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A distinct M2 macrophage
infiltrate and transcriptomic
profile decisively influence
adipocyte differentiation
in lipedema
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Maija Hollmén2 and Epameinondas Gousopoulos1*

1Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland,
2MediCity Research Laboratory, University of Turku, Turku, Finland, 3Department of Trauma
Surgery, University Hospital Zurich, Zurich, Switzerland, 4Division of Plastic Surgery, Department of
Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Georg-
August-University, Göttingen, Germany, 5Institute of Pharmaceutical Sciences, Swiss Federal
Institute of Technology, ETH Zurich, Zurich, Switzerland
Lipedema is a chronic and progressive adipose tissue disorder, characterized by

the painful and disproportionate increase of the subcutaneous fat in the lower

and/or upper extremities. While distinct immune cell infiltration is a known

hallmark of the disease, its role in the onset and development of lipedema

remains unclear. To analyze the macrophage composition and involved

signaling pathways, anatomically matched lipedema and control tissue

samples were collected intra-operatively from gender- and BMI-matched

patients, and the Stromal Vascular Fraction (SVF) was used for Cytometry by

Time-of-Flight (CyTOF) and RNA sequencing. The phenotypic characterization

of the immune component of lipedema versus control SVF using CyTOF

revealed significantly increased numbers of CD163 macrophages. To gain

further insight into this macrophage composition and molecular pathways,

RNA sequencing of isolated CD11b+ cells was performed. The analysis

suggested a significant modification of distinct gene ontology clusters in

lipedema, including cytokine-mediated signaling activity, interleukin-1

receptor activity, extracellular matrix organization, and regulation of

androgen receptor signaling. As distinct macrophage populations are known

to affect adipose tissue differentiation and metabolism, we evaluated the effect

of M2 to M1 macrophage polarization in lipedema using the selective PI3Kg
inhibitor IPI-549. Surprisingly, the differentiation of adipose tissue-derived stem

cells with conditioned medium from IPI-549 treated SVF resulted in a

significant decreased accumulation of lipids in lipedema versus control SVF.

In conclusion, our results indicate that CD163+ macrophages are a critical

component in lipedema and re-polarization of lipedema macrophages can
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normalize the differentiation of adipose-derived stem cells in vitro evaluated by

the cellular lipid accumulation. These data open a new chapter in

understanding lipedema pathophysiology and may indicate potential

treatment options.
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1 Introduction

Lipedema is an adipose tissue disorder characterized by a

symmetrical bilateral increase of painful subcutaneous fat tissue,

predominantly in the legs and arms. This medical condition is a

significant burden for the individual patient causing pain,

considerable disability, and psychological distress (1). Lipedema

occurs almost exclusively in women, and the disease shows

frequently a familial clustering. The accumulation of fibro-

adipose tissue is associated with hormonal changes, such as

puberty, pregnancy, or menopause. The volume increase can be

attributed to both, the proliferation of adipose stem cells and

adipocyte hypertrophy (2), which leads to the distinct lipedema

phenotype and the typical adipose tissue distribution. Multiple

studies have revealed that adipose-derived stem cells from lipedema

patients have a higher adipogenic differentiation potential (3, 4).

The volume increase in the extremities is often misdiagnosed

as other clinical entities, such as obesity and lymphedema. All

these entities are characterized by a distinct but different

immune cell infiltrate. Recent research from various

independent groups including ours has identified an increased

infiltration of macrophages in lipedema tissue, while the T cell

compartment remains unaltered. Interestingly, the infiltrating

macrophages exhibit an M2 polarization state, attributed to the

increased expression of CD163 (5). By contrast, adiposity is

normally characterized by a predominance of M1 macrophages

(6), and lymphedema by the infiltration of CD4+ T cells (7).

Although CD4+ cell recruitment regulates fibrosis formation in

lymphedema (8) the function of macrophages is less clear in

lipedema. It is well established that macrophages, can influence

adipogenic differentiation and adipocyte metabolism via

cytokine secretion. Recent studies have observed altered

systemic cytokine levels in lipedema patients, possibly

attributed to the infiltrating macrophages, as well as an

increased metabolic activity of the stromal vascular fraction

(SVF) of the affected lipedematous extremities (9). The

metabolism of the adipose tissue is mostly determined by the

interplay between adipocytes, preadipocytes, endothelial cells

and immune cells. In lipedema, both the SVF cell composition

and the cell interplay appears altered, which seems to be a

potential target in the treatment of lipedema.
02
In the current study, we performed a detailed phenotypic

analysis of the myeloid component of the stromal vascular

fraction of lipedema patients and anatomical site and BMI

matched controls, to analyze in depth the predominant

macrophage infiltrate. Furthermore, in an attempt to gain

further insights into the macrophage transcriptomic profile

and the molecular pathways involved, we performed RNA

sequencing of isolated CD11b+ cells. The targets identified

using the aforementioned techniques were further assessed in

functional in vitro assays, to elucidate their contribution in the

adipogenic differentiation and thus potential involvement in

lipedema pathophysiology.
2 Materials and methods

2.1 Study population

The study protocols were approved by the Swiss ethics

(BASEC-Nr.: 2019-00389) and Ethical Committee of the

University Hospital Goettingen, State of Lower Saxony,

Germany (Nr. 23-11-17, accepted on 23. November 2017).

The study was conducted according to the principles of the

Declaration of Helsinki. All patients were informed prior to the

surgical procedures in oral and written form and provided their

written informed consent. Tissue was collected from lipedema

patients undergoing elective surgery of the affected extremities.

