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Editorial on the Research Topics
DAMPs Across the Tree of Life, Volume 1: Plants
DAMPs Across the Tree of Life, Volume 2: Regulated Cell Death and Immune Responses

DAMPs Across the Tree of Life, Volume 3: Human Diseases

“The danger/injury model” of Immunity, formulated twenty seven years ago, holds that the immune
system does not care about self vs. nonself, but rather that cell stress/tissue injury are the critical
features that initiate an immune response (1, 2). The core of the danger/injury model suggests that
injured/stressed cells generate “danger signals”, also known as damage-associated molecular
patterns (DAMPs) (3, 4), or “alarmins” (5), and that these DAMPs initiate both healing and
immunity. In addition, some DAMPs also drive inflammation-resolving responses (6), the aim
always being to restore homeostasis.

It currently appears that all organisms on our planet use DAMPs to signal that cell stress and
tissue injury have occurred, be it of sterile or infectious nature (7, 8). Typical examples of such
defensive responses across the tree of life are: in plants, volatile DAMPs promote an indirect defense
response against insect herbivores (9, 10); in Drosophila, the Toll-mediated antimicrobial defense
pathway is triggered by a yet-unidentified DAMP (11); in C. elegans, the microbe-induced bloating
of the intestinal lumen triggers (still unidentified) danger signals to activate a broad innate immune
defense response (12); in shrimps, the innate immune response to infections is presaged by the
release of HMGB1 (13); and, in fish/lampreys, L-HMGBI1-mediates or initiates pathogen
defense (14).

There is also another side to this coin: Emerging evidence from an increasing number of
experimental and clinical studies suggests that dysregulated emission of DAMPs plays a critical role
in the induction of pathologies and diseases; again, a phenomenon that seems to exist across the tree
of life. Thus, excessive production of DAMPs may promote such pathologies/diseases as exemplified
in plants by the hypersensitive response (HR), death of individual cells, and reduced growth of the
entire organism (15); in corals, by increased heat stress-driven coral bleaching (16); and in humans,
by hyperinflammation as a typical feature of COVID-19-associated sepsis (17) and the initiation of
autoimmune diseases (in this issue). This unique scenario, which runs throughout the tree of life, is
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addressed in this Research Topic. In accordance with the tenor of
the theme, the topic has been divided into three volumes
covering plants (Vol. 1), regulated cell death and immune
responses (Vol. 2), and human diseases (Vol. 3).

VOLUME 1: PLANTS

The ten articles presented in Vol. 1 are devoted to the role of
DAMPs in plant defenses. The topic is comprehensively
introduced by Vega-Muiioz et al. who review the dynamic
molecular mechanisms of wound responses in plants upon
biotic or abiotic stress conditions. Notably, the plant defense
program also includes damage-initiated regeneration processes
that are profoundly described by Christiaens et al. within this
Research Topic, without expressly referring to the role
of DAMPs.

Following are three papers on the role of extracellular self-
DNA released from damaged or dying cells, molecules believed
to operate as typical DAMPs from early on in evolution (18, 19).
Thus, Barbero et al., show that, in tomatoes, extracellular self-
DNA fragments, operate as potent DAMPs, triggering plant
defense responses typical of biotic responses to pathogens and
herbivores, particularly to those that cause intensive plant cell
disruption or cell death. Other lines of studies on the model of
wilt and root rot of Capsicum annuum L. plants performed by
Serrano-Jamaica et al. show that the use of fragmented DNA
derived from plant phytopathogens (i.e., using DNA as PAMPs)
can also promote a defense response, as documented by control
of the severity of the wilt of the chili caused by these
phytopathogens, reducing mortality by 40%. Monticolo et al.
then provide an evolutionary overview on extracellular DNA in
its various functions, including its protective role as potent
DAMPs derived/released from different sources, such as root
extracellular traps, surrounding the plant root cap.

