked dextran hydrogels for the local delivery
of IL2. The system exhibited a strong therapeutic effect,
enhancing the clinical applicability of IL-2 (114). Kurisawa and
coworkers developed an injectable hyaluronic acidtyramine
(HATyr) conjugate hydrogel to locally deliver IFN-a2a to treat
liver cancer (115). The enzymatically crosslinked HATyr
hydrogel released IFN-a2a in the TME and inhibited tumor
growth while providing tunable hydrogel stiffness and rapid
gelation rate (115). Eonju Oh et al. utilized gelatin-based
hydrogels for sustained co-delivery of DCs and oncolytic
adenovirus (oAd) co-expressing IL-12 and GM-CSF while
preserving the biological activity of the cytokines (116).
Compared with single treatment (oAd or DC) or combination
treatment without the gel (oAd+DC), oAd+DC/gel treatment
resulted in a significantly higher expression of IL-12, GM-CSF,
and IFN-g in tumors through a positive feedback loop. The high
levels of IL-12, GM-CSF, and IFN-g in the TME strongly activated
endogenous and exogenous DCs, which migrated to the draining
lymph nodes and promoted the activation and infiltration of CD4+

and CD8+ T cells into the tumor, finally leading to robust tumor
regression. Interestingly, oAd+DC/gel treatment also alleviated
tumor-induced thymic atrophy (Figure 5).

Chronic inflammation in TME can promote cancer
progression in several ways, and remission of chronic
inflammation can help control the tumor (117). The
cyclooxygenase 2 (COX2) inhibitor celecoxib has been shown
to exert antitumor effects in various human cancers (118, 119).
For instance, simultaneous and local administration of anti-PD-1
monoclonal antibodies and celecoxib using alginate hydrogels
resulted in stronger antitumor effects than anti-PD-1 or
celecoxib alone. In addition, the formulation elicited a potent
and sustained antitumor immune response (120). Notably, co-
delivery of celecoxib and anti-PD-1 monoclonal antibodies
increased the numbers of INF-g-expressing CD4+ and CD8+ T
cells and decreased the numbers of intratumoral Tregs, MDSCs,
and PD-L1-positive tumor cells. Furthermore, this co-delivery
system enhanced the expression of the anti-angiogenic
chemokines CXCL9 and CXCL10 and suppressed the
Frontiers in Immunology | www.frontiersin.org 9
intratumoral production of IL-1, IL-6, and COX2, suggesting
reduced inflammation and angiogenesis in the tumor.
CONCLUSION

Numerous injectable hydrogels have been developed over the
past years (121). Injectable hydrogels offer many advantages,
including good biocompatibility and biodegradability, minimal
invasion, convenient synthesis, versatility, high drug-loading
capacity, and controlled drug release ability (122). Owing to
their unique properties, injectable hydrogels can be used as drug
delivery systems, which can locally and continuously release
therapeutic agents. Although intratumoral injections suffer from
localized treatment and inhomogenous distribution across
tumors, injectable hydrogels as drug delivery systems can
overcome many limitations of current systemic therapies for
cancer, especially systemic toxicity and limited efficacy (123).
Compared with intravenous delivery, the intratumoral injection
can provide direct contact with tumor cells and immune cells,
eliciting a more strong and long-lasting immune response.
Besides localized treatment for single tumor, injectable
hydrogels can be applied for the treatment of extensive pleural
and peritoneal metastasis, such as malignant pleural effusion and
malignant ascites. More importantly, in some cases, injectable
hydrogels can not only effectively promote ICD of tumor cells
and reshape immunosuppressive TME against local tumors but
also often generate abscopal effect against distant metastases by
activating systemic antitumor immunity (124).

To eradicate cancer cells, effector immune cells must first be
activated and overcome the multiple suppressive factors in the
TME. Strategies to reverse the immunosuppressive TME include
the targeted inhibition of key immunomodulatory factors in the
TME using inhibitors of angiogenesis (89), ICIs (60), and agents
targeting immunoregulatory cells and factors (113). Off-target
effect and treatment resistance greatly weaken the therapeutic
effect of single treatment regimen. Therefore, a shift from
monotherapy to combination therapies is essential to provide
more options of available treatments. The development of novel
combination therapies may help enhance the antitumor effects
of current therapies and prevent the development of treatment
resistance. Hydrogels provide a promising platform for the co-
delivery of multiple agents targeting various components of the
TME while causing minimal systemic toxicity. In addition,
injectable hydrogels can also be combined with conventional
treatments, such as radiotherapy and chemotherapy, to
transform immunosuppressive TME to a pro-inflammatory
state and amplify the antitumor immune response (50,
121, 125).

Despite the advances in injectable hydrogels, there are still
several challenges that limit their clinical translation. It is necessary
to determine at which stage of tumorigenesis a given treatment is
most effective, and whether the effect of treatments depends on the
composition of TME at the primary and metastatic sites. Although
several combination systems demonstrate synergistic effects, their
compositions need to be further optimized to maximize their
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antitumor efficacy and reduce side effects. Furthermore, future
work is required to ensure that in addition to exerting antitumor
effects locally and modulating the TME, hydrogels also activate
systemic immune responses to prevent metastasis and tumor
recurrence. Future multidisciplinary studies are warranted to
design injectable hydrogel-based delivery systems for the co-
delivery and sequential release of different therapeutic agents to
maximize the overall therapeutic efficiency of cancer therapies and
accelerate their clinical translation, especially in some late-stage
cancers, such as malignant pleural effusion and malignant
ascites (126).
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