As a healthy control served patients who underwent similar

elective surgeries and could provide anatomical site matching fat

and skin samples. Patient characteristics of the study cohort are

shown in Supplementary Table 1 and the patient characteristics

for each analysis are provided in Supplementary Table 2.
2.2 Tissue collection and histology

Fat tissue and skin specimens were collected during the

operating procedure and fixed in paraformaldehyde/phosphate-

buffered saline at 4°C and processed further for histology.

Afterwards, the skin samples were embedded in paraffin and

for histological analysis of the skin tissue architecture, the
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specimens were cut into 5-mm thick paraffin sections. Sample

preparation and staining was performed by the Center for

Surgical Research of the University Hospital Zurich.
2.3 Immunohistochemistry

For the immunohistochemical staining, the deparaffinization

of paraffin-embedded sections was followed by the rehydration of

the sections. Target Retrieval Solution high was used for antigen

retrieval, and endogenous peroxidase activity was blocked using

3% hydrogen peroxide (Merck). After blocking (goat serum), the

sections were incubated with polyclonal rabbit antihuman CD206

(abcam ab64693; 1:2000) or monoclonal rabbit antihuman CD163

(abcam ab 182422; 1:300) antibodies. After washing with PBS,

bound antibody was visualized using the DAB substrate

(Chromogen), following the manufacturer’s instructions.

Histology images were obtained using a Zeiss Axio Scan Z1

equipped with a Hitachi HV-F202FCL and the whole tissue

section was scanned using a Plan Apochromat 20x/0.8 numerical

aperture objective.
2.4 RNA extraction and quantitative
polymerase chain reactions

Fat tissue was collected during the operating procedure and

immediately flash frozen in liquid nitrogen. RNA was isolated

from a 100 mg piece of fat tissue using the RNeasy Lipid Tissue

Mini Kit (Qiagen). For RNA from SVF and sorted cells the

NucleoSpin RNA Plus XS kit (Macherey-Nagel) was used.

Complementary DNA was transcribed from 500 ng RNA

template , us ing the High-Capaci ty cDNA Reverse

Transcription Kit (ThermoFisher Scientific). The polymerase

chain reactions were performed using Fast SYBR Green Master

Mix (Applied Biosystems) and QuantStudio 5 Real-Time PCR

Systems. B2M was used as housekeeping gene, and fold changes

of gene expression were calculated using the DDCT method.

Primer Sequences are provided in Supplementary Table 3.
2.5 Isolation of the stromal
vascular fraction

For the isolation of the SVF, adipose tissue was digested

using 2 mg/mL collagenase II in RPMI medium. After 1 h of

incubation under moderate shaking at 37°C, cell suspension was

centrifuged at 1000× g for 5 min. Red blood cells eliminated by

incubating the cell pellet with erythrocyte lysis buffer for 10 min

on ice. Subsequently, cell suspension was diluted in PBS and cells

were washed with PBS and filtered through a 70 mm cell strainer.

The isolated SVF cells were frozen in 45% FBS and 5% DMSO.
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2.6 CyTOF analysis

2.6.1 CyTOF antibodies and antibody labelling
List of the used antibodies including their clones, metal tags

and source are provided below. The antibodies labelled in-house

were obtained as carrier free (anti-human CD45) or diluted

(anti-human Clever-1; clone: 9-11) in the protocol R-buffer at

200 µg/mL and used at 500 µL/labelling. For the labelling the

MaxPar labelling kits (MaxPar labelling kit, Fluidigm) was used

following the manufacturer’s instructions. Antibody panel is

provided in Table 1.
TABLE 1 Antibody panel (grey denotes intracellular staining).

Tag Marker Clone Source

144Nd CD11b ICRF44 Fluidigm

146Nd CD64 10.1 Fluidigm

151Eu CD14 M5E Fluidigm

209Bi CD16 3G8 Fluidigm

162Dy CD11c Bu15 Fluidigm

173Yb HLA-DR L243 Fluidigm

150Nd CD86 IT2.2 Fluidigm

159Tb CD274/PD-L1 29E.2A3 Fluidigm

154Sm CD163 GHI/61 Fluidigm

171Yb CD68 Y1/82A Fluidigm

168Er CD206 15-2 Fluidigm

166Er Clever-1 (Stabilin-1) 9-11 InVivo Biotech
f

2.6.2 CyTOF sample preparation
After thawing of the frozen SVFs cells were washed with

RPMI medium. Cells were re-suspended in PBS and 0.2-1 × 106

cells/sample were stained for 5 min at RT with 2.5 µM Cell-ID

cisplatin viability reagent (201064; Fluidigm). For the barcoding

cells were incubated for 30 min at RT with heavy-metal isotope-

labelled anti-human CD45 (clone H130) antibodies

(CD45_147Sm (BioLegend), 1:200), CD45_141Pr and

(CD45_89Y (both Fluidigm)), washed carefully and combined.

After cells were blocked with 0.2 mg/ml Kiovig for 15 min at RT

the staining of the cell surface markers with heavy-metal isotope-

labelled anti-human antibody cocktail was done for 30 min at RT.

For the intracellular staining the cells were permeabilized using

the Transcription Factor Staining Buffer Set (00-5523-00;

Invitrogen), afterwards blocked for 15min at RT with 0.2 mg/ml

Kiovig and stained with heavy-metal isotope-labelled anti-human

antibody cocktail for 30 min at RT. Following washing, the cells

were incubated for 1 hour at RT with DNA intercalation reagent

(1:1,000, Cell ID Intercalator-103Rh in MaxPar Fix and Perm

Buffer; 201067; Fluidigm), washed and fixed overnight at +4 °C

with 4 % paraformaldehyde solution. The following day the samples

were washed, resuspended in MaxPar Water (201069; Fluidigm)

containing 1:10 dilution of EQ 4 Element Beads (Fluidigm) and
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immediately acquired by a CyTOF mass cytometer

(Helios, Fluidigm).

