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A crucial factor for the development of inflammatory autoimmune diseases is

the occurrence of antibodies directed against self-tissues and structures,

which leads to damage and inflammation. While little is known about the

cause of the development of mis-directed, disease-specific T and B cells and

resulting IgG autoantibody responses, there is increasing evidence that their

induction can occur years before disease symptoms appear. However, a certain

proportion of healthy individuals express specific IgG autoantibodies without

disease symptoms and not all subjects who generate autoantibodies may

develop disease symptoms. Thus, the development of inflammatory

autoimmune diseases seems to involve two steps. Increasing evidence

suggests that harmless self-directed T and B cell and resulting IgG

autoantibody responses in the pre-autoimmune disease stage might switch

to more inflammatory T and B cell and IgG autoantibody responses that trigger

the inflammatory autoimmune disease stage. Here, we summarize findings on

the transition from the pre-disease to the disease stage and vice versa, e.g. by

pregnancy and treatment, with a focus on low-/anti-inflammatory versus pro-

inflammatory IgG autoantibody responses, including IgG subclass and Fc

glycosylation features. Characterization of biomarkers that identify the

transition from the pre-disease to the disease stage might facilitate

recognition of the ideal time point of treatment initiation and the

development of therapeutic strategies for re-directing inflammatory

autoimmune conditions.
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Introduction

Inflammatory autoimmune diseases are a worldwide threat to

health and show an increasing prevalence (1). Although tumor-

reactive IgG autoantibodies (autoAbs) can mediate beneficial roles

in eliminating tumor cells, IgG autoantibodies are often key players

in the induction of inflammatory autoimmune diseases.

Accordingly, depletion of B cells with rituximab (monoclonal

anti-CD20 Ab) often improves inflammatory autoimmune

disease conditions (2). Interestingly, autoimmune patients can

start to express IgG autoAbs years before developing specific

clinical symptoms (3–5). Furthermore, a certain proportion of

healthy individuals express specific IgG autoAbs without disease

symptoms (6, 7).

The occurrence of IgG autoAbs at an early pre-disease stage

was initially described for (seropositive) rheumatoid arthritis

(RA) (Figure 1). Anti-citrullinated peptide IgG autoAbs can be

detected years before RA disease symptoms develop (3).

Another example is diabetes mellitus type 1. In an

interesting study, several thousand healthy infants without a

first-degree family history of diabetes were screened for autoAbs

typical of diabetes type-1 (4). A total of 155 of 7787 infants were

repeatedly screened positive for such autoAbs. Several years
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later, 26 of these 155 autoAb-positive infants and only two of the

autoAb-negative infants had developed diabetes type 1 (4).

These studies lead to two very important conclusions. First,

individuals generating specific IgG autoAbs also have a higher

risk of developing the specific inflammatory autoimmune

disease (3, 4). This finding opens the possibility of identifying

pre-disposed individuals before developing disease symptoms by

close-meshed monitoring (5). Second, not all individuals with

specific IgG autoAbs develop the respective inflammatory

autoimmune disease, at least not at a short interval.

Accordingly, it is increasingly assumed that the development

of inflammatory autoimmune diseases has to undergo two steps.

In step one, and for incompletely understood reasons, tolerance

mechanisms fail, and an autoantigen-specific T and B cell

response leads to detectable IgG autoAbs. Several findings

suggest that these IgG autoAbs, however, might be harmless in

the pre-autoimmune disease stage and do not induce any clinical

signs. In the second step, this specific immune response might

shift in some but not all individuals to a more inflammatory T

and B (T/B) cell and IgG Ab response that gives rise to various

disease conditions (inflammatory autoimmune disease stage)

often years after step one (Figure 1) (3, 4, 8–14). Such a shift

might likely be dependent on genetic predispositions and
FIGURE 1

The two-stage model for the development of inflammatory autoimmune diseases. In Stage 1, the pre-disease state, autoAbs are present, but
there are no disease symptoms. Due to reasons indicated in the upper arrow, the condition shifts to an inflammatory stage 2, where disease
symptoms occur. Enhanced antibody titers, multiple specificities, IgG class switching, and shifts in IgG subclasses and Fc glycosylation patterns
are described for autoantibodies in the disease state (described in the text). Factors shown in the lower arrow are confirmed, suggested, or
discussed to redirect an inflammatory antibody response into the direction of the low-/non-inflammatory pre-disease state. IgG Fc
glycosylation patterns: blue, N-acetylglucosamine (GlcNAcs); green, mannose; red, fucose, yellow, galactose; purple, sialic acid.
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environmental factors determining inflammatory conditions.

