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Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among

adolescents and adults below the age of 20 years. The prognostic outcome of

metastatic OS or relapse is extremely poor; thus, developing new diagnostic

and therapeutic strategies for treating OS is necessary. Extracellular vesicles

(EVs) ranging from 30–150 nm in diameter are commonly produced in different

cells and are found in various types of body fluids. EVs are rich in biologically

active components like proteins, lipids, and nucleic acids. They also strongly

affect pathophysiological processes by modulating the intercellular signaling

pathways and the exchange of biomolecules. Many studies have found that EVs

influence the occurrence, development, and metastasis of osteosarcoma. The

regulation of inflammatory communication pathways by EVs affects OS and

other bone-related pathological conditions, such as osteoarthritis and

rheumatoid arthritis. In this study, we reviewed the latest findings related to

diagnosis, prognosis prediction, and the development of treatment strategies

for OS from the perspective of EVs.

KEYWORDS
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Abbreviations: OS, Osteosarcoma; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; lncRNAs,

long non-coding RNAs; miRNAs, microRNAs; mRNAs, messenger RNAs; circRNAs, circular RNAs;

ASMCs, airway smooth muscle cells; NSCLC, non-small-cell lung cancer; LUAD lung adenocarcinoma;

EVs, extracellular vesicles, ILVs, luminal vesicles; MVBs, multivesicular bodies; Aiix, ALG-2 interacting

protein X; ESCRT, endosomal sorting complex required for transport; HGG, high-grade gliomas; PSA,

prostate-specific antigen; EMT, epithelial-mesenchymal transition; MSCs, mesenchymal stem cell; CAFs,

cancer-associated fibroblasts; BMSCs, bone marrow-derived mesenchymal stem cells; OS, overall survival;

DFS, disease-free survival; NGS, next-generation sequencing; CDDP, cisplatin-resistant.
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Introduction

Osteosarcoma (OS) predominantly occurs among

individuals below 20 years and is a form of aggressive primary

bone cancer (1, 2). The etiology of OS is mainly characterized by

epidemiological, genetic, and environmental factors (3). Several

risk factors are associated with tumorigenesis of OS, such as

alkylating agents, hereditary retinoblastoma, Paget’s disease,

ionizing radiation, and chromosomal abnormalities (4, 5). The

diagnosis of OS relies mainly on clinical manifestations, medical

imaging, tissue biopsy, and laboratory tests. The standard

treatment regimens for OS include neoadjuvant chemotherapy,

surgical resection, chemotherapy, and interventional therapy (6,

7). Recent developments related to the treatment of OS include

extensive research on stem cell therapy, immunotherapy, and

gene therapy (8–10). However, due to the complexity of

therapeutic interventions and the genetic differences between

laboratory animals and humans, these strategies are limited to

preclinical studies. Additionally, patients with OS have a high

incidence of early lung metastasis, except for other bone tissue

metastasis. About 18% of OS patients show signs of

micrometastasis at the time of diagnosis, and the five-year

survival rate of patients with stage III OS or higher stages of

OS is very low (11–13). Moreover, the treatment outcomes are

suboptimal because of the difficulty in early diagnosis, the early

onset of metastasis, and high malignancy (14, 15). The five-year

survival of OS patients who do not receive chemotherapy is

below 30%. Pulmonary metastasis is the main cause of OS-

related mortality. Moreover, the chemotherapeutic intervention

can partially control pulmonary metastasis of OS and increase

the five-year survival to 50%. For OS cases with pulmonary

metastasis, the two-year survival is less than 25%. Additionally,

although there are several alternatives, the survival period during

treatment might stabilize without any improvement. Therefore,

implementing traditional treatment strategies might not yield

the best results (16, 17). Hence, determining the mechanism of

the occurrence and metastasis of OS might help to find new

clinical diagnostic markers and efficient therapeutic targets.

Extracellular vesicles (EVs) are specializedmembranous vesicles

originating from endonuclear bodies with particles ranging from 30

to 100 nm in diameter (18, 19). EVs were first identified as a

component of blood erythrocytes. They appeared as a lipid bilayer

structure surrounded by cytoplasm and devoid of any organelles

(20). These EVs were discovered approximately 40 years ago (20).

The understanding of the role of EVs in human pathophysiological

processes has improved significantly.

Several studies have shown that EVs are produced by various

cancer and healthy cells (21–23). When EVs were discovered, their

primary function was thought to be the excretion of metabolic

wastes from cells (24). However, various studies highlighted the

ability of EVs to perform cellular communication, which is essential

during various biological processes and disease progression. This
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communication is possible due to the presence of various nucleic

acids and proteins that are responsible for distinguishing the

transmission of important biological information between cells

(25–28). Thus, EVs can be used as nano-cargos for delivering

nucleic acids (such as messenger RNA) (29) and therapeutic agents

(such as paclitaxel) (30). Cells within the tumor microenvironment

(TME) of OS can secrete EVs, which can deliver non-coding RNAs

(ncRNAs) and proteins within the tumor matrix essential for

cellular communication. Thus, EVs can effectively regulate the

TME within OS and accelerate cell proliferation and metastasis.

