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macrophages in immunotherapy
using scRNA-seq and bulk-seq
in colorectal cancer

Xingwu Liu1†, Guanyu Yan1†, Boyang Xu1, Han Yu2, Yue An3*‡

and Mingjun Sun1*‡

1Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China,
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Background: Macrophage infiltration is crucial for colorectal cancer (CRC)

immunotherapy. Detailed classification of macrophage subsets will facilitate

the selection of patients suitable for immunotherapy. However, the

classification of macrophages in CRC is not currently detailed.

Methods: In this study, we combined single-cell RNA sequencing (scRNA-seq)

and bulk-seq to analyze patients with colorectal cancer. scRNA-seq data were

used to study cell-cell communication and to differentiate immune-infiltrating

cells and macrophage subsets. Bulk-seq data were used to further analyze

immune infiltration, clinical features, tumor mutational burden, and expression

of immune checkpoint molecules in patients with CRC having different

macrophage subsets.

Results: Seven macrophage subpopulations were identified, among which

indoleamine 2,3 dioxygenase 1 (IDO1) macrophages had the most significant

difference in the degree of infiltration among normal, microsatellite-unstable,

and microsatellite-stable populations. We then performed gene set variation

analysis using 12 marker genes of IDO1 macrophages and divided the patients

into two clusters: high-IDO1 macrophages (H-IDO1M) and low-IDO1

macrophages (L-IDO1M). H-IDO1M showed higher infiltration of immune

cells, higher expression of immune checkpoints, and less advanced

pathological stages than L-IDO1M (p < 0.05).

Conclusions: This study elucidated that IDO1-macrophage-based molecular

subtypes can predict the response to immunotherapy in patients with CRC. The

results provide new insights into tumor immunity and help in clinical decisions

regarding designing effective immunotherapy for these patients.

KEYWORDS

colorectal cancer (CRC), macrophage, tumor immunity, immunotherapy, single-cell
RNA sequencing (scRNA-seq), IDO1
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Introduction

Colorectal cancer (CRC) is a common cancer with

considerable morbidity and mortality rates. For both males

and females, the morbidity of CRC ranks third among all

cancers, and CRC is the second leading cause of cancer-related

deaths worldwide, representing a significant health burden (1).

Furthermore, the global burden of CRC is expected to increase

by 60% to more than 2.2 million new cases and 1.1 million

cancer deaths by 2030 (2).

Conventional treatments for CRC include endoscopy,

surgery, radiotherapy, chemotherapy, and traditional Chinese

medicine (3–5). However, each of the abovementioned

treatments has limitations and is associated with specific

adverse effects and complications. For example, 5-Fluorouracil

(5-FU) is one of the most commonly used chemotherapeutic

drugs for the treatment of CRC; however, a large percentage of

patients are resistant to 5-FU (6). With respect to radiotherapy,

there is evidence that patients undergoing radiation are more

likely to be depressed, distressed, and anxious (7). In addition,

although traditional Chinese medicines such as the Gegen

Qinlian decoction can modulate the gut microbiota, it is often

used as an adjunctive therapy (4, 8). Thus, the development of

novel, effective therapeutic approaches is crucial for successfully

treating patients with CRC. Immunotherapy has emerged over

time as one such treatment. Immunotherapy has successfully

achieved long-lasting durable responses in previously difficult-

to-treat solid tumors. Immunotherapy also has side effects called

immune-related adverse events (irAEs); however, irAEs are

usually manageable (9).

CRC is categorized into two major subtypes: deficient

mismatch repair (dMMR)/microsatellite instability-high (MSI-

H), which accounts for 15% of CRC cases, and microsatellite-

stable (MSS)/microsatellite instability-low (MSI-L), which

accounts for 85% of cases (10). The high tumor mutational

burden (TMB) in dMMR/MSI-H tumors is beneficial for the

infiltration of immune cells. Conversely, MSS/MSI-L CRC has a

very low TMB, and its infiltration of immune cells is thus

minimal. Therefore, patients with CRC with dMMR/MSI-H

tumors are more likely to benefit from immunotherapy.

The tumor microenvironment (TME) consists of immune

cells, stromal cells, blood/lymphatic vessels, nerve endings, and

extracellular matrix. TME has been shown to play a key role in

cancer initiation, progression, and treatment. The importance of

the TME in the design of new cancer treatment regimes is

apparent. As the most dominant component of the TME,

immune infiltration is associated with tumor progression and

response to immunotherapy (11). Therefore, a comprehensive

analysis of immune infiltration in the TME is important for the

development of cancer immunotherapies. Single-cell RNA

sequencing (scRNA-seq) allows the definition of molecularly

distinct cell subpopulations and is a powerful tool for
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deconstructing the transcriptomes of complex tissues at the

single-cell level (12). Using scRNA-seq, it is possible to

systematically study cell-cell communication and track the

developmental trajectories of distinct cell lineages (13, 14).