Steps one and two might also occur simultaneously.

Here, we summarize findings on the transition from the pre-

disease to the disease stage and vice versa, e.g. by pregnancy and

treatment, with a focus on low-/anti-inflammatory versus pro-

inflammatory IgG autoAb responses.
Low versus high inflammatory IgG
(auto) antibody responses

The inflammatory severity of IgG (auto)Abs may be

dependent on the IgG autoAb-specific subclass and

glycosylation pattern as well as the total IgG glycosylation

pattern. Knowledge about these determinants will be described

and discussed in the following paragraphs.
Activating versus inhibitory
IgG subclasses

The following functional IgG subclass pairs between human

and mouse have been identified: human (hu) IgG1 and murine

(mu) IgG2a (IgG2c); hu IgG2 and mu IgG3; hu IgG3 and mu

IgG2b; and hu IgG4 and mu IgG1 (15).

Human IgG1 and IgG3 as well as murine IgG2a and IgG2b

show the highest affinities to the classical activating FcyRs and

C1q, the starting molecule of the classical complement activation

pathway (16–18). These IgG subclasses seem to be able to form

hexamers facilitating the interaction with the six-arm C1q

molecule (15, 19–23). Human IgG2 and murine IgG3 hardly

interact with classical FcyRs and C1q and their effector functions

are mostly unclear (16–18). They are induced for instance by T

cell-independent antigens. Furthermore, recent studies have

shown that murine IgG3 can form complexes that induce

nephritis (24).

Human IgG4 and murine IgG1 show higher affinities to the

only classical IgG inhibitory receptor FcyRIIB than to their

classical activating FcyRs (16–18). Furthermore, human IgG4

and murine IgG1 cannot activate C1q, but seem to be able to

disturb hexamer formation of the C1q-activating IgG subclasses

(15). Murine IgG1 also inhibits the formation of murine IgG3

complexes (24). Furthermore, human IgG4 and murine IgG1

can generate Fab arm exchange meaning that heavy chains with

different specificities can dimerize, which reduces their ability to

form immune complexes (25).

Thus, human IgG1/IgG3 and murine IgG2a/IgG2b are the

IgG subclasses with the highest potential to activate the immune

system, whereas human IgG4 and murine IgG1 have less

activating potential and can even inhibit the effector functions

of human IgG1/IgG3 and murine IgG2a/IgG2b. Accordingly,

inflammatory autoimmune diseases are often characterized by
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the appearance of the activating human IgG1/IgG3 and murine

IgG2a/IgG2b subclasses, and the first studies showed that the

autoantigen-specific IgG subclass shift from inhibitory to

activating IgG subclasses is associated with higher

inflammatory autoimmune conditions and vice versa that

enrichment of the inhibitory human IgG4/murine IgG1

subclass can counteract inflammatory (auto)immune

conditions (Figure 1) (10, 15, 24, 26). However, corresponding

human studies are scarce and are needed to verify these

observations. Other autoantigen-specific IgD, IgM, IgA and

IgE isotypes might also be involved, an area that is less

investigated and not the subject of this review. In addition,

increased autoAb titers (14) and autoantigen specificities (4)

might facilitate the transition from the pre- to the disease stage.
Pro-inflammatory versus
lower-/anti-inflammatory IgG Fc
N-glycosylation patterns

The effector functions of IgG molecules are additionally

linked to their type of Fc N-glycosylation attached to

asparagine 297 (Asn297, N) of both heavy chains in the IgG

Ab Fc region (27). A highly conserved biantennary glycan core

structure consisting of N-acetylglucosamines (GlcNAcs) and

mannoses can be further modified with a fucose, a bisecting

GlcNAc and one or two galactose residues, each of which can be

further capped by a sialic acid (27, 28) (Figure 1).

