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in immune-mediated
inflammatory diseases
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Immunotherapy drugs are transforming the clinical care landscape of major

human diseases from cancer, to inflammatory diseases, cardiovascular

diseases, neurodegenerative diseases and even aging. In polygenic immune-

mediated inflammatory diseases (IMIDs), the clinical benefits of

immunotherapy have nevertheless remained limited to a subset of patients.

Yet the identification of new actionable molecular candidates has remained

challenging, and the use of standard of care imaging and/or histological

diagnostic assays has failed to stratify potential responders from non-

responders to biotherapies already available. We argue that these limitations

partly stem from a poor understanding of disease pathophysiology and

insufficient characterization of the roles assumed by candidate targets during

disease initiation, progression and treatment. By transforming the resolution

and scale of tissue cell mapping, high-resolution profiling strategies offer

unprecedented opportunities to the understanding of immunopathogenic

events in human IMID lesions. Here we discuss the potential for single-cell

technologies to reveal relevant pathogenic cellular programs in IMIDs and to

enhance patient stratification to guide biotherapy eligibility and clinical

trial design.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006944/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006944/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006944/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006944/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1006944/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1006944&domain=pdf&date_stamp=2022-11-07
mailto:Jerome.martin@univ-nantes.fr
https://doi.org/10.3389/fimmu.2022.1006944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1006944
https://www.frontiersin.org/journals/immunology


Chapelle et al. 10.3389/fimmu.2022.1006944
Introduction

Pioneered by anti–tumor necrosis factor (TNF) antibodies

(Abs), the introduction of targeted therapies against

inflammatory cytokines transformed the clinical outcome of

patients with major chronic immune-mediated inflammatory

diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis

and inflammatory bowel disease (IBD) (1–3). More recently, the

blockade of immune checkpoints resulted in a major paradigm

shift in cancer care, which was acknowledged by the 2018 Nobel

prize awards in physiology or medicine (4). These spectacular

achievements emphasize the extraordinary potential for the

discovery of new immunotherapy drug targets that can be

leveraged from the vast immunology knowledge generated

over the past century.

In monogenic forms of IMIDs where disease pathophysiology

is predominantly driven by a unique molecular pathway,

substantial clinical success has been achieved. This is for

instance the case in autoinflammatory diseases driven by

sustained activation of the inflammasome, such as familial

Mediterranean fever (FMF) or cryopyrin-associated periodic

syndrome (CAPS) (5, 6). Substantial clinical success was also

achieved in cancer lesions expressing mismatch repair

insufficiency, which drives the expression of high number of

neoantigens and increases the immunogenicity of tumors and

their responsiveness to PD-1 blockade. This led for the first time

in the history of cancer to the FDA approval of PD-1 blockade in

all microsatellite instability-high (MSI-H) cancers, regardless of

tumor types (7–9).

In contrast, the clinical benefits of immunotherapy in

polygenic IMIDs have remained limited to a subset of patients.

About 30-40% of IBD patients do not respond or end up not

responding to anti-TNF Abs (10, 11). Only two targeted

therapies with overall moderate benefits, anifrolumab and

belimumab, have been approved for the management of

systemic lupus erythematosus (SLE) in more than 50 years of

research (12, 13). The limited benefits of immunotherapy in

IMIDs partly account for the immunopathological heterogeneity

present across similar tissue lesions in IMIDs, as long-time

supported by the pleiomorphic auto-antibody patterns for

instance. However, while it is now clear that clinical and

histological diagnoses are not sufficient to predict efficacy,

none of the targeted immunotherapies approved to treat

polygenic IMIDs are provided with decision algorithms to

maximize chances of therapeutic response.
Genetics of diseases dominate
pathophysiology studies

The sequencing revolution that has occurred over the last

decades has propelled enormous enthusiasm and surge to identify
Frontiers in Immunology 02
the underlying genetic drivers of diseases. Genetic profiling has led

to significant advances in the identification, understanding and

treatment of monogenic immune diseases such as primary

immunodeficiencies (severe combined immunodeficiency (SCID),

common variable immunodeficiency (CVID) etc…), auto-

inflammatory diseases (FMF, tumor necrosis factor receptor

associated periodic syndrome (TRAPS), CAPS, Blau syndrome

etc…) and monogenic autoimmune diseases (autoimmune

polyendocrinopathy candidiasis ectodermal dystrophy (APECED),

immunodysregulation polyendocrinopathy enteropathy X-linked

(IPEX), (cytotoxic T-lymphocyte-associated protein-4) CTLA4

deficiency etc…) (5, 14–16). In rare cases of exceptionally strong

gene linkage, genetic testing can even contribute to strengthening

the diagnosis of multifactorial polygenic diseases such as HLA-B27

in ankylosing spondylitis or HLA-DQ2/DQ8 in celiac disease.