Tumor-associated macrophages (TAM) are one of the major

immune-infiltrating cell types in the TME, and are generally

divided into M1 and M2 macrophages. Both M1 and M2

macrophages are critical in cancer development and metastasis,

and can exert a dual influence on cancer based on different

activation states. Tumor killing by M1 macrophages is mainly

dependent on the production of glucose, reactive oxygen species

(ROS), and nitric oxide (NO), the production of which can lead to

oncogene activation in nearby epithelia (15, 16). The support of

tumor growth by M2 macrophages is mainly dependent on the b-
oxidation of fatty acids and the tricarboxylic acid cycle, as well as

on the production of polyamines and L-proline (17, 18). In CRC,

TAMs can perform multiple functions, including promoting

tumor proliferation and metastasis, enhancing angiogenesis,

regulating the immunity of the TME, and interacting with the

gut microbiota (19–22). Different functions depend on the

different phenotypic polarizations of TAMs; therefore, it is of

great significance to study their subgroup classifications. However,

the classification of macrophage subsets is not currently detailed.

This study aims to use scRNA-seq to subdivide macrophage

subsets to facilitate the development of cancer immunotherapies.

In this study, single-cell sequencing data were used to

classi fy macrophage subpopulat ions. We defined a

macrophage subset characterized by expression of the

immuno-oncological target IDO1. We identified genes related

to IDO1 macrophages (IDO1M) and constructed IDO1M scores

for each sample using gene set variation analysis (GSVA). We

then divided the samples into two clusters based on their

IDO1M scores: High-IDO1M (H-IDO1M) and Low-IDO1M

(L-IDO1M). H-IDO1M showed higher immune infiltration,

TMB, and expression of immune checkpoints than L-IDO1M.

Data from the immunotherapy cohorts were used for validation,

and the results suggest that the immunotherapeutic effect of H-

IDO1M was significantly higher than that of L-IDO1M. The

workflow for this study is shown in Figure 1. Our results indicate

that IDO1 macrophages play an important role in tumor

immunity, and patients with CRC having H-IDO1M were

more suitable for immunotherapy.
Materials and methods

Data acquisition and preprocessing

Single-cell transcriptomic profiles of 28 CRC and 18 adjacent

normal tissues were obtained from both GSE166555 and

GSE200997 (23, 24). Samples with unknown microsatellite

stabilities were excluded from the study. We analyzed the
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scRNA-seq data using the R package Seurat (25). The data were

normalized using the SCTransformmethod and integrated using

the IntegrateData function. The top 3,000 highly variable genes

were identified using the SelectIntegrationFeatures function.

Principal component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) were applied to reduce

the dimensions based on these 3,000 genes. The FindNeighbors

and FindClusters functions were used for cell clustering analysis.

Transcriptome profiling data from TCGA-COAD (colon

adenocarcinoma) were downloaded using the R package

TCGAbiolinks (26). Cases with specific MSS/MSI information
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were also included. Fragments per kilobase of transcript per

million mapped reads, or fragments per kilobase million

(FPKM) of 426 primary solid tumor samples were converted

to transcripts per kilobase million (TPM) for further analyses,

and counts were used for differential analysis. Simple nucleotide

variation data (MuTect2) of 363 patients with colon

adenocarcinoma (COAD) were collected using the cBioPortal

(https://www.cbioportal.org/datasets). TMB was calculated

based on simple nucleotide variations using the R package

MAFtools, defined as the number of mutations per megabase

(27). GSE39582, GSE91061, GSE176307, and IMvigor210 were
FIGURE 1

Flowchart of this study. (ns, no significance, *: P < 0.05, ***: P < 0.001).
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used as validation sets (28–31). The GSE39582, GSE91061 and

GSE176307 datasets were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/gds/). IMvigor210 cohort data

were obtained from http://research-pub.gene.com/IMvigor210

CoreBiologies. The GSE39582 dataset included 519 colon cancer

tissues with specific MMR states. Patients with specific

immunotherapeutic responses (complete response, CR; partial

response, PR; stable disease, SD; and progressive disease, PD)

were included in GSE91061 (n = 105), IMvigor210 (n = 298) and

GSE176307 (n=87).
Cell-cell interaction analysis

Cell-cell interaction analysis was performed using the R

package CellChat (32). The R package CellChat requires gene

expression data from cells as the user input and models the

probability of cell-cell communication by integrating gene

expression with prior knowledge of the interactions between

signaling ligands, receptors and their cofactors. The Secreted

Signaling and Cell-Cell Contact human databases were used.