Additionally, EVs show high systemic stability and are not

susceptible to cellular enzymes. They also have good therapeutic

and diagnostic potential. In this article, we reviewed the different

types of EVs and their biological properties, along with their

potential in the diagnosis and treatment of OS.
The sources of EVs involved
in osteosarcoma

Extracellular vesicles secreted by drug-resistant cells

facilitate and transfer drug resistance to different types of

tumors, including breast, prostate, colon, lung, and gastric

cancer, as well as, osteosarcoma (31). Doxorubicin and

cisplatin resistance are transferred from OS resistant cells to

sensitive cells through EVs that carry P-glycoprotein, MDR-1

mRNA, or the circular RNA hsa_circ_103801 [178.179]. Bone

marrow-derived mesenchymal stem cell-derived extracellular

vesicles (BMSC-EVs) can promote the proliferation, invasion,

and migration of osteosarcoma cells via the MALAT1/miR-143/

NRSN2/Wnt/b-catenin axis (32). Additionally, EVs secreted by

the osteosarcoma 143B cell line contain a pro-osteoclastogenic

cargo, which includes MMPs (MMP-1 and MMP-13), RANK-L

(Receptor Activator of Nuclear Factor k B Ligand), CD-9, and

TGF-b. These findings highlighted that EVs from different

sources exhibit different biological activities.
The characteristics of EVs

Extracellular vesicles released from most cells contain various

proteins, RNA, genomic DNA (gDNA), non-coding RNAs

(ncRNAs), lipids, and metabolites (33, 34). EVs can be

categorized into three types based on their size and release

mechanisms and include EVs, microvesicles, and apoptotic

vesicles, with vesicle sizes ranging from 30 to 150 nm, 100 to

1,000 nm, and 50 to 1,500 nm, respectively (35, 36). EVs are

cultured from OS cells obtained in vivo and purified by differential

centrifugation. The separated and purified EVs are assessed

according to their purity and morphology, followed by protein

profiling and sequencing of the components. The assessment of the

morphology of EVs by electron microscopy remains a gold
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standard. Additionally, flow cytometry (FCM) might also be

performed for assessing EVs. For particle size analysis of EVs,

Nanoparticle Tracking Analysis Technology (NTA) is frequently

used. The production of EVs involves the initiation of endocytosis,

the formation of multivesicular bodies (MVBs), and the production

of exosomes (37, 38). EVs start to develop with the initial formation

of plasma membrane invaginations into a cup-like structure

containing cell surface proteins, soluble proteins, and endoplasmic

reticulum (ER). This cup-shaped structure, together with trans

Golgi, promotes the formation of early endonucleosomes (39).

Early intranucleosomes mature into late intranucleosomes,

resulting in the formation of MVBs. These MVBs may fuse with

the plasma membrane to release the intraluminal vesicles (ILVs)

associated with EVs ormay fuse with autophagosomes or lysosomes

for degradation (40, 41). EVs are found in different types of body

fluids, such as urine, plasma, breast milk, and ascites (42, 43), which

makes EVs a significant tool with great diagnostic potential.
The process of the formation of EVs

Extracellular vesicles are usually formed by endosomal

endocytosis, in contrast to other conventional membrane

outgrowth processes, which deform membranes from

organelles into the cytoplasm. The endosomal limiting

membrane undergoes multiple depressions with inward

growth resulting in the formation ILVs. These ILVs are then

converted into MVBs, which have a dynamic subcellular

architecture. Interestingly, MVB formation can occur at the

endosomal limiting membrane by the endosomal sorting

complex required for the transport (ESCRT) mechanism (44,

45). The ESCRT machinery functions through a set of

cytoplasmic protein complexes by recognizing the

ubiquitinylated modified membrane proteins. The first ESCRT

complex (ESCRT-0) can recognize ubiquitin markers, showing

high levels of enrichment in the endosomal membrane during

the transport of ubiquitinated complex into ESCRT I/II. Within

ESCRT I, tumor susceptibility gene 101 protein (TSG101) can

detect disulfide bonds and induce depression of the endosomal

membrane. They function as shears in the bud neck under the

influence of ESCRT III and lead to the formation of MVBs (46,

47). However, MVBs can still be formed in the absence of

ESCRT. The process is initiated by an accessory protein ALG-

2 interacting protein X (AIix). AIix directly binds to the

intracellular bridging protein syntenin, which is further

involved in EV formation (48, 49). Such ESCRT-independent

MVBs are produced under the action of the abundant tetra-

transmembrane protein CD63-a on MVBs and by ceramide-

mediated cell membrane outgrowth (50, 51). These MVBs can

fuse with lysosomes, degrade their contents, and recirculate

them. The sorting of MVBs is significantly regulated by their

cholesterol levels. For example, MVBs rich in cholesterol are

targeted to cell membranes to be released as EVs, whereas,
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MVBs with low cholesterol levels are targeted for transport