Autoantigen-specific agalactosylated (non-galactosylated

and non-sialylated; G0) IgG Abs are linked to pro-

inflammatory conditions in inflammatory (auto-) immune

diseases, whereas attachment of galactose and sialic acid is

related to fewer inflammatory or even anti-inflammatory

conditions (Figure 1) (3, 8, 11–13, 28–39). In most studies,

IgG Fc bisection also correlates with pro-inflammatory

conditions (28). IgG Fc afucosylation in particular has been

connected to a high tumor fighting potential (16, 40), but shows

different trends in distinct inflammatory autoimmune diseases

(28, 41–43).

Mechanistically, afucosylated IgG Abs show an increased

affinity to certain classical activating FcyRs (40). The effector

function of IgG Fc bisection has rarely been investigated (28).

Sialylated IgG Abs have shown a decreased affinity to classical

(murine) activating FcyRs (27). The described functions of galactose

are controversial as galactosylated IgG Abs show an enhanced

interaction with C1q (44), whereas IgG agalactosylation increases

the induction of the lectin and alternative complement pathways

(32, 45–47). However, the in vivo functions of differently

glycosylated IgG Abs seem to be much more complex because

single terminal glycan residues can also interact with glycan binding

receptors, e.g., of the galectin, siglec and C-type lectin receptor

families (34–36, 48–50). In vivo, immune inhibitory functions have

been described for sialylated as well as terminal galactosylated
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antigen-specific and total IgG Abs (11, 27, 34–36, 38, 48–52).

However, further studies are needed to solve the in vivo functions

of differently glycosylated (auto)antigen-specific IgG (subclass) Abs.

Several studies have suggested that the transition from the

pre-autoimmune disease stage to the inflammatory autoimmune

disease stage is linked to decreasing IgG autoAb galactosylation

and sialylation levels (3, 8, 9, 11–14). Interestingly, an increase in

anti-citrullinated peptide IgG Fab glycosylation sites - very likely

generated by somatic hypermutations - has recently been linked

in addition to the shift from the pre-disease to the disease stage

in the case of RA (53–55).

A reduction in autoantigen-specific human IgG4 and

murine IgG1 galactosylation and sialylation levels seems to

increase their inflammatory potential and might be an

explanation for the appearance of autoantigen-specific IgG4-

mediated inflammatory autoimmune diseases (15, 34, 36, 49, 52,

56–59).
Total IgG Fc N-glycosylation

In addition to autoantigen-specific serum IgG Fc

glycosylation patterns, the corresponding total serum IgG Fc

glycosylation patterns have been linked to inflammatory

conditions, for instance in patients with RA. Autoantigen-

specific IgG Abs not only enrich the total IgG, but rather the

whole T and B cell responses seem to shift to a more

inflammatory stage. Thus, low total serum IgG Fc

galactosylation and sialylation levels correlate with severe

inflammatory disease conditions in RA. In 2006, it was found

in mouse studies that the therapeutic effect of IVIg (intravenous

immunoglobulin; high amounts (2 g/kg/course) of pooled serum

IgG from healthy donors to treat inflammatory diseases) is based

on the sialylated total IgG subfraction (27, 28, 48, 60).

Respectively, IVIg treatment may re-establish a lower

inflammatory immune status.

The total IgG Fc glycosylation status seems to act as a huge

immunological buffer system. Higher total IgG Fc sialylation

levels seem to up-regulate classical inhibitory and down-regulate

classical activating FcyRs (48, 52, 61), and further immune

receptors might be affected. Accordingly, the total IgG Fc

agalactosylation level is assumed to indicate the inflammatory

status of each individual and increases with chronological and, in

particular, biological age (62–65). The glycosylation pattern of

total IgM and IgA Abs very likely also influences the

immune status.