Circle and bubble diagrams were used to display the strength of

cell-cell communication networks from the target cell cluster to

other cell clusters.
Immune infiltration analysis

The R package ESTIMATE was applied to evaluate the TME

of each patient with COAD and then to assign a stromal score

(stromal content), immune score (extent of immune cell

infiltration), and an ESTIMATE score (synthetic mark of

stroma and immune) to quantify tumor purity (33). Single-

sample gene set enrichment analysis (ssGSEA) was used to

evaluate the gene set levels of immune cells as well as the CD8

T effector (30, 34). We calculated the extent of infiltration of 28

immune cell types according to the expression levels of genes in

28 published gene sets for immune cells using the R package

GSVA. CIBERSORT is a deconvolution algorithm used to

calculate the proportion of 22 immune cells (35).
Differential analysis

The FindMarkers function in the Seurat package was used to

calculate differentially expressed genes (DEGs) using the

Wilcoxon–Mann–Whitney test. To identify the marker genes

for each cluster, the cutoff threshold values were adjusted to a p-

value < 0.05, log2FoldChange > 3, pct.1 > 0.5, and pct.2 < 0.5.

The R package DESeq2 was used for differential analysis of the

transcriptome profiling data (36). The threshold values were

|log2FoldChange | > 1 and an adjusted p-value < 0.05. The
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FindMarkers function in the Seurat package was used to

calculate differentially expressed genes (DEGs) using

Wilcoxon–Mann–Whitney test. To identify the marker genes

for each cluster, the cutoff threshold values were adjusted to a p-

value < 0.05, log2FoldChange > 1, and pct.1 > 0.4.
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using

the R package clusterProfiler for functional enrichment (37).

Significant enrichment was identified using the normalized

enrichment score (|NES| > 1), an adjusted p-value < 0.05, and

a q-value < 0.05.
Gene set variation analysis

pt?>To evaluate the number of IDO1 macrophages in each

sample, we calculated scores based on 12 genes related to IDO1

macrophages using the R package GSVA (38). The samples were

divided into two clusters according to the median IDO1

macrophage scores: L-IDO1M (low-IDO1 macrophages) and

H-IDO1M (high-IDO1 macrophages).
Statistical analysis

All statistical analyses were conducted using R software

(version 4.1.0). The Wilcoxon rank-sum test and Student’s t

test were used to compare two groups depending on the results

of Shapiro-Wilk test. Correlation analysis was performed using

the Spearman’s coefficient. The chi-squared test was used to

compare the clinical characteristics in bulk-seq and the

proportion of cells in scRNA-seq (Fisher’s exact test was used

when required). Survival curves were constructed using the

Kaplan-Meier method (log-rank test). All hypothetical tests

were two-sided, and a p value < 0.05 indicated significance.
Results

Outline of cell types in CRC of MSI
and MSS

To identify the infiltrating cell types in MSI and MSS CRC, we

first characterized the single-cell transcriptome atlas of tumor

samples from 46 CRC samples in the GSE166555 and GSE200997

datasets. The microsatellite statuses of all the patients in the two

datasets are shown inSupplementary Table 1.Amongall 46 samples,
frontiersin.org
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the microsatellite status of 3 samples was MSI. The proportion of

samples with MSI (6.5%) was consistent with data from many

colorectal cancer cohorts (4.5%/8.7%) (39, 40). After quality

control, 44,848 cells from normal samples, 57,780 cells from MSS

samples, 9,120cells fromMSI samples, fora totalof111,748cellswere

selected for subsequent downstream analysis. Six major cell clusters
Frontiers in Immunology 05
were identifiedandvisualizedusing t-SNEplots (Figure2A).Wethen

evaluated the batch effect of the integrated data in the two datasets

(Figure 2B) and the overall condition of cell clusters in the normal,

cancer with MSS, and cancer with MSI samples (Figure 2C). Each

cluster of cells was manually annotated using currently known cell

markers (Figure 2D).
B C

D

A

FIGURE 2

Overview of infiltrating cell types in CRC of MSI and MSS. (A) t-SNE plot of 111,748 cells from 46 CRC samples. (B) t-SNE plot showing cell
distribution of GSE166555 and GSE200997. (C) t-SNE plot showing cell distribution of normal, cancer with MSS, and cancer with MSI samples.
(D) Violin plot showing the expression of marker genes.
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IDO1 macrophages are more abundant
in colorectal cancer with MSI

Macrophages clustered into seven subgroups (Figure 3A). We

evaluated the batch effect of the integrated data in two datasets and

the overall condition of macrophage clusters in the normal, cancer

with MSS, and cancer with MSI samples (Figures 3B, C). We

annotated each subgroup of macrophages according to the

identified cell markers (Figure 3D) and identified seven specific

macrophage subgroups (IDO1, C1QA, CLEC10A, OLR1, VCAN,

KI67, and CXCL8 macrophages). We then compared the

proportions of macrophage subgroups across the normal, MSI, and

MSS samples, and the results of statistical analysis were shown in

Supplementary Table 2. We found that the proportion of IDO1

macrophageswas significantlyhigher (p=1.48e-05) inCRCwithMSI

than in CRC with MSS or normal colorectal tissues (Figure 3E).