toward lysosomes (52).
Mechanism of action of EVs

Extracellular vesicles are generally responsible for inducing

functional responses in receptor cells by delivering their

contents, promoting phenotypic changes in receptor cells, and

affecting their physiological state (25, 53). EV-mediated

intercellular communication within plasma membrane relies

on the activation of surface receptors on recipient cells and

initiates cell signaling. The uptake of EVs by recipient cells is

facilitated by cytokinesis (54, 55). The mechanisms of exosome

cell membrane interaction and the transport of exosomes and

endosomes are not fully understood. However, some studies

have shown that these mechanisms are associated with the origin

of EVs, receptor cells, and downstream processes involved in the

same. Some studies have shown the activity of EVs derived from

certain cells along with their application in the treatment of

diseases (56, 57). The interaction between proteins significantly

expressed on EVs and surface receptors of the recipient cell

membrane can be used to assess the target cell specificity (58,

59). The known mediators of cell communication also include

transmembrane tetraspanins, integrins, lipids, and extracellular

matrix components (60, 61).
Extracellular vesicles in tumor
diagnosis and treatment

Extracellular vesicles influence the exclusion of redundant

and nonfunctional cellular components (62, 63). They can also

act as intercellular linkers for protein, nucleic acid, and lipid

transport between host and recipient cells. They strongly affect

different biological processes, such as antigen presentation,

angiogenesis, inflammation, and apoptosis (64–67). These

processes might be related to the metastasis of biomolecules

and cell crosstalk that leads to cancer-related events (47, 68, 69).

The constituent nucleic acids, proteins, and lipids captured by

EVs during production might reflect their cellular origin and

physiological state.

These biomolecules have high disease specificity and might act

as potential biomarkers. Additionally, EVs function as carriers for

these biomolecules and prevent their enzymatic degradation.

Various tumor-associated events involve EVs for cell proliferation,

apoptosis, metastasis, and angiogenesis, and thus, may be used as a

noninvasive diagnostic biomarker in various types of cancer (70–

72). For example, miR-21, miR-124–3p, and miR-222 in serum EVs

might be used as molecular biomarkers for assessing early cancer

development during postsurgical management of high-grade

gliomas (HGG) (73). Shin et al. reported the expression of miR-
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21, miR-451, and miR-636 in urinary EVs in prostate cancer

patients, which indicated a close resemblance with preoperative

prostate-specific antigen (PSA) levels. Thus, urinary exosome-

derived miRNAs might be used as noninvasive markers for

predicting prostate cancer prognostic outcomes and metastasis

(74). Wang et al. showed that plasma exosome-derived miR-363–

5p was necessary for differentiating LN-positive breast cancer (BC)

patients from LN-negative patients. Additionally, upregulation of

miR-363–5p was strongly associated with overall survival (75).

Exosome therapeutic research is focused on three main areas,

which include biomedicine, drug delivery, and regenerative

medicine. EVs are promising for treating disorders due to their

nontumorigenic risk and bactericidal infiltration. Due to their small

size, EVs can reach the site of injury through internal circulation and

lower immunogenicity, which makes them an ideal candidate for

developing treatment against various disorders (76, 77). EVs also

facilitate gene delivery to recipient cells, thus alteringtheir biological

activity. They are also capable of carrying therapeutic payloads such

as proteins, RNAs, and chemotherapeutic agents and delivering

them to the target site across different biological barriers (47, 78, 79).

EVs can be engineered to target cell signaling pathways or specific

recipient cells using a ligand-targeted approach (27, 80).

Chemotherapeutic loaded EVs can target tumors with a

significant reduction in dose-dependent side effects of

chemotherapeutic agents and an increase in their efficacy in

cancer treatment (55, 68, 81). Mesenchymal stem cell (MSC)-

derived EVs can be used in the field of regeneration and repair.