2.6.3 CyTOF data analysis
A total of 8 healthy control samples and 7 lipedema samples

were stained and analyzed by CyTOF. After excluding samples

with too low cell counts (< 50 CD45+ cells), 5 control and 5

lipedema samples remained for analysis. Mass cytometry data

was bead normalised and concatenated using CyTOF software

(Fluidigm) with default settings. The.fcs files were imported into

FlowJo (Treestar) and manually gated to exclude ion cloud

doublets, cisplatin-positive dead cells and intercalator or event

length high doublets. Debarcoding was done in FlowJo and the

gated CD45+CD11b+CD64+ myeloid cells were exported and

loaded into R (v. 4.0.4) with FlowCore package (v. 2.2.0) (10).

The number of CD45+CD11b+CD64+ cells per sample varied

from 47 to 5318 (median control group = 130, median lipedema

group = 1166). For subsequent analyses, the samples were

subsampled to a maximum of 1200 cells per sample, and

expression values were arcsine-transformed with a cofactor of

5. Clustering and dimensionality reduction were performed

based on CD11c, HLA-DR, CD86, CD163, CD206, CD14 and

CD16 expression. FlowSOM (v. 1.22.0) (11) clustering was

applied without further transformation or scaling in the

algorithm, and a representative clustering result was chosen

after running the algorithm with several seeds and number of

metaclusters. Dimensionality reduction was performed with

Uniform Manifold Approximation and Projection (UMAP)

technique using uwot package (function UMAP, v. 0.1.10)

(12), Euclidean distance as distance metric, 15 nearest

neighbours in manifold approximation and 0,05 minimum

distance between embedded points. For visualizing marker

expression on the UMAP plots, a colour gradient was applied

between 0 and 99th percentile of arcsine-transformed expression

values. To compare FlowSOM metaclusters, the median marker

expression values in each metacluster was plotted as a heatmap

using R package ComplexHeatmap (v.2.6.2, function Heatmap)

(13). The relative size of each FlowSOM metacluster was

calculated for each patient, and Mann-Whitney U test was

used in identifying statistically significant differences between

control and lipedema groups. A heatmap displaying the

significance (-log10 P-value) and sign of differences in

metacluster sizes between the control and lipedema group was

plotted together with a dot plot showing the average metacluster

sizes in control and lipedema groups as black circles with

radiuses proportional to the square root of the metacluster

relative size. Principal component analysis was performed

based on the relative metacluster sizes of each patient

(function prcomp, scaling enabled). The samples were also

hierarchically clustered (Euclidean distance, complete linkage

method) based on median expression levels of indicated markers

on CD11b+CD64+ cells. To compare the lipedema and control

group further, asinh-transformed expression values were plotted
Frontiers in Immunology 04
as staggered density histograms (R package ggridges, v. 0.5.3,

function: geom_density_ridges). As lipedema patients had

considerably more immune cells and CD11b+CD64+ cells in

their SVF-samples, the above analyses were repeated with a more

balanced event sampling (max. 120 cells per patient, n = 521

control group, n = 600 lipedema group) to confirm that the

presented results were not caused by differences in sample sizes.
2.7 RNA sequencing

2.7.1 Flow cytometry sorting and RNA isolation
Frozen SVFs were thawed and washed with RPMI medium.

Subsequently, samples were washed with FACS Buffer (PBS with

2%FCS) and were blocked with Human TruStain FcX

(Biolegend) for 15 min at RT and subsequently stained with

Pacific Blue anti-human CD45 (clone HI30, Biolegend) and

Brilliant Violet anti-mouse/human CD11b (M1/70, Biolegend)

for 30 min at 4°C. Single-cell suspensions was washed twice with

FACS buffer and were filtered through a 40-mm cell strainer. To

exclude cells which died during the thawing and staining

process, 5 minutes prior to the sorting Helix NP Green

(Biolegend) was used for live/dead discrimination. Sorted cells

were lysed and RNA was isolated using the NucleoSpin RNA

Plus XS kit (Macherey-Nagel).

2.7.2 Library preparation and sequencing on
NovaSeq 6000

For the determination of quantity and quality of the isolated

RNA a Tapestion was utilized (Agilent). The SMARTer Stranded

Total RNA-Seq Kit v2 -Pico Input Mammalian (Takara Bio) was

used in the succeeding steps. Briefly, 10 ng RNA per samples was

reverse-transcribed using random priming into double-stranded

cDNA in the presence of a template switch oligo. For the PCR

amplification primers binding the random priming oligo and

template switch oligo sequences, which were added to cDNA

fragment during reverse transcription was used. The full-length

Illumina adapters, including the index for multiplexing were

added during the PCR. Ribosomal cDNA was removed by ZapR

in the presence of the mammalian-specific R-Probes. Enrichment

of the remaining fragment was performed with a second round of

PCR amplification using Illumina adapters matching primers.

The quality and quantity of the enriched libraries were assessed

with a Tapestation (Agilent, Waldbronn, German) and normalized

to 10 nM in Tris-Cl 10mM, pH8.5 supplemented with 0.1% Tween

20. Afterwards libraries were prepared following the NovaSeq

workflow with the NovaSeq6000 Reagent Kit (Illumina). Cluster

generation and sequencing were performed using a NovaSeq6000

System with a run configuration of single end 100bp.