Moreover, IDO1 macrophage subset was different from other

macrophage subsets, which was the only macrophage subset

presented almost exclusively in colorectal cancer tissue. The results

indicated that IDO1 macrophages were closely related to colorectal

cancer. To better understand the function of IDO1 macrophages,

enrichment analysis was performed. The results of GSEA indicated

that IDO1 macrophages were negatively correlated with gene

ontology (GO) terms of immunity, including humoral, immune,

inflammatory, and innate immune responses (Figure 3F).
Cell-cell interaction analysis of
IDO1 macrophages

Cell communicationanalysiswasperformedusingCellChat, and

signal networks related to IDO1 macrophages were identified.

Figure 4A shows the overall communication conditions for all cell

clusters. IDO1macrophagesmay interact withmany cells, including

T cells and B cells (Figure 4B). We showed the outgoing and

incoming signals based on the IDO1 macrophages (Supplementary

Figure 1). Signaling pathways that mainly involved IDO1

macrophages were identified (Figures 4C, D). In signaling

pathways, the term “sender” refers to a signaling source, “receiver”

refers to a signaling target, “mediator” refers to a gatekeeper of cell-

cell communication, and “influencer” refers to a component that has

the ability to influence information flow within a signaling network.

IDO1 macrophages were unique senders in the SPP1 signaling

network and unique receivers in the granulin (GRN) signaling

network (Figures 4E, F).
Identification of genes related to IDO1
macrophages in MSI-H state and
construction of GSVA score

To accurately identify genes associated with IDO1

macrophages, we combined the scRNA-seq and bulk-seq data.
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We performed a differential analysis of TCGA-COAD patients

between the MSI-H (n = 78) and MSS (n = 269)/MSI-L (n = 79)

groups. We identified 1,189 upregulated genes in patients with

MSI-H. We then intersected these genes with those that were

highly expressed in IDO1 macrophages and identified 13 such

genes (Figure 5A). We then performed Spearman’s correlation

analysis between gene expression and various immune

parameters—primarily the immune score (Figure 5B). We set

a threshold immunity score of > 0.3 and retained 12 eligible

genes. We then utilized the R package GSVA to calculate

IDO1M scores for each sample in TCGA-COAD, regardless of

microsatellite status, and divided the samples into L-IDO1M and

H-IDO1M clusters based on the median scores (Figure 5C).
Comparison of functional and
clinical characteristics

To better understand the differences between the two clusters,

differential analysiswasperformed,whichrevealed1,454upregulated

and 225 downregulated genes in H-IDO1M (Figure 5D). GSEAwas

used to compare the functional differences between the two clusters

(Figure 5E). Many immunological terms were significantly enriched

in H-IDO1M, including the cytokine-mediated signaling pathway,

humoral immune response, innate immune response, positive

regulation of the immune system, regulatory T cell differentiation,

and immune receptor activity. Subsequently, the clinical

characteristics of these patients were compared. A chi-squared test

showed that H-IDO1M had a lower pathological stage and a larger

proportionoffemalepatients thanL-IDO1M(Table 1).Therewasno

difference in prognosis between the two clusters (Supplementary

Figure 2). Therefore, infiltration of IDO1 macrophages may

influence the immune system and inhibit tumor metastasis.
Comparison of immune infiltration
between two clusters

ESTIMATE, ssGSEA, and CIBERSORT were used to explore

differences in immunological function. H-IDO1M had higher

stromal, immune, and ESTIMATE scores and lower tumor

purity than L-IDO1M in the ESTIMATE analysis (Figure 6A).

Furthermore, ssGSEA showed that the level of immune cell

infiltration in H-IDO1M was higher than that in L-IDO1M

(Figure 6B). Next, we determined the proportion of immune

cells in these two clusters. CIBERSORT analysis demonstrated

that H-IDO1M cells had a higher proportion of CD8+ T cells

and M1 macrophages (Figure 6C). In addition, ssGSEA showed

that the level of CD8 T effector in H-IDO1M was higher than

that in L-IDO1M (Figure 6D). These results indicate that H-

IDO1M exhibit stronger immune infiltration than L-IDO1M,

especially CD8+ T cells and M1 macrophages.
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B C