Additionally, some in vitro and in vivo studies have investigated its

regenerative potential and therapeutic applications. In some studies,

EVs were found to outperform MSCs in the treatment of various

diseases (19, 82, 83).
Role of EVs in tumor growth and
metastasis of osteosarcoma (OS)

Extracellular vesicles affect cellular communication between cells

within the TME, thus influencing cell proliferation and metastasis in

cancer. Bone marrow-derived mesenchymal stem cell-derived

extracellular vesicles (BMSC-EVs) can promote proliferation,

invasion, and migration of osteosarcoma cells via the MALAT1/

miR-143/NRSN2/Wnt/b-catenin axis (32). This enhancement in cell

proliferation and metastasis is facilitated by the epithelial-

mesenchymal transition (EMT) in related cell types. Moreover, the

TME significantly accelerates tumor neovascularization,

immunosuppression through stromal cells, and the transformation

of cancer-associated fibroblasts (84–87). In conclusion, EVs have a

strong effect on OS cell proliferation, migration, invasion, and

angiogenesis by participating in intercellular communication and

controlling cellular signaling (Figure 1).
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Extracellular vesicles are involved in
osteosarcoma proliferation

Cancer cells undergo indefinite proliferation (88). In contrast,

normal tissues have precise and controlled release of pro-growth

signals, which cyclically initiate cell proliferation and

differentiation up to a finite number of cell divisions. However,

tumor cells can inherently produce growth factor receptors, thus

escaping negative feedback regulation against proliferation (89,

90). EVs also have an important effect on proliferation in OS

(Table 1). Zhang et al. reported the effect of exosomal miR-208a

obtained from bone marrow-derived mesenchymal stem cells

(BMSCs) on OS cell proliferation and apoptosis. They found

that OS cell growth was enhanced and apoptosis was inhibited

when PDCD4 expression was suppressed. This, in turn, activated

the Hippo and ERK1/2 pathways. In contrast, the exosomal miR-

206 obtained from BMSCs suppressed cell growth, invasion, and

migration. It also promoted apoptosis by targeting TRA2B in OS

cells (102). Additionally, BMSC-derived EVs could encapsulate

and translocate PVT1 in OS cells, and PVT1 promoted cancer

development and migration by binding to miR-183–5p and

facilitating the expression of ERG (94). BMSC-EVs could

enhance OS cell growth, migration, and invasion through

MALAT1/miR-143/NRSN2/Wnt/b-catenin signaling (93).

Huang et al. showed the effect of EVs obtained from hBMSCs

on tumorigenesis and migration. The EVs showed enhanced

tumorigenesis and migration by promoting oncogenic

autophagy in OS (95). EVs derived from ADSC could enhance

OS cell growth, invasion, andmigration by delivering COLGALT2

to OS cells, leading to the malignant progression of OS (96). Li

et al. found that OS cells that showed AXL upregulation promoted

the secretion of EVs into cells with downregulated AXL, and this

promoted cell growth, invasion, and migration via the linc00852/

miR-7–5p/AXL regulatory axis (103). Ge et al. found that BMSC-

derived EVs translocate into OS cells and promote OS growth and

migration by LCP1/JAK2/STAT3 signaling and inhibit OS

progression via miR-135a-5p/LCP1 signaling (98). The MG-63

cell-derived EVs, which were co-cultured using HOS and MG-63

cell lines, significantly enhanced OS cell growth and inhibited

apoptosis. This effect might be related to the interaction of Hic-5

with smad4 and a decrease in the expression of TCF/LEF that

regulates Wnt/b-catenin signaling (99). Han et al. found that

exosomal miR-1307 obtained from OS cells can promote OS cell

growth, invasion, and migration by inhibiting AGAP1 expression.

This finding indicated that the miR-1307-AGAP1 axis might act

as an anti-OS therapeutic target (100). Wu et al. found that

exosomal miR-15a expression decreased in plasma EVs, and

exosomal miR-15a was absorbed by OS cells, which suppressed

GATA2/MDM2 signaling via the p53 pathway. This inhibited OS

cell growth and migration in vitro (104).
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TABLE 1 Biological activity of exosomes in OS proliferation.

EV
content

Parent cells Target cells Mechanism Biological activity Ref.

miR-208 BMSCs OS cells PDCD4/ERK1/2 Enhance OS cell invasion, viability as well as clone
formation ability

(91)

miR-206 BMSCs OS cells TRA2B Suppress OS cell growth, invasion, and migration, while
inducing their apoptosis

(92)

MALAT1 BMSCs OS cells MALAT1/miR-143/NRSN2/
Wnt/b-catenin

Promote OS cell proliferation, metastasis, and invasion (93)

PVT1 BMSCs OS cells PVT1/miR-183–5p/ERG Promote OS proliferation and invasion (94)

ATG5 BMSCs OS cells / Enhance OS cell growth, invasion, and migration, (95)

COLGALT2 ADSCs OS cells / Enhance OS cell growth, invasion, and migration (96)

Linc00852 high AXL expression in
OS cells

low AXL expression in
OS cells

Linc00852/miR-7–5p/AXL Promote cell proliferation, migration and invasion (97)

LCP1 BMSCs OS cells miR-135a-5p/LCP1/JAK2/
STAT3

Enhance OS cell growth, and migration (98)