Another class of extracellular DAMPs involved in plant
immune defense responses and included in this Research Topic
are oligosaccharides derived from the plant cell wall components,
homogalacturonan, cellulose, xyloglucan, mannan, and
arabinoxylan. Thus, Mélida et al. report on studies in which
they identified arabinoxylan-oligosaccharides as a novel group of
DAMPs active in plants. The group characterized 33-0-L-
arabinofuranosyl-xylotetraose as a highly active structure,
triggering strong immune responses in Arabidopsis thaliana and
enhancing crop disease resistance. In another paper, Barghahn
et al,, present an analysis, in Hordeum vulgare and Arabidopsis
thaliana, of the eliciting capacity of B-1,3/1,4-glucan
oligosaccharides (which are also present in phytopathogens).
The investigators found that these DAMPs promote canonical
pattern-triggered immunity responses in both monocot and dicot
plant species, suggesting a potential dual function as DAMPs
(derived from plant cell wall) and/or MAMPs (derived from
phytopathogens) in a plant lineage-dependent manner.
Pontiggia et al. report on two members of this family of DAMPs
(i.e., oligogalacturonides and cellodextrins), showing that
oxidation of oligogalacturonides and cellodextrins by specific

oxidases not only inactivates their DAMP activity but also
makes them a significantly less desirable food source for
microbial pathogens. In view of these findings, the authors
suggest that oxidation and inactivation of these DAMPs may be
a general strategy for plants to control the homeostasis of DAMPs,
whereby “DAMP oxidases can be considered in the broadest sense
as DAMP suppressors: i.e., SAMPs that maintain a balanced level of
signals in plants”. Of note, these findings provide the first evidence
for the concept that DAMP-promoted initiation of inflammation
and SAMP-driven inflammation resolution, aimed at restoring
homeostasis upon stress and injury, is a universal, evolutionarily
ancient phenomenon.

Another plant DAMP that has been shown to elicit robust
innate immune responses upon stress and injury in mammals is
extracellular ATP (20). The role of ATP in plants has been
indirectly addressed by Kumar et al. by focusing on its receptor,
the purinoceptor P2K1/DORN1. The receptor is known to
confer plant resistance to foliar biotrophic, hemibiotrophic,
and necrotrophic pathogens. In their report, the investigators
describe the contribution of P2K1 to resistance in Arabidopsis
against Rhizoctonia solani, a broad host range, necrotrophic,
soilborne fungal pathogen. From their observations, the research
group hypothesized that extracellular ATP, released upon R.
solani-induced cellular damage (i.e., necrosis), activates the
purinoceptor, which initiates a signaling cascade leading to the
induction of defense genes.

Another group of DAMPs thought to be involved in plant
defense are the plant-derived volatile organic compounds
(VOCs), in particular, herbivory-induced plant VOCs. This
highly interesting category of DAMPs that has recently gained
much attention is comprehensively reviewed by Meents and
Mithofer within this Research Topic. In their overview, the
authors highlight the damage-induced volatiles (denoted
“DIVs”) by focusing on their origin, chemical nature,
physiochemical properties, biological relevance, and putative
function in plant-to-plant communications.

Together, the articles presented in Vol. 1 of this Research Topic
impressively support current views about host immune defense
responses against stress and injury as a universal phenomenon
common to all living species in their daily struggles.

VOLUME 2: REGULATED CELL DEATH
AND IMMUNE RESPONSES

The articles in Vol. 2 are devoted to DAMP-promoted immune
responses, Conde et al. studied the correlation between a heat shock
insult, transcription of immune response genes, and subsequent
susceptibility to Plasmodium berghei infection in Anopheles
albimanus. They observed, among other things, that heat shock,
documented by upregulated heat shock proteins (e.g., HSP70),
increases the resistance of mosquitoes to Plasmodium invasion
(note: heat shock proteins are generally recognized as DAMPs).
The authors concluded that the data provided by their experiments
“could help the understanding of infection transmission under the
ever more common heat waves”. Roudaire et al. reviewed reports
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from the literature, comparing the role of PAMP/DAMP-sensing
pattern recognition receptors (PRRs) and downstream signaling in
both animal and plant cell death. The authors focused on PRR-
mediated signaling pathways promoting induction of subroutines
of regulated cell death (RCD, such as apoptosis, necroptosis, and
pyroptosis), associated with release of DAMPs to combat microbial
attack. Of note, in plants, a special form of regulated necrosis
(displaying some feature of necroptosis or pyroptosis) is associated
with a PRR-triggered HR [see above, and also (15)]. In their
attempt to highlight similarities and specificities of the immune
responses existing in mammals and plants, the authors concluded:
“The generic name HR does not reflect the complexity of signaling
pathways and, as in mammals, recognition of PAMPs, DAMPs or
effectors does probably not lead to the engagement of one unique cell
death response but likely activates different cell death-signaling
pathways with specific features and outcomes. The cell death
signal also likely depends on the cell type and plant species”.