2.7.3 Data analysis
At first adapter sequences were removed and low-quality

ends were trimmed from the raw reads. Total reads were filtered
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for reads with low quality (phred quality <20) using fastp

(Version 0.20) (14). With the resulting high-quality reads the

sequence pseudo alignment to the human reference genome

(build GRCh38.p13, gene models based on Gencode release 37)

was performed and quantification of gene level expression was

carried out using Kallisto (Version 0.46.1) (15). For the detection

of differentially expressed genes a count based negative binomial

model implemented in the software package DESeq2 (R version:

4.1.2, DESeq2 version: 1.34.0) was applied (16). Genes that

showed an altered expression with adjusted p-value < 0.05

(Benjamini and Hochberg method) were considered

differentially expressed. Genes and samples were clustered via

Ward’s hierarchical clustering.
2.8 Preparation of SVF
conditioned medium

SVF were obtained as described above. 0,5 × 106 thawed SVF

cells were plated overnight, washed with PBS and cultured for 72

h with fresh DMEM/F12 without phenol red supplemented with

or without 100nM IPI-549 at 37°C and 5% CO2. Medium was

collected and centrifuged at 1000×g, 4°C for 10 min. Precipitates

were discarded and supernatants were then filter sterilized and

stored at −80°C.
2.9 Differentiation of the adipose derived
stem cells

2.9.1 Adipogenic differentiation of ADSCs
ADSCs were isolated from adipose tissue and were tested for

the three criteria of MSCs as defined by International Society for

Cellular Therapy (ISCT) in 2006 (17): Cells were plastic-

adherent, expression of CD105, CD73 and CD90, and lack

expression of CD45 surface molecules were tested via FACS

and cells were able to differentiate to osteoblasts, adipocytes and

chondroblasts in vitro. For adipogenic differentiation, ADSCs

(1,5×104cells/well) were seeded into 48-well plate with DMEM

complete medium. When cells were grown to confluence,

medium was changed to 50% adipogenic medium (HPAd

Differentiation Medium, Cell Application) and 50% SVF

conditioned medium. Cells were differentiated for 7 days. The

experiment was carried out in duplicates.

2.9.2 Cell staining
Differentiated ADSC were washed with PBS and fixed with

4% paraformaldehyde in PBS for 30 min. After 5 min, the

formaldehyde solution was exchanged. Fixed cells were washed

twice with ddH2O and subsequently rinsed with 60%

isopropanol (Sigma-Aldrich). Lipid accumulation in
Frontiers in Immunology 05
differentiated ADSC were stained with a 3mg/ml Oil Red O in

60% isopropanol solution (Sigma-Aldrich) for 10 min. Image

acquisition was performed immediately after four ddH2O

washing steps,

2.9.3 Image acquisition, processing,
and analysis

Image acquisition, processing, and analysis was carried out

as described previously (18). Whole wells were scanned in color

bright-field mode using a Cytation 5 imaging reader (BioTek).

Single images were stitched together using Gen 5 image prime

software (BioTek, USA, V3.03). From each well three separate

16-bit images in the basic color (red, green, blue) were created

and the open-source software CellProfiler was used for the

creation of a composite file. For the image analysis the open-

source software Fiji was used. For any mathematical operation

during the analysis steps, images were converted into a 32-bit

floating point format to avoid pixel saturation.
2.10 Measurement of ADSC
mitochondrial respiration

For the Mito Stress Test, differentiated ADSC were

trypsinized and 5000 cells per well were plated as five

technical replicates in complete DMEM (L-glutamine, 10%

FBS and penicillin-streptomycin) on a 96 well Seahorse

Assay Plate and incubated overnight at 37 °C in a humified

5% CO2 incubator. On the day of the assay, DMEM was

replaced with Seahorse Assay Medium pH 7.4 (with 10 mM

glucose, 2 mM L-glutamine and 1 mM sodium pyruvate) and

placed for one hour at 37 °C in a non-CO2 incubator.

Afterwards, the plate was placed in a Seahorse XFe96

Extracellular Flux Analyzer (Agilent Technologies) and

sequentially oligomycin (1 µM final concentration), FCCP (2

µM final concentration), and Rotenone/antimycin A (0.5 µM

final concentration) were added to analysed for mitochondrial

respiration. To normalize Seahorse Assay readouts to cell

number, cell numbers were counted using a Cytation 2

imaging reader (BioTek).
2.11 Statistics

The statical analyses were performed using GraphPad Prism

V 9.4 (GraphPad Software, San Diego California, USA). All data

represent mean ± SD, depicted in whisker plots exhibiting the 5–

95 percentiles. Statistical significance between two groups was

calculated by a two-tailed Student’s t-test. Outliers have been

excluded from the analysis using Grubb’s test. P<0.05 was

accepted as statistically significant.
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3 Results

3.1 Patients with lipedema show
abundant levels of immunosuppressive
adipose tissue macrophage populations

To understand how fat accumulation alters adipose tissue

macrophages in patients diagnosed with lipedema, we performed

CyTOF analysis of CD45+CD11b+CD64+ cells of the SVF and

compared their phenotype with SVF macrophages from BMI and

location (site of liposuction) matched healthy donors. We

identified 10 different metaclusters of phenotypically different

macrophages, which displayed varying expression levels of pro-

inflammatory markers (CD11c, CD86 and HLA-DR) and

immunosuppressive markers (CD206, CD163, Clever-1)