Hic-5 MG-63 MG-63 and HOS cells Hic-5/smad4-TCF/LEF-Wnt/b-
catenin

Promote cell proliferation and inhibit cell apoptosis (99)

miR-1307 OS cells OS cells AGAP1 Enhance OS cell growth, invasion, and migration (100)

miR-15a Serum-derived exosome OS cells miR-15a/p5/GATA2/MDM2 Inhibit OS cell growth, invasion, and migration (101)
Frontiers in
 Immunology
 05
 frontiersi
FIGURE 1

Major exosome release process in OS. EVs are comprised of various proteins and nucleic acids. These evolutionarily conserved proteins that can
be used as biomarkers, like HSP70, CD9, CD63, and CD81. Additionally, exosomal cargos are also involved in transport of multiple biomolecules
such as DNA or RNA. EVs that carry genetic materials are utilized in development of treatment for OS through enhancing drug resistance,
immune evasion, migration, invasion, and angiogenesis. Source cell-derived exosomal cargos are also carried into recipient cells via blood
circulation. Highly invasive OS cells enhance cell migration and invasion through production of exosomes.
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https://doi.org/10.3389/fimmu.2022.1002742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2022.1002742
EVs have an important effect on
OS metastasis

In epithelial-mesenchymal transition (EMT), the epithelial

properties of epithelial cells are lost, while the mesenchymal

phenotype is acquired. This phenomenon is widely involved in

physiological regulation and pathological changes and is closely

related to embryogenesis, tissue regeneration, invasion, and

metastasis of cancer tissue (105–107). When EMT occurs, the

main features of epithelial cells are lost, resulting in a change

from polygonal to spindle-shaped fibroblast-like morphology.

Additionally, the cells also lose their polarity, show reduced

adhesion, and gain the ability to invade and metastasize (108,

109). EVs have a strong effect on OS invasive metastasis

(Table 2). When in-vitro synthesized miR-143 was transported

into OS cells via EVs, they significantly inhibited the invasive

ability of the cells (110). Gong et al. found that highly invasive

OS cells secreted exosomal miR-675 into recipient cells and

further suppressed CALN1 expression to enhance migration and

invasion of OS cells. Additionally, serum exosomal miR-675

levels among OS cases are strongly associated with the prognosis

of OS (111). Mazumdar et al. found that EVs derived from 143-B

cells with high metastasis capacity and SAOS-2 cells with low

metastasis capacity could induce the recruitment of BMCs into

the lungs. The components of EVs might inhibit distant

metastasis of OS (113). Zhong et al. showed that the Rab22a-

NeoF1 fusion protein with PYK2 could be sorted into EVs in OS.

The exosomal Rab22a-NeoF1 fusion protein promotes

premetastatic lung niche generation by recruiting bone

marrow-derived macrophages (BMDMs) (112). Han et al.

showed that exosomal miR-1307 obtained from OS cells

enhanced OS cell growth, invasion, and migration by
Frontiers in Immunology 06
inhibiting AGAP1 expression; thus, targeting miR-1307 might

inhibit the malignant progression of OS (100).
EVs are essential for angiogenesis
in osteosarcoma

Angiogenesis is the formation of new blood vessels in

capillaries or venules behind capillaries (114, 115). This

process is regulated by the interaction between proangiogenic

and antiangiogenic factors. Although these factors are stable

under normal physiological conditions, they can be activated or

inactivated by external stimuli (12, 116). Different types of cells

(cancer and healthy cells) require nutrients, which are supplied

through blood capillaries. These capillaries can also excrete

metabolic waste generated within cells (117, 118). Tumor-

derived EVs are associated with an important mechanism that

promotes angiogenesis. Moreover, EVs have a critical effect on

angiogenesis in OS (Table 3). Yoshida et al. found that the

expression of miR-25–3p increased in OS tissues, which

promoted cancer development, drug resistance, and invasion

by inhibiting the expression of DKK3. Embedding synthetic

miR-25–3p into tumor-derived EVs significantly promoted the

capillary formation and vascular endothelial cell (EC) invasion

(119). Tao et al. showed that angiogenesis in OS could be

promoted by EWSAT1. Therefore, including exosomes

increases the sensitivity of vascular endothelial cells, which

directly induces an increase in the secretion of angiogenic

factors (120). Li et al. showed that osteosarcoma cells with

high exosome abundance could modulate autophagy and

angiogenesis in OS via ATG and miR-153 by secreting

exosomal lnc-OIP5-AS1 into other OS cells (121).
TABLE 2 Biological functions of exosomes during the metastasis of OS.

EV content Parent cells Target cell Mechanism Biological activity Ref.

synthetic miR-143 / OS cells / Inhibit cell invasion (110)

miR-675 OS cells hFOB1.19 CALN1 Enhance OS cell invasion, and migration (111)

Rab22a-NeoF1/PYK2 PYK2-positive osteosarcoma cells macrophages RhoA Facilitate the pre-metastatic niche formation (112)

miR-1307 OS cells OS cells AGAP1 Enhance OS cell growth, invasion, and migration (100)
frontiersi
TABLE 3 The biological function of exosome in the angiogenesis of OS.