Another thread of information within this Research Topic is
provided by articles dealing with productive sources of DAMPs
emissions, that is, RCD and extracellular vesicles (EVs). Thus,
Cheng et al. discuss the role of infection-induced immune cell
death in sepsis, often associated with multiple organ dysfunction
syndrome that is believed to be promoted by release of large
amounts of DAMPs. Picca et al. discuss the highly complex,
dynamic, and variable intracellular and extracellular trafficking
of DAMPs and EVs, focusing on the generation of EV and
mitochondrial-derived vesicles along the endocytic pathway,
thought to be involved in cancer and neurodegeneration. They
argue that studying these mechanisms is needed to reveal relevant
pathogenic pathways and novel targets for drug development.

Further evidence for a pathogenetic role of DAMPs in human
diseases is provided by Ueno et al., showing that prednisolone
suppresses the extracellular release of HMGB1 and associated
inflammatory pathways in Kawasaki disease. The authors suggest
that prednisolone treatment during the acute phase of the disease
may ameliorate HMGB-1-mediated inflammatory responses in
Kawasaki disease vasculitis. Also, Wyczanska and Lange-
Sperandio review findings from studies on the murine model of
unilateral ureteral obstruction, demonstrating that subroutines of
RCD and release of various DAMPs promote inflammatory and
fibrogenic responses in this disease. The authors conclude that
research into DAMPs as biomarkers and their use in therapeutic
applications, especially regarding kidney inflammation and
fibrosis, is a promising field for future research.

Two articles deal with new insights into activation mechanisms
of RCD. Smith covers the innate immune receptor cGAS-
stimulator of interferon genes (STING) that senses endogenous
and exogenous DNA. In fact, emerging evidence suggests that the
activation of STING-dependent signaling is also implicated in the
process of RCD, such as apoptosis, pyroptosis, and necroptosis
(21). Smith’s “curiosity arousing” title heralds a review of evidence
in support of the hypothesis that endoplasmic reticulum stress
may activate STING in the absence of an obvious ligand via
calcium/reactive oxygen species-mediated mitochondrial damage
and release of mitochondrial DNA (a known DAMP). Evidence
collected from various experiments and described in this review,

indeed, support this concept of a 3-way communication that is
critical in triggering STING-mediated RCD via initial intracellular
stress and damage. Another review article related to RCD,
authored by Xu et al., addresses DAMP/PAMP-promoted
molecular mechanisms underlying potassium efflux for NLRP3
inflammasome activation, known to lead to pyroptotic cell death.
The authors summarize current knowledge on ion channels and
pore-forming proteins, including P2X7 receptor, Gasdermin D,
pannexin-1, and two-pore domain potassium channels, showing
them to be mainly involved in potassium efflux-dependent
activation mechanisms. They propose that these mechanisms
present viable therapeutic targets for NLRP3 inflammasome-
related diseases.

Simultaneous activation of the inflammatory response and
clotting cascade following tissue injury is a phylogenetically
ancient survival strategy. In fact, the linkage between
inflammation and coagulation can be traced back to early events
in eukaryotic evolution, before the separation of plants and
invertebrate animals from the vertebrates [for more information,
see (22)]. Shi et al. addressed this important emerging issue by
reviewing rodent models of immunothrombosis and the evolving
evidence that extracellular DNA is a driver of immunothrombosis
and discussing challenges and prospects for extracellular DNA as a
potential therapeutic target. Another review on immunothrombosis
is by Watanabe-Kusunoki et al., who report on the hypercoagulable
state after endothelial injury, during which thrombomodulin is
released into the intravascular space by proteolytic cleavage of the
endothelium component. The authors refer to recent studies
revealing that recombinant thrombomodulin functions as an
inflammatory regulator beyond hemostasis through various
molecular mechanisms, including neutralization of DAMPs like
histones and HMGBI, and suppression of excessive activation of
the complement system. Given the information in this review, it is
tempting to denote thrombomodulin as a SAMP.