A change in total IgG Fc glycosylation during the transition

from the pre-disease to the disease stage is controversial. A

recent study described that low total IgG Fc galactosylation levels

could also occur very early in the pre-disease stage of RA patients

(66). However, total IgG Fc agalactosylation levels seem to be a

risk factor for the development of RA.
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Induction of IgG antibodies with low
galactosylation and sialylation levels

Recent immunization studies have shown that different co-

stimuli/adjuvants/inflammatory conditions induce distinct

germinal center (GC) T and B cell responses that determine

different expression levels of a2,6-sialyltransferase (St6gal1; the
enzyme that adds sialic acid to IgG Fc parts) in GC-derived

plasma cells (PCs) and corresponding IgG Fc sialylation levels

(67). It is assumed that beta1,4-galactosyltransferase (B4galt1;

the enzyme that adds galactose to IgG Fc parts) expression and

corresponding IgG Fc galactosylation are regulated similarly in

parallel (67). Accordingly, (auto)antigen-specific IgG Fc

galactosylation and sialylation levels reflect the inflammatory

immune status and can be used as biomarkers of the

inflammatory potential of the running (auto)antigen-specific T

and B cell response (67).

In this context and in the context of RA models, it has been

shown that, in particular, IL-6, IL-27R-induced IFNg-producing
TFH1 and TFH17 cells contribute to the induction of low St6gal1

expression in GC B cells and corresponding PCs as well as low

IgG Fc sialylation levels (12, 67). Abrogation of these signals has

led to higher St6gal1 expression and higher IgG Fc

galactosylation and sialylation levels (12, 67).
Reasons for the switch from pre- to
inflammatory conditions

In step one, tolerance mechanisms fail, and an autoantigen-

specific T and B cell response leads to detectable IgG autoAbs.

This step is even less understood than step two. A certain portion

of individuals expressing specific IgG autoAbs might never

develop specific disease symptoms. Others can switch from the

pre- to the inflammatory stage (Figure 1). The reasons are still

unclear and might occur individually. Increasing evidence

suggests that the T/B cell and IgG autoAb responses induced

in step one do not have to be pathogenic, but can switch to

inflammatory, pathogenic IgG autoAb responses initiating the

disease stage (3, 4, 8–14).

Three scenarios seem to be most likely for the transition.

First, unfavorable genetic predispositions such as certain MHC

alleles might favor such a switch (14, 68). Nevertheless, there is

only a small overlap of the disease appearance between

monozygotic twins (69), suggesting that additional factors

might play an important role. Second, a specific event such as

a severe lung infection/inflammation might switch the

inflammatory status of the whole immune system for some

days, which may lead to the alteration of a harmless

autoantigen-specific T/B cell response in the pre-stage to an

inflammatory T/B cell response. Third, the switch might occur

slowly over time. Aging and increasing BMIs, for instance, shift
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the whole immune status as well as the total IgG Fc glycosylation

level to a more inflammatory condition (62–65). Furthermore,

unfavorable nutrition and a shift in the microbiome induced, for

instance, by nutrition or antibiotics can influence the immune

status (see also below). The accumulation of certain types of gut

bacteria might then favor more inflammatory immune

responses, e.g., by supporting the Th17 axis (70, 71). Slow

shifts to more inflammatory immune conditions might also

shift the autoantigen-specific T and B cell response to a more

inflammatory state and induce the development of specific

autoimmune disease symptoms.

Pregnancy and estrogen lead to a
return to less inflammatory (auto)
immune conditions

To understand the shift from the pre- to the inflammatory

stage, it might be helpful to analyze conditions when the

inflammatory autoimmune stage returns to a less inflammatory

stage in the direction of the pre-stage.

The most prominent case is likely pregnancy. Women with

RA show less disease symptoms during pregnancy, a tolerogenic

status established to inhibit immune attacks against the fetus (72,

73). During pregnancy, total as well as autoantigen-specific IgG

Abs shift to higher Fc galactosylation and sialylation levels (72,

73). Notably, Fab glycosylation does not change during pregnancy

(74). Understanding the changes in T/B cell and Ab responses

during pregnancy in patients with inflammatory autoimmune

diseases, such as RA, will facilitate understanding and recognition

of the switch from the pre- disease to the disease stage.

Appropriately, the level of the sex hormone estrogen, which

is highly upregulated during pregnancy and downregulated

during menopause, positively correlates with IgG Fc

galactosylation and sialylation levels in males and females (75).