EV content Parent cells Target cells Mechanism Biological activity Ref.

synthetic miR-25–3p / OS cells DKK3 Enhance angiogenesis and vascular endothelial cell migration (119)

EWSAT1 / OS cells / Increase in sensitivity/reactivity of vascular endothelial cells (120)

OIP5-AS1 OS cells OS cells miR-153/ATG5 Increase in the angiogenesis level (121)
n.org
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Extracellular vesicles are essential
for the immune activity
of osteosarcoma

The natural response of the body to any foreign material is

expressed by immune system activation and production of EVs

(22, 83, 122). EVs can also regulate and modulate immune cells

and participate in the immune response (21, 123, 124). EVs

obtained from cancer cells can deliver tumor-associated antigens

(TAAs) to stimulate immune cells and generate antitumor

immune responses. However, they can also interfere with

immune recognition and inhibit tissue-associated cells, T cells,

immune-related cells, and natural killer (NK) cells, thus

accelerating tumor cell escape and metastasis (25, 125).

Moreover, EVs are responsible for regulating cancer cell

development via TME-derived immune cells (126, 127).

Additionally, the immune microenvironment within OS cells

is strongly affected by EVs (Table 4). Cancer-associated

fibroblast (CAFs)-secreted exosomal miR-1228 can enhance

OS migration and invasion via SCAI. This can be further used

in the development of miR-1228-based anti-OS therapy (119).

Raimondi et al. found that EVs can promote osteoclast bone

resorption and differentiation. EVs can also enhance tube

formation in ECs while increasing the expression of

angiogenic markers. Specific miRNAs, including miR-21–5p

and miR-148a, have important effects on the tumor

microenvironment, as determined by second-generation

sequencing (128). The EVs of metastatic OS cells secrete

exosomal TGFb2 into tumor-associated macrophages, which

in turn promote the M2 phenotype and contribute to

immunosuppression and tumorigenesis (129). Mazumdar et al.

showed that EVs obtained from OS cells can promote the

differentiation of myofibroblasts/CAF, the generation of
Frontiers in Immunology 07
fibronectin, and the expression of smooth muscle actin. They

can also significantly promote the invasive ability of human lung

fibroblasts (130). Cheng et al. showed that OS-obtained EVs can

promote the polarization of M2 macrophages via Tim-3, which

in turn can promote the invasion of OS cells and metastasis

(135). Zhang et al. showed that OS cell-derived exosomal

COL6A1 can convert normal fibroblasts into CAFs by

secreting proinflammatory cytokines. After activation, CAFs

can mediate the TGF-b/COL6A1 pathway to enhance the

migration and invasion of OS cells (132). Zhang et al. showed

that exosomal LIFR-AS1 obtained from macrophages could

promote the OS malignancy grade by combining with miR-

29a, which promoted the NFIA level (133).
Potential clinical application of EVs
in osteosarcoma

Extracellular vesicles consist of various biomolecules, which

are biologically active. They circulate through systemic

circulation and are also found in various body fluids capable

of mediating long-distance intercellular communication (40,

136). Tumor-derived EVs are rich in biomolecules, such as

proteins, nucleotides, and lipids, which indicate the origin of

the pathophysiological status of the cells (137, 138). EVs can

provide a specialized lipid bilayer covering, thus preventing the

degradation of RNA molecules (137, 139). Hence, the detection

of tumor EVs in patients provides significant advantages to

liquid biopsy, and EVs might also be used for early diagnosis.

EVs might also be used to develop efficacious treatment

strategies and monitor the prognosis of different diseases

[181.182]. A specific collection of RNAs in the EV cargo might

also serve as new or supplementary biomarkers in the diagnosis
TABLE 4 The biological functions of exosome in the immuno-modulation of OS.

EV content Parent cell Target cell Mechanism Biological function Ref.

miR-1228 cancer-associated fibroblasts OS cells SCAI Promote OS cell migration and invasion (119)

miR-148a-3p and
miR-21–5p

OS cells Raw264.7 and Huvec
cells

/ Influence osteoclast formation, tumor angiogenesis, and bone
resorption

(128)

TGFb2 Metastatic OS cells Tumor-associated
macrophages

/ Enhance M2 phenotype while creating the tumor-promoting,
Immunosuppressive TME

(129)

TGFb1 OS cells Resident lung cells / Drive myofibroblast/cancer-associated (130)

fibroblast differentiation

Tim-3 MG63 Macrophages / Induce M2 type differentiation of macrophages (131)

COL6A1 OS cells cancer-associated
fibroblasts

IL-6, IL-8 and
STAT1

Convert normal fibroblasts to cancer-associated fibroblasts (132)