VOLUME 3: HUMAN DISEASES

Eight articles included in Vol. 3 are devoted to the role of
DAMPs in human diseases or experimental models related to
them; quite admittedly a topic that is still in its infancy. Two
papers deal with the phenomenon of ischemia-reperfusion injury
(IRI) that is known to aggravate and amplify tissue damage in
acute diseases such as myocardial infarction (MI) and stroke, as
well as initiate innate/alloimmune processes leading to allograft
rejection. In both situations, the ischemic injury induces various
subroutines of RCD [e.g., ferroptosis (23)] associated with release
of large amounts of DAMPs, which, via promotion of
inflammatory responses, lead to additional local tissue injury
as well as operate as mediators of remote organ injury in sterile
inflammation (as shown in other lines of studies on trauma) (24).
Here, Silvis et al. present a review on MI and heart
transplantation. The authors summarize the current evidence
for involvement of DAMPs and PRRs in the inflammatory
response after MI and cardiac transplantation and, further
discuss various current therapeutic approaches targeting this
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complex scenario. Furubeppu et al., using a mouse model of
skeletal muscle IRI, show that HMGBI, but not histone H3 (also
a DAMP), translocate from the nucleus to the cytoplasm during
skeletal muscle ischemia, and are released into the systemic
circulation immediately after reperfusion. Indeed, as discussed
by the authors, this study supports the earlier suggested idea that
DAMPs locally released from damaged muscles might contribute
to the remote organ injury, such as acute lung injury and acute
kidney injury (AKI).

The prominent role of DAMPs in AKI is also documented by
two contributions from other biomedical fields. Thus, Masum
et al,, in studies on a model of obstructed kidneys, show a novel
mechanism underlying glomerular lesion development in
obstructive nephropathy in young and old mice. The
investigators clarified by their experiments that glomerular
lesions develop during obstructive nephropathy owing to
podocyte injury through the overexpression of TLR8 in
podocytes from both obstructed and collateral kidneys of
young and old mice. Notably, the researchers observed that the
glomerular expression of TLR8 positively correlated with its
endogenous ligand glomerular miR-21, acting as a DAMP (as
do other RNAs). Moreover, elevated levels of serum miR-21 were
found to activate TLR8 in the podocytes of the collateral kidney
and induce glomerular lesions through podocyte injury. Again,
these studies nicely insinuate a possible role of DAMPs in
contributing to remote organ damage. Another article on the
role of DAMPs in AKI - this time, a review on the role of DAMPs
in septic AKI - was presented by Ludes et al. In their paper, the
authors highlight a limited number of recognized DAMPs,
including kidney-specific DAMPs such as uromodulin (also
denoted Tamm-Horsfall protein) and non-kidney-specific
DAMPs such as HMGBI, histones, biglycan, and extracellular
DNA. They describe the crucial role of these DAMPs in septic
AKI as initiating and then amplifying the pathophysiological
inflammatory process and cover the most recent insights in
AKI recovery.

The spectrum of disorders in which DAMPs have been shown
to be pathogenetically implicated comprises autoinflammatory
and autoimmune diseases as well. Examples of systemic
autoinflammatory diseases are presented by Jung et al, who
review the role of interactions between TLRs and their
endogenous ligands, i.e., DAMPs, in the pathogenesis of
systemic juvenile idiopathic arthritis and adult-onset Still’s
disease. The authors report that several DAMPs, such as S100
proteins, HMGB1, and myeloperoxidase-DNA, play a role in the
development or severity of these disorders by aggravating
inflammation. Finally, they recommend that these DAMPs be
used as valuable biomarkers for diagnosis and disease activity in
patients with these two diseases. Felux et al. refer to the role of
DAMPs in autoimmune diseases by choosing systemic lupus
erythematosus (SLE) as a classical example of these disorders. As
known from earlier studies, in SLE, the chromatin-shaping
extracellular nucleosomes (i.e., DNA + histones) behave as
both nuclear autoantigens eliciting specific anti-nucleosome
autoantibodies and as DAMPs promoting innate immune
proinflammatory and - via activation of DCs - adaptive