(Figures 1A–C). Patients with lipedema showed a significant

increase in the abundance of immunosuppressive macrophage

populations in cluster 2 and cluster 3 (Figures 2A–C). Cluster 3

had characteristics of a mixed phenotype with high expression of

both inflammatory (CD86) and immunosuppressive markers

(CD206, CD163) and high PD-L1 (Figure 1C). Principal

component analysis (PCA) performed on the relative levels of

macrophage metaclusters showed clear separation of patients with

lipedema compared to control samples (Figure 2D). Also,

unsupervised clustering of lipedema and control samples based

on median marker expression on CD11b+CD64+ cells similarly

grouped 4 out 5 lipedema patients together (Figure 2E). When

comparing the marker expression profiles of CD11b+CD64+ cells

between lipedema patients and the control group, lipedema
Frontiers in Immunology 06
patients showed higher levels of CD163, Clever-1, HLA-DR and

CD86, and a higher proportion of CD206 expressing cells

(Figures 2E, F). Altogether, these data suggest that lipedema

induces a shift in adipose tissue macrophages towards a more

immunosuppressive (M2) state.
3.2 RNA Sequencing of CD11b+
cells shows increased expression of
M2 markers

As the phenotypic characterization indicated a distinct

immunosuppressive immune environment in lipedema, we

next sought to evaluate the transcriptomic profile of the

myeloid compartment and molecular pathways involved. For

that purpose, CD11b+ cells were sorted from the SVF from 5

control and 5 lipedema patients and processed for sequencing.

Principal component analysis showed a clear separation between

the CD11b RNA expression profile of lipedema and control

samples (Figure 3A) where 1171 differentially regulated genes

were identified (Figure 3B). Among those genes we mapped the

M1 and M2 related genes (Figure 3C). Genes that were

associated with M2 macrophage phenotype were upregulated,

such as A3 adenosine receptor (ADORA3), which is involved in

survival of anti-inflammatory monocytes (19); genes which were

induced upon stimulation of IL4, IL10 and/or IL13 in M2

macrophages such as CLEC10A (CD301) and PPARGC1B (20),

TLR1 and TLR8 (21). ALOX15 (22), CD200 receptor (CD200R)

(23) and genes, which promote differentiation of the M2 part of
A B

C

FIGURE 1

Mass cytometry analysis of SVF macrophages of lipedema patients and BMI matched healthy controls. (A) UMAP plot and FlowSOM metaclusters of
CD11b+CD64+ myeloid cells (n = 5708) from lipedema patients (n = 5) and healthy controls (n = 5). The SVF samples were pre-gated for viability,
singlets and CD45. (B) UMAP plots showing arcsinh-transformed expression values of indicated markers on CD11b+CD64+ cells. (C) Heatmap and
unsupervised clustering of FlowSOM metaclusters based on median marker expression in each metacluster.
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the activation spectrum: HERPUD1 (24), CD163-L1 (25), KLF2

(26) and TIMP-1 (27). On the other hand, typical M1 markers

were significantly downregulated: IL1b, IL6, IL23a, IL1R1 (28)

and genes that inhibit M2 macrophage polarization showed

reduced expression, such as TNFAIP8 (29), TLR4 (30) and

IRF-1 (31).

Hierarchical clustering of the top differentially expressed

genes showed distinct subsets of lipedema and non-lipedema

genes with gene ontology annotation and pathway enrichment
Frontiers in Immunology 07
analysis highlighting cytokine-mediated signaling activity,

interleukin-1 receptor activity, extracellular matrix organization

and regulation of androgen receptor signaling (Supplementary

Figures 2A, B). A detailed enrichment (Enrichr) analysis of

cluster 3, which was upregulated in lipedema, identified the

MAP kinase signaling pathway and the PIK3 pathway

(Supplementary Figure 2C). Both pathways are essential

drivers of the polarization of macrophages towards the M2

phenotype (32).
A B

C D

E F

FIGURE 2

Lipedema patients show higher proportions of immunosuppressive CD206+CD163+Clever-1+ macrophages. (A) FlowSOM metaclusters of
CD11b+CD64+ cells displayed on separate UMAP plots of healthy controls (n = 5, 1066 cells) and lipedema patients (n = 5, 4642 cells). (B) A dot
plot of average FlowSOM metacluster sizes in healthy control and lipedema patient groups. Dot radiuses represent average percentage of cells
belonging to each metacluster. Heatmap displays statistical significances (Mann-Whitney U test) with red colour indicating increase and blue
colour decrease in comparison to the control group. (C) FlowSOM metaclusters that were significantly more or less abundant in lipedema
patients. Each dot represents metacluster relative size in a healthy control or a lipedema patient. Mann-Whitney U test. *P < 0.05; **P < 0.01 (D)
Principal component analysis based on relative FlowSOM metacluster sizes in each individual. (E) Unsupervised hierarchical clustering of control
and lipedema samples based on median marker expression levels on CD11b+CD64+ cells. (F) Density plots showing the expression of indicated
markers on CD11b+CD64+ cells in control and lipedema group.
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3.3 Increased CD163+ cell infiltration
and CD163 expression levels in human
skin in lipedema

The phenotypic characterization of the SVF revealed a

distinct immunosuppressive macrophage component, with
Frontiers in Immunology 08
increased numbers of CD163+ and CD206+ cells. Thus, we

next attempted to further confirm these findings in human skin

sections from lipedema and control patients. Paraffin-embedded

skin sections were used and stained for CD163 and CD206.