LIFR-AS1 Macrophages OS cells miR-29a/NFIA Enhance OS cell growth, invasion, and migration (133)

While promoting their apoptosis

miR-221–3p M2-polarized tumor-associated
macrophages

OS cells SOCS3/JAK2/
STAT3

Promote growth of OS cells (134)
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and progression of OS (31). Another study showed dysregulated

levels of several miRNAs and mRNAs in EVs isolated from the

serum of OS patients with a poor chemotherapeutic response

compared to that of patients who responded positively to

chemotherapy (140). A pilot study showed a higher tumor

mutation burden in the RNA isolated from the plasma

samples with metastatic EVs compared to that isolated from

the plasma samples with non-metastatic ones (141). These

findings highlighted the clinical application of EVs in OS.
Extracellular vesicles are promising
tools for developing
osteosarcoma biomarkers

The diagnostic and prognostic assessment of OS improved

considerably with the application of EVs as a biomarker for the

disease. Next-generation sequencing was conducted, and eight

novel miRNAs were identified from OS cells, out of which five

miRNAs were present in circulating EVs among OS patients.

However, the biological activity in the pathogenesis of OS and the

diagnostic and therapeutic potential of these miRNAs need to be

further investigated (142). The expression levels of plasma EV-miR-

101 in OS patients and normal participants were determined by

performing qRT–PCR. The results indicated a significant decrease

in EV-miR-101 levels in OS patients relative to that in normal

participants. Moreover, the EV-miR-101 plasma levels in OS

patients with metastases were lower than those in patients

without metastases. Hence, EV-miR-101 might be a diagnostic

marker for OS (143). Ye et al. identified 57 differentially expressed

miRNAs in plasma samples obtained from OS patients and normal

participants via high-throughput sequencing. Among these

miRNAs, 20 were upregulated, and 37 were downregulated. The

expression of miR-92a-3p, miR-130a-3p, miR-195–3p, let-7i-3p,

and miR-335–5p increased significantly within EVs from OS

patients relative to their expression in controls. The findings

suggested that these miRNAs might be used as potential

diagnostic markers for OS (144). Zhang et al. reported high levels

of CASC15 in OS cells and tissues along with a significant increase

in the levels of CASC15 in the OS plasma EVs compared to their

levels in controls (145). Cambier et al. described the significant

diagnostic potential of overexpressed biomarkers such as HSATII,

HSATI, Charlie 3, and LINE1-P1 at the DNA level rather than the

RNA level in serum EVs from OS patients compared to their levels

in serum EVs of the control (146). Huo et al. described significant

upregulation of hsa_circ_0056285 in serum EVs in OS patients.

They also showed the great diagnostic ability of hsa_circ_0056285

based on the ROC curve analysis (147). The expression of SENP1

obtained from plasma exosomes of OS patients was closely related

to the tumor size, tumor location, necrosis rate, lungmetastasis, and

surgical staging. Moreover, patients with higher SENP1 expression

had poorer overall survival, and disease-free survival (DFS)
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compared to OS patients with downregulated SENP1 (148). Han

et al. analyzed EVs from plasma samples of OS patients with and

without metastases and compared the results to those of normal

controls using MALDI-TOF MS. They identified seven exosomal

protein markers that were associated with OS lung metastasis (11).

Also, noninvasive liquid biopsy using MALDI-TOF MS

fingerprinting and SERS for the identification of EVs can be

applied for the rapid diagnosis of OS (149).
Potentials of EVs in the treatment
of osteosarcoma

Treatment options for OS were either surgery or radiotherapy

until the 1970s. Patients with OS also showed high resistance to

radiotherapy (150, 151). Clinical results showed that surgical

intervention, including tumor resection and/or amputation,

cannot improve the survival rate (the operative mortality was

about 80%) (152). The five-year survival rate of tumor resection

cases is only 20% (153). Additionally, chemotherapeutic

interventions can improve the survival rate of OS and reduce the

amputation rate, thus improving the limb rescue score. The long-

term survival rate of OS patients without metastasis is as high as

75%, compared to 20% before the 1970s (154, 155). However, the

long-term survival rate of patients with recurrence or metastasis is

still low (Figure 2).

Kyung et al. showed that EVs have antitumor effects on

osteosarcoma cells. EVs from canine macrophages can activate

the apoptosis pathway of canine OS cells, which is an effective

anti-cancer treatment (156). Additionally, MSC-derived EVs

carrying miR-150 can reduce the proliferation and migration

of osteosarcoma cells by targeting IGF2BP1 (insulin-like growth

factor-2 mRNA binding protein 1) (157) Exosomes might also

be used as a carrier to deliver chemotherapeutic drugs to

osteosarcoma cells [188.189]. Exosomes can be directly

charged with drugs [190.191].
Conclusion

The advanced metastasized tumors, in contrast to primary

tumors, often pose a major hindrance to the success of treatment

outcomes in OS and increase patient mortality. Therefore, early

diagnosis is the key to improving the prognosis and survival of OS

patients (123, 158). EVs are stable, diverse, nano-sized vesicles that

are found in most tissues, organs, and body fluids (124, 159).