D

A

E

F

FIGURE 3

IDO1 macrophage is identified and may be associated with immunity. (A) t-SNE plot showing classification of macrophage subpopulations. (B) t-
SNE plot showing distribution of macrophages from GSE166555 and GSE200997. (C) t-SNE plot showing distribution of macrophages in normal,
cancer with MSS and cancer with MSI samples. (D) Bubble diagram shows the expression of subgroup marker genes. (E) IDO1 macrophage is
predominant in CRC with MSI. p-values are calculated by chi-square test, and Fisher’s exact test is used when required. (F) GSEA indicates IDO1
macrophage is negatively correlated with GO terms of immune.
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Predictive assessment of response
to immunotherapy

To evaluate the response to immunotherapy, we first

compared the landscape of the mutation profiles of the two

clusters (Figures 7A, B). We then calculated the TMB of each

sample and found that H-IDO1M had a higher TMB than L-

IDO1M (Figure 7C), which may have led to the production of

more neoantigens to stimulate an immune response. We

compared the expression of immune checkpoints between the

two clusters and found that proteins functioning at important
Frontiers in Immunology 08
immune checkpoints (PD1, PDL1, PDL2, CTLA4, LAG3, TIM3,

and TIGHT) were significantly upregulated in H- IDO1M

(Figure 7D). To assess the effect of IDO1M scores in

predicting the response to immunotherapy in patients with

different microsatellite statuses (MSI-H, MSI-L, and MSS), we

calculated the levels of immune cell infiltration and immune

checkpoint expression in each sample of these three groups

separately. The results showed that patients in each group with

high IDO1M scores had higher immune infiltration and

immune checkpoint expression (Figure 8). We then looked for

any correlation between IDO1M scores and immunotherapeutic
B

C D

E

F

A

FIGURE 4

Cell-cell interaction analysis of IDO1 macrophage. (A) Overall communication condition of all cell clusters. Circle sizes are proportional to the
number of cells in each cell group and edge width represents the communication probability. (B) Communication condition between IDO1
macrophage and other cell clusters. Circle sizes are proportional to the number of cells in each cell group and edge width represents the
communication probability. (C, D) Signaling pathways that mainly contain IDO1 macrophages are identified. (E) IDO1 macrophage is the unique
sender in the SPP1 signaling pathway network. (F) IDO1 macrophage is the unique receiver in the GRN signaling pathway network.
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response (IMvigor210 and GSE91061). IMvigor210 is a bladder

cancer cohort treated with PDL1. GSE91061 is a melanoma

cohort treated with CTLA4 and PD1. Immunotherapeutic

responses were divided into four categories: complete response

(CR), partial response (PR), stable disease (SD), and progressive
Frontiers in Immunology 09
disease (PD). In IMvigor210, H-IDO1M had a higher CR and

lower PD than L-IDO1M (Figure 9A). In GSE91061, H-IDO1M

had a higher CR and PR and lower PD than L-IDO1M

(Figure 9B). Moreover, we also utilized TMB as a predictor of

response to immunotherapy (GSE176307). GSE176307 is a
B

C

D E

A

FIGURE 5

Construction of IDO1M score and clustering of IDO1M. (A) Venn diagram shows the intersection of MSI-H and IDO1 macrophages marker
genes. (B) Correlation between 13 genes and immune parameters mainly including immune score. (C) Heatmap shows the clustering of patients
based on IDO1M score. (D) Volcano plot of differential analysis between H-IDO1M and L-IDO1M. (E) GSEA shows many immunological terms
are significantly enriched in H-IDO1M.
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urothelial cancer cohort treated with PD1/PDL1. In GSE176307,

H-IDO1M had a higher CR than L-IDO1M, and high-TMB had

a higher CR and PR and lower PD than intermediate-TMB as

well as low-TMB (Figure 9C). The results indicate that H-

IDO1M respond better to immunotherapy than L-IDO1M,

and IDO1M scores and TMB have similar trends in predicting

immunotherapy response.
GEO verification between two clusters

To further verify the correlation between IDO1M scores and

immunotherapeutic response, we calculated the IDO1M scores

of each sample and divided the 519 colon cancer samples

(dMMR=75, pMMR=444) from GSE39582 into two clusters,

as performed in TCGA (Figure 10A). The expression of immune

checkpoints and extent of immune infiltration (ESTIMATE,

ssGSEA, and CIBERSORT) were evaluated in the same

manner as TCGA-COAD. The expression of all immune

checkpoints except PD1 was high in the H-IDO1M group

(Figure 10B). The results of immune cell infiltration were

consistent with those of TCGA-COAD (Figures 10C and

Figures 11A–C). Therefore, using GSE39582, we verified that

H-IDO1M may contribute to a more active immune system and

thus a better response to immunotherapy than L-IDO1M. Then,

we calculated the levels of immune cell infiltration and immune

checkpoint expression in each sample of these three groups

separately. The results showed that patients in each group with

high IDO1M scores had higher immune infiltration and

immune checkpoint expression (Supplementary Figure 3).
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Discussion

Macrophages have been shown to play an essential role in

influencing the development and metastasis of CRC, but their

specific role remains controversial due to their complex TME (41–

44). scRNA-seq helps us identify distinct macrophage subsets in

this complex TME, providing new insights for immunotherapy.