While only a trend towards increased presence of CD206+ cells

(control [C]: 83.3 ± 16.9 cells/field versus lipedema [L] 93.20 ±
A B

C

FIGURE 3

Transcriptional profiling of CD11b+ of lipedema and control patients. (A) Principal component analysis of RNA-seq data show the characteristics
of samples according to gene expression (B) Volcano plot of significantly differentially expressed genes (adj. p < 0.05) (C) Heatmap of
hierarchical clustering showing expression patterns of selected differentially expressed macrophage-associated genes. Log2 normalized
expression value: red indicates upregulation and blue indicates downregulation (N(L) = 5; N(C) = 5).
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16.4 cells/field) was detected without reaching statistical

significance, a significant increase of CD163+ cells in the

lipedema tissue versus the control was clearly noted (P=0.010)

(control [C]: 84.7± 24.6 cells/field versus lipedema [L] 106.8 ±

19.5 cells/field. These findings were further confirmed by

evaluating the CD163 (2,58-fold upregulation) and CD206

expression levels, which showed analogous results (Figure 4).
3.4 IPI-549 normalizes the CD163
expression in the lipedema SVF to the
expression level of control group

The results obtained in the study point clearly towards a

central role of CD163+ immunosuppressive M2 macrophages in

lipedema. CD163+ M2 macrophages are a driving factor in

tumor growth, angiogenesis and metastasis (33, 34) and the

repolarization towards M1 macrophages presents a novel

approach in oncologic treatment (35). IPI-549 is a selective

PI3Kg inhibitor, which switches M2 macrophages towards an

M1-like phenotype and results in a downregulation of

CD163 (36).

We treated the SVF from 5 lipedema and 5 control with 100

nM IPI-549 in vitro and analyzed the expression of CD163,

CD206 and CD68. Firstly, we could confirm our previous results

by observing a significant 5-fold upregulation of CD163 in the

lipedema SVF compared to the control SVF. Upon treatment

with IPI-549, the expression of CD163 in lipedema SVF was

significantly reduced, nearly to the level of expression in the
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control group. The expression levels of CD206 and CD68

remained unaltered by IPI-549 treatment (Figure 5).
3.5 Conditioned medium from IPI-549
treated lipedema SVF normalizes
adipose-derived stem cell differentiation
in lipedema

Macrophages are known to modulate adipose tissue

differentiation and metabolism. To evaluate the functional role

of the predominant CD163+ cell population in lipedema we used

conditioned medium from lipedema and control SVF, including a

treatment with 100 nM IPI-549. The conditioned medium of the

treated and untreated groups (from both lipedema and control

patients) was used to differentiate adipose derived stem cells

(ADSCs) and thus assess the potential contribution of the CD163

+ cell population in inducing the formation of adipose tissue.

After 7 days of differentiation using the condition medium, a

remarkable increase of lipid content was observed in the ADSCs

treated with lipedema conditioned medium compared to

conditioned medium from control patients, indicating the

induction of adipose tissue formation. Surprisingly, the addition

of IPI-549, which reduces CD163, resulted in a significant

decrease and normalization of the lipid accumulation down to

the level of the control SVF. (Figure 6) The control (no SVF cells)

group did not show a difference between IPI-549 and untreated

group, which suggests that IPI-549 does not directly influence the

differentiation of the ADSCs (Supplementary Figure 4).
A B C

FIGURE 4

Increased CD163+ cell infiltration and expression levels in human skin in lipedema. (A) The immune cell infiltrate was evaluated on paraffin-
embedded skin tissue sections. (B) Quantification of the CD163+ and CD206+ cells revealed increased infiltration of CD163 + cells in skin
tissue. N(C): 14, N(L): 15 (C) The evaluation of the CD163 and CD206 expression in fat tissue. N(C): 14, N(L): 15 patients. Scale bar: 100 mm.
Asterisks indicate statistical significance in comparison to the control *P < 0.05, **P < 0.01 (two-tailed Student’s t-test). ns, not significant.
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It is well established that macrophages modulate energy

metabolism of adipose tissue in an activation-dependent

paracrine way. Therefore, the mitochondrial activity of the

differentiated ADSC was evaluated using mitochondrial stress

test using ana an Agilent Seahorse XFe96 Analyzer. Basic

parameters such as the basal respiration, the ATP-linked

respiration (calculated after oligomycin administration) and the
Frontiers in Immunology 10
non-mitochondrial respiration (after Antimycin A & Rotenone

administration) showed no alterations. In order to determine the

maximal possible oxygen consumption, the uncoupler carbonyl

cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) was

administered, which also showed no difference. Nevertheless,

conditioned medium from lipedema SVFs (without treatment)

showed a tendency towards a downregulation of the ATP-linked
FIGURE 5

IPI-549 reduces CD163 expression in the lipedema SVF. Evaluation of the gene expression levels of CD163, CD206 and CD68 of IPI-549 treated
and untreated SVF of lipedema and control patients. For the comparison between the treated and untreated expression of the same patient a
paired Student’s t-test was used, for the comparison between untreated lipedema to untreated control an unpaired two-tailed Student’s t-test
was used, N(C): 5, N(L): 5, Asterisks indicate statistical significance in comparison to the control **P < 0.01, ***P < 0.001. ns, not significant.
A B

FIGURE 6

Conditioned medium from IPI-549 treated SVF normalizes adipose-derived stem cell differentiation in lipedema. (A) Representative pictures of
Oil Red O stained ADSCs which were differentiated with condition medium from IPI-549 treated and untreated SVF of lipedema and control
patients. (B) Quantification of the Oil Red staining. For the comparison between the treated and untreated sample of the same patient a paired
T-test was used, for the comparison of the untreated lipedema to untreated control an unpaired T-test was used, N(C): 5, N(L): 5, Asterisks
indicate statistical significance in comparison to the control *P < 0.05. ns, not significant.
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respiration, in line with previous results demonstrating a decrease

of ATP-linked respiration due to CD163+ macrophages (37)

(Figures 7A, B).