Furthermore, application of estrogen or phytoestrogens reduced

inflammatory conditions, up-regulated B4galt1 and St6gal1

expression and enhances IgG Fc galactosylation and sialylation

levels (75–77). In addition, phytoestrogens have been described

to exert anti-inflammatory effects (78, 79).
Early diagnosis

Healthy individuals with identified specific IgG autoAbs could

be closely monitored to recognize any starting transition from the

pre- to the inflammatory (auto)immune stage for starting

therapies before clinical disease symptoms evolve. Therapies

might then redirect the inflammatory autoantigen-specific T

and B cell and Ab response back into the direction of the low-/

non-inflammatory pre-stage (80). Total as well as autoantigen-

specific IgG Fc galactosylation and sialylation levels seem to be

promising biomarkers for characterizing any transition.
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Discussion of existing and potential
new therapies

There are increasing therapeutic tools that reduce

inflammatory (auto)immune conditions. Some, e.g. rituximab,

deplete central immune cells such as B cells, and others, such as

IVIg or monoclonal anti-TNFa and anti-IL-6 Abs, redirect pro-

inflammatory to less inflammatory conditions. Alhough

different therapeutics are available and frequently used, their

anti-inflammatory mechanisms are often not completely

understood. In the following section, we will address the anti-

inflammatory potential of some existing therapeutics and discuss

further possibilities to redirect inflammatory immune conditions

or to maintain the pre-disease stage.
IVIg

Different immune modulatory effects of IVIg have been

described, one of which may be the re-establishment of the

total IgG Fc glycosylation buffer system by increasing the

proportion of the sialylated IgG Ab subfraction (27, 48, 81,

82). If a patient shows no response to IVIg therapy, higher

amounts of IVIg might be necessary to re-establish a healthy/

tolerogenic total IgG Fc galactosylation and sialylation level. In

the meanwhile, there have been attempts to further modulate

IVIg enzymatically by adding the maximal number of sialic acids

(four) to one IgG molecule to enhance the anti-inflammatory

properties and make the efficacy more consistent (83). However,

when IVIg therapy is discussed, it must be mentioned that

several anti-inflammatory mechanisms have been postulated

for IVIg and that an anti-inflammatory effect of the sialylated

IgG subfraction of IVIg remains to be confirmed in humans. It

has for instance been described that IVIg might be contaminated

with TGF-ß (84). Nevertheless, further analyses have revealed

that TGF-ß contamination cannot explain most of the observed

anti-inflammatory functions (85). Furthermore, the

galactosylated subfraction of IVIg might also mediate anti-

inflammatory functions (35, 50).
Blocking Abs/Biologica

Other used therapeutic tools are blocking Abs or Biologica

that target pro-inflammatory cytokines or their receptors, such

as TNFa, IL-6, IL-1, IL-12, IL-23 and IL-17.

Anti-TNFa therapy has probably been developed to reduce

local inflammatory immune conditions. However, successful anti-

TNFa therapy of RA patients has been shown to increase

autoantigen-specific as well as total IgG galactosylation and

sialylation levels (86), also assuming an effect on all current (GC)

T and B cell responses. The involvement of TNFa in the proper

formation of GCs is well known (87). However, the influence of
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TNFa on certain TFH cell subpopulations and corresponding

glycosyltransferases in GC B cells has not yet been verified.

In addition to anti-TNFa application, it was found that

treatment of RA patients with tocilizumab, an IL-6 blocking Ab,

increased IgG Fc galactosylation levels (88). Recent mouse

studies have shown that IL-6 is an important cytokine for

inflammatory GC reactions with low B cell intrinsic St6gal1

expression leading to IgG Abs with low galactosylation and

sialylation levels (67).

New blocking Abs target IL-12, IL-23 and IL-17, that might

inhibit the generation of Th1 and Th17 cells as well as GC TFH1 and

TFH17 cells, which have been shown to be necessary for the induction

of IgG Abs with low galactosylation and sialylation levels (67).

Furthermore, whether these new or further cytokine

blocking Abs can shift the IgG subclass composition to human

IgG4/murine IgG1 to influence inflammatory conditions via this

pathway has hardly been examined.

Treatment with corticosteroids also reduce inflammatory

conditions and might influence IgG Fc subclass and/or

glycosylation shifts.

Currently, the described treatments are applied when

inflammatory (auto)immune disease conditions appear.