Using scRNA-seq, we identified a subset of macrophages with

high IDO1 expression. IDO1, which is induced by interferon-g, is
highly expressed in CRC and is associated with the promotion of

CRC cell proliferation and inhibition of apoptosis (45, 46). IDO1

has been implicated in mediating immunosuppression in cancer,

and high expression of IDO1 in CRC cells can counteract T cell

invasion through tryptophan depletion and production of

proapoptotic tryptophan catabolites (47, 48). However, whether

macrophages with high IDO1 expression affect tumor immunity

remains unclear. In this study, we integrated scRNA-seq and bulk-

seq to analyze the role of IDO1 macrophages in patients with

CRC. Our results demonstrate that the proportion of IDO1

macrophages in patients with MSI was higher than that in

patients with MSS. Unlike other macrophage subsets, IDO1

macrophages were almost absent in normal colorectal tissue,

suggesting that IDO1 macrophages are closely associated with

CRC. Moreover, GSEA revealed that IDO1 macrophages were

associated with immune suppression. We explored the cell

communication and signaling pathways associated with IDO1

macrophages using CellChat. Our results indicated that IDO1

macrophages are unique senders in the SPP1 signaling network

and unique receivers in the GRN signaling network. These results

imply that IDO1 macrophages might act as a signaling source in
TABLE 1 Comparison of clinical characteristics between L-IDO1M cluster and H-IDO1M cluster.

L-IDO1M H-IDO1M P value

Number 185 184

Age [median (IQR)] 68.00 [58.00, 75.00] 69.00 [59.75, 78.00] 0.139

Gender (%) 0.014*

female 75 (40.5) 99 (53.8)

male 110 (59.5) 85 (46.2)

T stage (%) 0.59

T1/T2 36 (19.5) 41 (22.3)

T3/T4 149 (80.5) 143 (77.7)

N stage (%) 0.153

N0 99 (53.5) 113 (61.4)

N1/N2 86 (46.5) 71 (38.6)

M stage (%) 0.059

M0 131 (79.4) 149 (87.6)

M1 34 (20.6) 21 (12.4)

Pathological stage (%) 0.04*

Stage I/II 93 (50.3) 113 (61.4)

Stage III-IV 92 (49.7) 71 (38.6)
front
(*: P < 0.05).
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the SPP1 signaling pathway, transmitting the signal to cells where

the receptor is located, and that SPP1 receptors such as CD44 can

receive the signal and produce a specific cellular response. These

results also implied that IDO1 macrophages might serve as a

signaling target of the GRN signaling pathway, and receptors of

GRN, such as SORT1, might be localized on IDO1 macrophages

to receive upstream signal transmission, thereby producing a

specific cellular response. SPP1 is associated with TAM and can
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trigger the polarization of macrophages to M2-phenotype TAMs

by upregulating the expression of PD-L1 (49, 50). Granulin

(GRN) is highly expressed in multiple tumors and can restore

the infiltration of CD8+ T cells in pancreatic ductal

adenocarcinoma, indicating that immunotherapy targeting

macrophage-derived GRN is promising (51).

We identified markers of IDO1 macrophages using scRNA-

seq and highly expressed genes in COAD patients with MSI
B

C D

A

FIGURE 6

Comparison of immune infiltration between H-IDO1M and L-IDO1M in TCGA-COAD. (A) The ESTIMATE analysis shows that H-IDO1M has
higher stromal, immune, and ESTIMATE scores but lower tumor purity than L-IDO1M. (B) ssGSEA shows H-IDO1M has a higher level of immune
cell infiltration than L-IDO1M. (C) CIBERSORT analysis demonstrates that H-IDO1M has a higher proportion of CD8 T cells and M1
macrophages. (D) ssGSEA shows H-IDO1M has a higher level of CD8 T effector than L-IDO1M. (ns, no significance, **P < 0.01, ***: P < 0.001).
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using bulk-seq. We then considered the intersection of the

results obtained by these two analytical methods and

performed a correlation analysis using a series of

immunological parameters for duplicate genes. Ultimately, we

identified 12 genes associated with IDO1 macrophages that were

related to both MSI and immunity (CD274, IDO1, DUSP4,

BIRC3, BATF3, CXCR4, FSCN1, RAMP1, RHOF, ARHGAP10,

TNFAIP2, and CRIP1). CD274, also known as programmed cell

death ligand 1 (PD-L1), is an immune checkpoint molecule

expressed in tumor cells that binds to programmed death 1

(PD1) in T cells (52). PD-L1 expression in tumor cells enables

immune evasion by inhibiting CD8+ T cell cytotoxicity (53).