In the next step, we evaluated the oxygen consumption rate

(OCR) and the extracellular acidification rate (ECAR) under

baseline and stressed conditions (in the presence of oligomycin

and FCCP) and calculated metabolic potential ((stressed OCR or

ECAR/baseline OCR or ECAR) × 100%) (Figure 7C). While the

baseline and metabolic potential of the OCR rate remained

unaltered, the ECAR baseline of differentiated ADSCs under

lipedema conditioned medium was significantly increased

compared to the control. Furthermore, the ECAR metabolic

potential of differentiated ADSCs under lipedema conditioned

medium was reduced compared to the control. The treatment

with IPI-549 normalized the metabolic potential to the

control level.
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4 Discussion

In this study, we show that lipedema is characterized by the

presence of a distinct immunosuppressive macrophage infiltrate,

which decisively influences the adipogenic differentiation

evaluated by the lipid accumulation in adipose-derived stem

cells. Importantly, the repolarization of the lipedema

macrophages was able to normalize adipogenic differentiation

and ECAR metabolic potential to the level of the control group,

thus limiting the formation of new adipocytes from

precursor cells.

Adipose tissue macrophages are shown to play an important

role in obesity-associated inflammation and metabolic diseases

(38). Macrophages can modulate the energy metabolism and

adipocyte mitochondrial function (39). In adipose tissue of obese

people, an increased number of pro-inflammatory M1
A B

C

FIGURE 7

Oxygen consumption rates of differentiated ADSCs with conditioned medium of IPI-549 treated and untreated SVF of lipedema and control
patients. (A) Evaluation of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) changes in response to mitochondrial
respiratory function stress test using sequential applications of A = oligomycin, B = FCCP, C = Antimycin A & Rotenone (B) No significant alterations
were observed in mitochondrial respiration, maximal respiration, ATP-linked respiration nor non-mitochondrial respiration, (C) Evaluation of the
metabolic phenotype showed alterations of the ECAR baseline and ECAR metabolic potential of ADSCs differentiated with lipedema conditioned
medium versus control. The treatment with IPI-549 normalized the lipedema ECAR metabolic potential to the control level. N(C) = 5, N(L) = 5. For
the comparison between the treated and untreated sample of the same patient a paired T-test was used, for the comparison of the untreated
lipedema to untreated control an unpaired T-test was used. OCR and ECAR values are normalized to cell numbers. *P < 0.05; **P < 0.01.
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macrophages is present (6), but in the case of weight reduction,

the M1/M2 ratio switches towards an M2 phenotype (6, 40).

Over the last decade, several research groups, including our lab,

have shown that macrophage infiltration is a hallmark of

lipedema as well (5, 41–43).

Here, we analyzed in detail the phenotype of the adipose tissue

SVF-derived macrophages of lipedema and BMI- and gender-

matched healthy patients using CyTOF. Additionally, RNA

sequencing of the CD11b+ cell compartment of lipedema and

healthy patients was conducted to elucidate the molecular pathways

underlying this distinct immunological niche. The CyTOF analysis

revealed that in lipedema, significantly more CD206+CD163

+Clever-1+ immunosuppressive M2 macrophages were present,

which further confirmed the increased CD163 expression

previously observed in lipedema (5). The increase of M1 markers

such as HLA-DR and CD68 is explained because HLA-DR and

CD86 are present on cells from cluster 2 and 3, where typical M2

marker such as CD206, Clever-1 and our dominant marker CD163

are highly expressed. We obtained similar results from the RNA

sequencing of the CD11b+ compartment, where we found an

extensive gene expression pattern that supports an

immunosuppressive M2 macrophage phenotype. Genes that were

associated with the M2 phenotype, such as CD301, CD163L1,

CD200R1, PPARGC1B and the A3 adenosine receptor were

upregulated, while M1 markers such as IL1b, IL6, IL23a, IL1R1

were less expressed. These changes in gene expression are involved

in important functional signaling pathways in macrophages. The

proinflammatory interleukin-1 pathway has been shown to be the

most prominent downregulated pathway in lipedema macrophages

and is accompanied by an altered interleukin-6 pathway, which is

responsible for the alternative activation of macrophages (44). What

is more, the G coupled receptor A3 adenosine receptor (19) and its

downstream pathways are both involved in the regulation of the

anti- inflammatory response and upregulated in lipedema CD11b+

cells. In line with these pathways the gene ontology annotation and

pathway enrichment analysis of our data identified two clusters,

which were associated with immunosuppression. We underpin

these results, which indicate strong polarization towards the M2

macrophage phenotype, with an additional immunohistological

evaluation of CD163+ cells in the skin tissue of lipedema patients,

as well as an expression analysis of CD163+ in fat tissue of lipedema

patients, which further confirm the previous findings. CD163+

macrophages are known to be linked with anti-inflammatory

functions due to stimulated expression by anti-inflammatory

cytokines and their ability to produce anti-inflammatory heme

metabolites after CD163-mediated hemoglobin scavenging (45, 46).

An enhanced CD163 expression is associated with various

inflammatory diseases such as proliferative diabetic retinopathy,

systemic lupus erythematosus gestational diabetes mellitus,

ulcerative colitis, celiac disease, asthma, lupus nephritis, and

rheumatoid arthritis and Crohn’s disease, to name a few (47).

Nevertheless, CD163 is also increased in tumor-associated

macrophages, a class of inflammatory cel ls in the
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microenvironment that is immunosuppressive and supports

tumor growth, angiogenesis, and metastasis (33, 34). Additionally,

the macrophage infiltration is closely correlated to the prognosis of

tumors. The highest levels of CD163+ TAM is found to correlate

with the shortest five-year relative survival rates in pancreas, lung

and gallbladder cancers (48).