However, in the future, treatments could start earlier when the

starting point of the transition from the pre-disease to the

inflammatory disease stage is monitored and recognized in

IgG autoAb positive “healthy” individuals.
Nutrition/metabolism

Corticosteroids have unfavorable side effects, and biologic

treatment is very expensive. What can autoAb-positive “healthy”

individuals do to reduce the probability of undergoing the shift

from the autoimmune pre-disease to the inflammatory disease

stage (Figure 1)? The role of nutrition and metabolism regarding

inflammatory conditions has been increasingly discussed lately

and could therefore be one possibility to counteract such a shift.

Researchers have found that obesity, a known driver of

inflammation (89), increases, whereas extensive weight loss

decreases the IgG Fc agalactosylation level (65). Furthermore,

a positive correlation between body mass index (BMI) and the

IgG Fc agalactosylation level has been recently described in

various studies (62, 64). Thus, the metabolic state of an

individual seems to influence the inflammatory immune status.

Accordingly, a positive correlation between BMI and the

development of several autoimmune diseases has been observed

(90–92). Moreover, fasting intervals simultaneously decrease

inflammatory disease symptoms and the IgG agalactosylation

level in RA patients (93).

More targeted dietary changes also result in improvement of

inflammatory (auto)immune diseases (94, 95) and for some

inflammatory autoimmune diseases, an influence of diet on T/

B cell responses has been described (96–99).
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Secondary plant metabolites seem to be able to change an

inflammatory state toward more tolerogenic conditions, such as

certain phenolic acids that can modulate the production of pro-

inflammatory cytokines (100). Moreover, polyunsaturated fatty

acids (PUFAs) that occur not only in plants but also in eggs and

fish have shown beneficial effects on inflammatory autoimmune

diseases such as RA, SLE, multiple sclerosis and diabetes type-1

(101, 102).

Certain diets might also act on the gut bacterial composition

and the generation of gut bacterial metabolites. Fasting versus

Mediterranean diets change the microbiome composition in RA

patients (103). For some of these microbial metabolites, like short

chain fatty acids (SCFAs), it is well known that they mediate anti-

inflammatory properties and can even influence T/B cell

responses. The SCFA butyrate (C4), for instance, reduces IFNg
and inflammatory IL-17 levels (104) and promotes the

differentiation of T follicular regulatory cells (105). Furthermore,

butyrate induces the generation of IL-10+ regulatory B cells (106)

and PCs (107) and alters IgG subclass distributions toward less

IgG2b (and a tendency toward less IgG2a) in mice (107).

Together, single nutrients and metabolites might have a strong

potential to boost the transition to the inflammatory autoimmune

disease stage, but others might have the capacity to re-direct

inflammatory T/B cell responses or even to hold IgG autoAb-

positive “healthy” individuals in the pre-disease stage (Figure 1).
Environment

Another interesting factor that should be considered in the

context of inflammatory autoimmune diseases is the

environment, such as stress. It is generally believed that stress

is a potent inducer of inflammation (108, 109) and, even further,

of inflammatory autoimmune diseases (110). In living

conditions where stress-levels are generally high, such as shift

work, there is growing evidence that the prevalence and disease

onset of inflammatory autoimmune diseases is enhanced (111–

113). Therefore, it is of interest to determine whether stress can

influence the inflammatory status of the T/B cell and the Ab

response. Recently, a study with rats investigated the effects of

chronic stress on IgG Abs (114). Stress induced higher IgG2a

and IgG2b agalactosylation levels in young female rats but

higher IgG2b galactosylation levels in older female rats. In the

future, addditional research is needed to investigate the influence

of stress and other environmental factors on the inflammatory

T/B cell and IgG Ab status.
Conclusion

Several lines of evidence suggest a two-step model for the

development of inflammatory autoimmune diseases. In stage one

low–/non–inflammatory T/B cell and IgG Ab responses occur
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that can, but do not have to shift to more inflammatory T/B cell

and IgG Ab responses inducing stage two with inflammatory

autoimmune disease phenotypes. Early identification and

observation of IgG autoAb positive “healthy” individuals might

help to recognize changes in the T/B cell and IgG Ab response for

starting anti-inflammatory treatments to abolish the transition

into stage two. Healthy diets and agreeable environments might

help to maintain the less inflammatory stage one. The IgG

subclass distributions and IgG Fc glycosylation pattern might

thereby act as suitable biomarkers to recognize the transition from

stage one to stage two.
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et al. Low galactosylation of IgG associates with higher risk for future diagnosis of
rheumatoid arthritis during 10 years of follow-up. Biochim Biophys Acta Mol Basis
Dis (2018) 1864(6 Pt A):2034–9. doi: 10.1016/j.bbadis.2018.03.018