DUSP4 (MKP-2) is a member of the mitogen-activated protein

kinase phosphatase (MKP) family that inhibits the proliferation

of CD4+ T cells by regulating the phosphorylation of STAT5

(54). BIRC3 is an inhibitor of apoptosis protein (IAP), and its

expression is regulated by tumor necrosis factor alpha (TNF

alpha). Its upregulation in tumor cells inhibits the activity of

natural killer (NK) cells to kill tumors (55, 56). BATF3 is a

transcription factor that promotes proliferation, invasion, and

metastasis of CRC cells (57). Moreover, BATF3 can influence the

apoptosis and longevity of T cells via the proapoptotic factor
Frontiers in Immunology 12
BIM, indicating that BATF3 has the potential to optimize

adoptive T-cell therapy (ACT) in cancer patients (58). CXCR4

is a G-protein-coupled receptor that binds its ligand, CXCL12.

This complex can activate multiple signaling pathways and

regulate cancer stem cells; therefore, effective tumor

immunotherapy targeting CXCR4-CXCL12 is crucial (59, 60).

Fascin actin-bundling protein 1 (FSCN1) is highly expressed in

multiple tumors and is associated with the progression of CRC

and lung adenocarcinoma, and poor prognosis in adrenocortical

carcinoma (61–63). RHOF is a member of the Rho GTPase

family and promotes marginal zone (MZ) B cell development in

the spleen (64).

We constructed IDO1M scores using GSVA and divided the

samples into L-IDO1M and H-IDO1M clusters based on the

median of the IDO1M scores. We then evaluated their clinical

characteristics and found that H-IDO1M had a lower

pathological stage than L-IDO1M, suggesting that the IDO1M

scores may be related to CRC progression. We then performed

differential analysis and applied GSEA to identify functional

differences between the two clusters. GSEA indicated that

immune-related pathways were enriched in H-IDO1M,

including cytokine-mediated signaling, humoral immune
B

C D

A

FIGURE 7

Evaluation of response to immunotherapy in TCGA-COAD. (A) Landscapes of mutation profiles of L-IDO1M cluster. (B) Landscapes of mutation
profiles of H-IDO1M cluster. (C) Comparison of TMB levels in two clusters. (D) Comparison of the expression of immune checkpoints in two
clusters. (***: P < 0.001).
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response, innate immune response, positive regulation of the

immune system, regulatory T cell differentiation, and immune

receptor activity.

To better understand the differences in immunological

function between the H-IDO1M and L-IDO1M clusters, we

utilized ESTIMATE, ssGSEA, and CIBERSORT. The

ESTIMATE results indicated that the H-IDO1M cluster had

higher stromal, immune, and ESTIMATE scores than the L-

IDO1M cluster. ssGSEA results showed that the level of immune

cell infiltration in the H-IDO1M cluster was higher than that in

the L-IDO1M cluster. Furthermore, CIBERSORT analysis
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demonstrated that the H-IDO1M cluster had a higher

proportion of CD8+ T cells and M1 macrophages than the L-

IDO1M cluster. CD8+ tumor-infiltrating lymphocytes (TILs)

mediate tumor rejection by recognizing tumor antigens (65).

Moreover, M1 macrophages exert antitumor functions,

including direct mediation of cytotoxicity and antibody-

dependent cell-mediated cytotoxicity (ADCC) to kill tumor

cells (66). These analyses suggest that the H-IDO1M cluster

exhibits higher immune infiltration than the L-IDO1M cluster,

especially CD8+ T cells and M1 macrophages, which might be a

favorable condition for immunotherapy in patients with CRC.
B

C D

E F

A

FIGURE 8

Comparison of immune infiltration and the expression of immune checkpoints between H-IDO1M and L-IDO1M in patients with MSI-H, MSI-L,
and MSS. (A, C, E) ssGSEA shows H-IDO1M has a higher level of immune cell infiltration than L-IDO1M. (B, D, F) Comparison of the expression
of immune checkpoints in two clusters. (ns, no significance, *: P < 0.05, **: P < 0.01, ***: P < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1006501
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1006501
The underlying reason may be the heterogeneity of tumor

immunophenotyping. Human tumors can be categorized as

having an inflamed, immune desert, or immune-excluded

phenotypes based on the complexities of immune infiltration

(67). The degree of immune cell infiltration is generally higher in

inflamed tumors and lower in immune desert tumors and there

is a positive correlation between the infiltration of immune cells

in bulk-seq data. Therefore, in tumor tissue performed bulk-seq,

the infiltration of IDO1 macrophages may be accompanied by

the infiltration of other immune cells, such as CD8+ T cells and
Frontiers in Immunology 14
M1 macrophages, resulting in H-IDO1M scores associated with

immune infiltration and immunotherapy response.