Activated M2 macrophages present the major macrophage

population with anti-inflammatory properties in the adipose

tissue of lean animals, and they can inhibit adipocyte progenitor

proliferation via the CD206/TGF-b signaling to modulate

systemic glucose homeostasis (49). Recent studies have

investigated the effect of macrophage polarization on the

differentiation potential of adipose-derived stem cells/

preadipocytes. Ma et al. reported that macrophage-derived

supernatants inhibit adipogenic differentiation of ADSCs. In

particular the M1-macrophage-derived supernatant has a strong

inhibitory effect via the secretion of TNFa and IL1b (50).

Importantly, the expression of IL1b, the IL1R1 and other IL1b

related genes were downregulated in the RNA sequencing in our

lipedema samples. Yi et al. showed in an in vitro assay that M2-

polarized macrophages promote adipogenic differentiation of

3T3-L1 cells (51). The adipogenic differentiation seems to be an

important factor in the pathophysiology of lipedema (4).

However, the current research has focused on the adipogenic

potential of lipedema-derived stem cells, but the influence of the

immune cell infiltration on adipogenic differentiation in

lipedema has not been examined so far. In this study, we

could show that SVF-conditioned medium from lipedema

patients, where higher numbers of CD163+ cells were present,

showed enhanced adipogenic differentiation. To evaluate the

potential functional role of the CD163+ cells, we used the

selective PI3Kg inhibitor IPI-549 to reduce CD163 expression

on macrophages, converting them to classically activated M1

macrophages. Surprisingly, the differentiation of adipose tissue-

derived stem cells with conditioned medium from IPI-549

treated SVF resulted in a significant reduction and

normalization of adipose-derived stem cell differentiation

evaluated by a decreased accumulation of lipids and

normalization of the ECAR metabolic potential in lipedema

versus control SVF. However, the increased ECAR baseline in

lipedema samples was surprising, because Keuper et al. reported

an ECAR decrease during adipogenic differentiation (52). These

contradicting results could be explained with a higher release of

fatty acids from more lipid-loaded adipocyte that potentially

decrease the pH.

The PI3Kg pathway in macrophages is important for the

resolution of inflammation and immunosuppression (32) and

specific inhibitors of PI3Kg are of major interest in combined

anti-tumoral therapies (53, 54). IPI-549 is highly specific toward

PI3Kg (53), and a recent study has shown that it leads to almost

complete downregulation of CD163 in macrophages (36).

Furthermore, it is orally available, displays a good safety

profile and is currently evaluated in 4 mid-stage clinical
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studies in cancer treatment, which are crucial parameters for a

quick transition into clinical research.

CD163 has not only potential as a therapeutic target but as a

biomarker as well. Upon activation of ADAM17, CD163 is

cleaved from the cell surface and forms a soluble CD163

(sCD163), which can be detected in plasma and several tissue

fluids (55). sCD163 serves as a marker of macrophage activation

and is upregulated in several diseases, such as lupus nephritis

(56), multiple sclerosis (57) and proliferative diabetic

retinopathy (58). We previously evaluated the serum

inflammatory cytokine and chemokine profiles of lipedema

patients and controls with a multiplex immunoassay

containing sCD163, but did not detect any alterations in their

sCD163 levels (9). It is important to mention though, that the

sCD163 was evaluated in a relatively low number of patients.

Therefore, sCD163 should be the subject of future, larger studies

to evaluate its potential as a serum biomarker in lipedema.

One limitation of this study is the relatively low patient

number, which is counterbalanced by pursuing a detailed

analysis using a variety of complementary methods and the

use of anatomically matching samples. Among those, the bulk

RNA sequencing was performed on CD11b+ cells, which include

not only macrophages but also monocytes, mast cells,

neutrophils, NK cells, and subsets of B lymphocytes. While

our intention was to include valuable information about

possible involvement of further myeloid cell populations in

lipedema, the major focus was the in-depth evaluation of the

macrophage polarization phenotype and assessment of M1/M2

related genes and involved pathways. While our results indicate

that IPI-549 inhibits adipogenic differentiation by reducing

CD163 expression on M2 macrophages, we cannot exclude

possible effects of IPI-549 treatment on other cell types or a

shift of cell populations within the stromal vascular fraction. The

SVF consists of a wide variety of cells, such as preadipocytes,

endothelial cells, stem cells and immune cells, and IPI-549

treatment may have altered their cytokine secretion. However,

our approach aimed to simulate the cellular composition of

lipedema in vitro by treating the complete SVF with IPI-549

instead of a subpopulation.

Furthermore, we focused only on the immune cell

infiltration in lipedema and its influence on adipogenic

differentiation. Our in vitro approach does not take into

account that the onset and development of lipedema in vivo

cannot be reduced to the altered immune cell infiltration alone.

Recent studies have found an altered gene expression and

metabolism in stem cells/preadipocytes and adipocytes from

lipedema patients, which also contribute to the lipedema

phenotype (4). The interplay between the immune cell

compartment, in particular macrophages, and the other

components of the lipedema tissue should be subject of further

studies and may lead one step further to the understanding of

lipedema pathophysiology.
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In short, here we identified CD163+ macrophages to be a

distinct hallmark of the immune cell composition in lipedema

and repolarization of lipedema macrophages is able to normalize

the differentiation of adipose-derived stem cells in vitro

evaluated by the cellular lipid accumulation. These data open a

new chapter in understanding lipedema pathophysiology and

may indicate a potential novel treatment approach.
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