67. Bartsch YC, Eschweiler S, Leliavski A, Lunding H, Wagt S, Petry J, et al. IgG
fc sialylation is regulated during the germinal center reaction upon immunization
with different adjuvants. J Allergy Clin Immunol (2020) 146(3):652–66.
doi: 10.1016/j.jaci.2020.04.059

68. Nogueira Almeida L, Clauder AK, Meng L, Ehlers M, Arce S, Manz RA.
MHC haplotype and b cell autoimmunity: Correlation with pathogenic IgG
autoantibody subclasses and fc glycosylation patterns. Eur J Immunol (2022) 52
(2):197–203. doi: 10.1002/eji.202149279

69. Bogdanos DP, Smyk DS, Rigopoulou EI, Mytilinaiou MG, Heneghan MA,
Selmi C, et al. Twin studies in autoimmune disease: genetics, gender and
environment. J Autoimmun (2012) 38(2-3):J156–69. doi: 10.1016/
j.jaut.2011.11.003

70. Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of diet, gut
microbiome, and autoantibody production. Front Immunol (2018) 9:439.
doi: 10.3389/fimmu.2018.00439

71. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus
H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature
(2017) 551(7682):585–9. doi: 10.1038/nature24628

72. Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, et al. Changes
in IgG glycoform levels are associated with remission of arthritis during pregnancy.
J Autoimmun (1991) 4(5):779–94. doi: 10.1016/0896-8411(91)90173-A

73. van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA,
Deelder AM, et al. Immunoglobulin G galactosylation and sialylation are associated
with pregnancy-induced improvement of rheumatoid arthritis and the postpartum
flare: results from a large prospective cohort study. Arthritis Res Ther (2009) 11(6):
R193. doi: 10.1186/ar2892

74. Bondt A, Wuhrer M, Kuijper TM, Hazes JM, Dolhain RJ. Fab glycosylation
of immunoglobulin G does not associate with improvement of rheumatoid arthritis
during pregnancy. Arthritis Res Ther (2016) 18(1):274. doi: 10.1186/s13075-016-
1172-1

75. Ercan A, Kohrt WM, Cui J, Deane KD, Pezer M, Yu EW, et al. Estrogens
regulate glycosylation of IgG in women and men. JCI Insight (2017) 2(4):e89703.
doi: 10.1172/jci.insight.89703

76. Engdahl C, Bondt A, Harre U, Raufer J, Pfeifle R, Camponeschi A, et al.
Estrogen induces St6gal1 expression and increases IgG sialylation in mice and
patients with rheumatoid arthritis: a potential explanation for the increased risk of
rheumatoid arthritis in postmenopausal women.Arthritis Res Ther (2018) 20(1):84.
doi: 10.1186/s13075-018-1586-z

77. Du N, Song L, Li Y, Wang T, Fang Q, Ou J, et al. Phytoestrogens protect
joints in collagen induced arthritis by increasing IgG glycosylation and reducing
osteoclast activation. Int Immunopharmacol (2020) 83:106387. doi: 10.1016/
j.intimp.2020.106387

78. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-inflammatory
effects of hypophyllanthin and niranthin through downregulation of NF-kB/
MAPKs/PI3K-Akt signaling pathways. Inflammation (2018) 41(3):984–95.
doi: 10.1007/s10753-018-0752-4
Frontiers in Immunology 09
79. Wei J, Chen JR, Pais EMA, Wang TY, Miao L, Li L, et al. Oxyresveratrol is a
phytoestrogen exerting anti-inflammatory effects through NF-kB and estrogen
receptor signaling. Inflammation (2017) 40(4):1285–96. doi: 10.1007/s10753-017-
0572-y

80. Pasek M, Duk M, Podbielska M, Sokolik R, Szechiński J, Lisowska E, et al.
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