autoimmune responses. In SLE, impaired clearance of
chromatin leads to accumulation of plasma mono- and
oligonucleosomes, thereby increasing the concentration of both
DAMPs and autoantigens. The reason for impaired chromatin
clearance in SLE patients is a decreased activity of DNasel, a
major nuclease in body fluids that is thought to play an
important role in degrading chromatin. Interestingly, DNasel
is linked - in terms of convergently transcribed genes - to
tumor necrosis factor receptor-associated protein-1 (Trapl), a
mitochondrial chaperone that regulates stress responses. Felux
et al,, as a result of complex studies on DNasel-deficient and
DNasel/Trapl-deficient mice not mentioned here, argue that
combined low activities of both DNasel and Trapl lead to
impaired degradation of chromatin in vitro, delayed chromatin
clearance in vivo, accumulation of mono-nucleosomes (in terms
of their pathogenetic function as DAMPs), and, therefore,
enhanced activation of immune cells. The authors emphasize
their findings in the title of their paper in terms of an
argumentum e contrario: “Deoxyribonuclease 1-mediated
clearance of circulating chromatin prevents from immune cell
activation and proinflammatory cytokine production, a
phenomenon amplified by low Trapl activity: consequences for
Systemic Lupus Erythematosus”.

Two papers of this Research Topic are directly devoted to
properties of distinct DAMPs, namely interleukin-33 (IL-33) and
extracellular matrix (ECM) components. Perez et al. report on a
clinical study aimed at exploring the role of IL-33 in celiac
disease. Interleukin-33, when released after injury, stress, or
RCD, is recognized as a DAMP and interacts with the surface
receptor, ST2. Perez et al, in their studies, found an increased
expression of IL-33 in duodenal mucosa of active celiac disease
patients. In particular, locally digested IL-33 releases active
fragments, which can contribute to expanding the
proinflammatory signal. The investigators demonstrate (among
other findings) that both ST2 receptor forms are also upregulated
in duodenal mucosa of celiac disease patients. This is
accompanied by an increased number of CD8+ST2+ T cells
and the expression of T-bet in some ST2+ intraepithelial
lymphocytes and lamina propria cells. Given their
observations, the authors conclude that their findings
“highlight the potential contribution of IL-33 and its fragments
to exacerbate the proinflammatory circuit and potentiate the
cytotoxic activity of CD8+ T cells in celiac disease pathology”.
Of note, is that IL-33 has been shown to exert a dual (i.e.,
pathogenic and protective) function, for example, in
inflammatory bowel disease (25) and, thus, may act context-
dependently either as a DAMP or a SAMP. Also, but related to
another human disorder, namely chronic liver disease, McQuitty
et al. reviewed the known pro-/anti-inflammatory and fibrogenic
properties of ECM proteins with particular reference to the
immunomodulatory properties of the ECM in the context of
this hepatic disease. Interestingly, the researchers described the
pathogenic function of ECM proteins by dividing them into
ECM-associated bioactive molecules, including growth factors,
cytokines, and chemokines, as well as fragmented ECM proteins.
It is these fragmented proteins, including glycoproteins,
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glycosaminoglycans, and proteoglycans, generated upon
remodeling or during injury, which operate as bona fide
DAMPs. In view of all the data collected from the literature,
the authors concluded that ECM-associated molecules and
DAMPs, via their triggered signaling cascades, represent new
targets in potentially halting, reducing, or reversing fibrogenesis
and concomitant inflammatory state in chronic liver disease.
Finally, Matzinger suggests, in a wide-ranging theoretical piece,
that most autoimmune diseases are not caused by defects in self-
tolerance mechanisms, but instead by the dysregulated release or
detection of DAMPs.

CONCLUSION—OUTLOOK

The articles presented within the three volumes of this Research
Topic again document that DAMPs are unique molecules that
maintain and restore homeostasis upon any cell stress and tissue
injury by activating PRR-triggered inflammation-promoting,
inflammation-resolving, and fibrogenic defense responses.
However, the papers also reflect the disastrous side of these
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