To evaluate the impact of IDO1M scores on immunotherapy,

we compared the mutation profiles of the two clusters. The results

indicated that the H-IDO1M cluster had a significantly higher

overall mutation rate than that of the L-IDO1M cluster. We then

calculated the TMB of each sample and found that the H-IDO1M

cluster had higher TMB than the L-IDO1M cluster. Neoantigens

are produced as a result of mutations. Thus, a higher TMB results

in more neoantigens, increasing chances for T cell recognition and
B

C

A

FIGURE 9

Evaluation of response to immunotherapy in two immunotherapy cohorts. (A, B) Sankey diagram shows the relationship between IDO1M scores
and response to immunotherapy in patients from IMvigor210 and GSE91061. (C) Sankey diagram shows the relationship between IDO1M scores/
TMB and response to immunotherapy in patients from GSE176307.
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correlating clinically with better outcomes of immunotherapy

(68). In addition, we assessed the expression of classical

immune checkpoints (PD1, PDL1, PDL2, CTLA4, LAG3,

TIM3, and TIGHT) between the two clusters (69). The high

expression of immune checkpoints is a favorable condition for

the application of immune checkpoint inhibitors (ICIs), which
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is beneficial for immunotherapy (70, 71). The H-IDO1M

cluster in each microsatellite status (MSI-H, MSI-L, and

MSS) had a higher level of immune cell infiltration and

immune checkpoint expression, indicating that H-IDO1M

scores can predict responses to immunotherapy independent

of microsatellite status. We then evaluated the effect of the
B

C

A

FIGURE 10

GEO validation of immune characteristics between two clusters. (A) Heatmap shows the expression pattern of IDO1M-related genes in two
clusters. (B) The expression of all immune checkpoints except PD1 is high in H-IDO1M. (C) The ESTIMATE analysis shows that H-IDO1M has
higher stromal, immune, and ESTIMATE scores but lower tumor purity than L-IDO1M. (ns, no significance, **: P < 0.01, ***: P < 0.001).
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IDO1M scores in the two immunotherapeutic cohorts. We

found that in IMvigor210, H-IDO1M had a higher CR and

lower PD than L-IDO1M, and in GSE91061, H-IDO1M had a

higher CR and PR and lower PD than L-IDO1M. These results

indicate that H-IDO1M have a better response to

immunotherapy than L-IDO1M.

To further validate the impact of the IDO1M scores on

immunotherapy, we divided the samples from GSE39582 into

two clusters based on the IDO1M scores. As in TCGA, we

explored the expression of immune checkpoints and degree of

immune infiltration. The results showed that the expression

levels of most immune checkpoints in the H-IDO1M cluster

were high. In addition, the immune infiltration results were
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consistent with those of TCGA-COAD. Therefore, GSE39582

further validated that H-IDO1M may have a better

immunotherapy response than L-IDO1M.

Although the combined analysis of scRNA-seq and bulk-seq

has helped us understand that IDO1 macrophages may be

associated with immunotherapy in CRC, further mechanistic

studies are required. This study had some limitations. First, this

was a retrospective study and prospective studies should be

considered to avoid analytical bias. Second, this study is based on

transcriptomics; however, both proteomic and spatial

transcriptomic data are worth exploring. Third, because of the

lack of information on the microsatellite/MMR status of patients

in immunotherapy cohorts, it is hard to compare the predictive
B C

A

FIGURE 11

Comparison of immune infiltration between H-IDO1M and L-IDO1M in GSE39582. (A) ssGSEA shows H-IDO1M has a higher level of immune
cell infiltration than L-IDO1M. (B) CIBERSORT analysis demonstrates that H-IDO1M has a higher proportion of CD8 T cells and M1 macrophages.
(C) ssGSEA shows H-IDO1M has a higher level of CD8 T effector than L-IDO1M. (ns, no significance, *: P < 0.05, ***: P < 0.001).
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ab i l i t y o f MSI -H and IDO1M score s fo r tumor

immunotherapy response.

In conclusion, our study identified IDO1 macrophages,

which were abundant in patients with CRC who exhibit MSI.

We then identified 12 genes related to IDO1 macrophages and

determined IDO1M scores for each sample to predict the

response to immunotherapy in COAD patients. H-IDO1M

exhibited a higher extent of immune infiltration, TMB,

expression of immune checkpoints, and a better response to

immunotherapy than L-IDO1M. These findings provide new

insights into tumor immunity and may be useful clinically

when designing appropriate immunotherapy for patients

with COAD.
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