Moreover, EVs containing transmembrane proteins and some

intracellular proteins, such as integrins or genetic material from

the cells of origin, display a high level of identity within cells. This

identity is associated with the identification of the tissue of origin,

suggesting the importance of EVs and their potential as biomarkers

in the early diagnosis and prognosis of OS (22, 160, 161). The
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surface proteins of EVs can be targeted and captured by recipient

cells, and the contents of EVs can alter the physiological state of

recipient cells (162, 163). Tumor EVs can also modulate cancer

progression, immune evasion, metastasis, and angiogenesis by

interacting with other cells within the TME (125, 164, 165).

Additionally, the exosome-mediated pathological processes also

highlight the great potential of EVs as biomarkers. Also, a better

understanding of the mechanisms of exosome action is necessary to

screen, diagnose, and assess patient prognosis.

There are still many problems in the development of EVs. For

example, a standardized approach is needed for the quick, easy, and

specific isolation of EVs in liquid biopsy. Moreover, EVs can serve

as potential biomarkers for the diagnosis of OS, predict its

prognosis, and monitor real-time treatment response. Clinical

studies with a small sample size have shown reproducibility of

EVs (166–168). However, more multicenter trials with large sample

sizes are required for developing more accurate liquid biopsies. For

evaluating the biological functions of EVs, determining whether

they have similar regulatory functions in vivo and in vitro is

challenging. The reason for this heterogeneity is that numerous

assays have been performed in vitro, however, similar culture

conditions cannot be replicated in vivo. Additionally, for

therapeutic purposes, exosome-derived cells need to be selected

carefully to ensure safe treatment. Due to their availability and non-

nucleated and non-genetic nature, erythrocytes are the most

promising cells for producing exosomes.
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Besides their potential as good biomarkers, EVs are

promising for precise and targeted cancer therapy (169–171).

The development of a novel drug-loading system is a barrier to

enhancing the effectiveness of antitumor drug therapy.

Therefore, as a natural therapeutic carrier, EVs might be used

for their low immunogenicity and various therapeutic bioactive

molecules contained within (21, 161). Moreover, exogenous

drugs carried by EVs can maintain drug stability in vivo.

These advantages make EVs a better drug loading system than

traditional drug delivery models. Hence, EVs are important for

developing precision medicine for OS and other cancers. Han

et al. constructed the iRGD-Lamp2b-modified MSC fusion gene

for isolating and purifying EVs, as well as, loading the anti-

miRNA-221 oligonucleotides into EVs. AMO-loaded EVs are

effective in inhibiting in-vitro colon cancer (CC) cell growth and

clone-forming ability (172). Exosomal ANXA6 levels in the sera

of TNBC patients can predict the efficacy of gemcitabine

chemotherapy (173). CC cells can produce exosomal miR-

208b to receptor T-cells and promote the expansion of Treg

cells via programmed cell death factor 4 (PDCD4), leading to

malignant tumor growth and oxaliplatin resistance (174).

In this study, we highlighted and reviewed the advancements in

the research on the biological functions of EVs during the

occurrence and development of OS, along with its clinical

applications. Moreover, EVs from OS can promote the

progression of OS by regulating cancer drug resistance,
FIGURE 2

EVs have potential applications in treatment of OS. EVs are multifunctional nanostructured carriers which can be used as drug delivery systems
with low immunogenicity as well as high biocompatibility and efficacy. OS-derived EVs contain immunomodulation properties that significantly
reduces T cell proliferation rates and promote T regulatory phenotypes, thereby promoting OS progression. OS cases showing low
chemosensitivity in patients showing favorable chemosensitivity. miR-9, miR-27a, miR-135b and miR-148a show marked up-regulation within
serum EVs of OS patients. OS cells could promote osteosarcoma lung metastasis by releasing EVs that contained PD-L1 and N-calcineurin. EVs
from cisplatin-resistant (CDDP)-resistant OS cells decreased P-glycoprotein and MDR-associated protein 1 levels in MG63 and U2OS cells,
increases cellular sensitivity to CDDP and inhibits apoptosis through exosomal-hsa_circ_103801.
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immunity, angiogenesis, and metastasis. These findings highlight

the role of EVs as anti-OS targets. Additionally, due to their

abnormal expression in tumor-derived exosomal inclusions and

their ability to reflect the tumor status, EVs might be used as

markers for the diagnosis and prognosis of OS. Exosomal drug

carriers and immunomodulatory therapy are promising therapeutic

strategies in the treatment of OS.
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