While the clinical benefits of genetic testing are limited to

individuals at risk, genome-wide association studies (GWAS)

have been extensively used to identify potential mechanisms of

diseases in larger patient populations. In most IMIDs, however,

only a minor fraction of disease trait variability has been linked

to specific genomic loci, and risk gene variants confer small and

unpredictable risk of disease occurrence. The role for

extragenetic factors has been supported by epidemiologic

observations showing discordance of disease expression

between homozygous twins, onset frequently occurring during

adulthood (17), and the “outbreak” of IMIDs upon change of

lifestyle and dietary habits. Accordingly, environmental

exposure, infectious history, microbiome composition and

epigenetic factors are considered as significant contributors to

disease onset, evolution and response to treatment (18, 19). It is

thus unlikely that genetic profiling alone will ever be sufficient to

help diagnose or predict response to immunotherapy drugs in

polygenic IMIDs (17, 20).
Cellular and tissue-specific gene defects
drive disease pathophysiology

Genetic studies should by no means be reduced but it is

urgent that we enhance our efforts to understand the cellular

contribution to disease pathophysiology. Functional genetics can

map risk loci or genes to a cellular phenotype but cellular- and

tissue-specific effects of gene mutations often lead to distinct

disease pathophysiology. This has been well demonstrated in

cancer lesions, where loss-of-function or gain-of-function

alterations in specific genes can promote tumorigenesis in

some tissues while ineffectual in others (21). For example,

inherited BRCA1- and BRCA2-inactivating mutations

predispose mainly to breast and ovarian cancer; adenomatous

polyposis coli (APC) to colorectal cancer (CRC); and KRAS

mutations to pancreas, colon and lung cancer, emphasizing the

contribution of the tissue environment to the gene effect (21).
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IMIDs sharing genetic susceptibility within the IL-23/IL-17

pathway respond differently to IL-17 blockade, and while

s ign ificant c l in ica l benefi t was obta ined in ax ia l

spondyloarthritis (22) and psoriasis (23, 24), IL-17 blockade

led to disease worsening in ileal Crohn’s disease (25). Thus, the

pathogenicity of a specific pathway and the outcome of its

blockade in polygenic IMIDs may vary across cell types, tissue

types but also biological context (26).

Immunologists have excelled in cellular taxonomy (i.e., the

definition of cellular phenotypic identity and functional

specialization) but the nature of the cellular and molecular

pathways that lead to human immune diseases remain sparse.

Improving the prediction on gene effects and their therapeutic

potential will necessarily depend on the understanding of the

cellular phenotypes that populate the diseased organs. In that

regard, recent data have emerged to support the potential of

population-scale single-cell RNA sequencing (scRNA-seq)

analyses to explore multiple expression quantitative trait locus

(eQTL) in a cell type-specific manner (26, 27). Combined with

the need to gain a better understanding of the cellular programs

shaping normal and lesional tissues, such approaches could be

instrumental for our understanding of causal mechanisms of

complex diseases.

Before that, however, efforts to improve the access to

biological samples and the even rarer access to longitudinal

sampling of human lesions during disease progression or during

treatment must be initiated, as discussed below.
The struggle to discover new drug
targets and the need to facilitate human
tissue access to scientists

Most drug targets fail to succeed when evaluated in phase 3

trials, hence accounting for both an important economic burden

and a distraction for physicians and scientists, which adversely

impacts clinical care. The reasons leading to failure are

numerous and include factors such as safety issues, insufficient

enrollment, suboptimal study design and chiefly, the inability to

demonstrate drug efficacy (28). In fact, the majority of FDA-

approved drugs every year target known pathophysiological

pathways, reflecting the struggle to identify new actionable

molecular candidates. We argue that these limitations partly

stem from a poor understanding of disease pathophysiology and

insufficient characterization of the roles assumed by candidate

targets during disease initiation, progression or response to

treatment. Animal models led to many key discoveries in

immunology, including in the biomedical field (29) but

discrepancies between animal and human pathophysiology

have been raised as possible obstacles. Still, experiments in

mice enabled the development of anti-TNF therapy for RA

(30), and of Abs targeting immune checkpoints in cancer (31).

While we should discard models that have consistently proved
Frontiers in Immunology 03
unable to represent human disease, we believe that the limited

cellular and molecular information about human lesions actually

precluded the development of appropriate models for

preclinical studies.

High dimensional mapping strategies now provide with

unique opportunities to thoroughly describe the sequence of

immunopathogenic events developing along disease course and

therapeutic intervention in human lesions (32). Ambitious

programs aiming to build data-derived hypotheses as main

drivers of mechanistic explorations nevertheless come with

heavy loads of administrative and organizational work for

both clinical and scientific teams. For immunologists, there is

an ever urgent need to access freshly collected tissues as the

functionality of immune cells can only be fully revealed on

perturbed live cells. It appears critical that such programs be

fully embraced at the institutional level to succeed. For instance,

by investing more efforts into the creation of professional teams

dedicated to patient selection, consent and inclusion, as well as

clinical data and tissue collection, distribution, storage and

retrieval, the collaboration between physicians and scientists

could be largely facilitated. It will thus be important that clinical

and scientific teams work in close collaboration together with

institutional but also ethical committees to the design of studies

offering guarantees of sufficient sustainability (33).

Longitudinal profiling studies, in particular, require that

ethically-acceptable conditions be defined and properly framed

by ethical review boards. While repeated sampling in organs that

would put the patient at risk with no direct clinical needs is

simply not ethically acceptable, it remains possible in tissues

such as the skin or the digestive tract. In addition, because

histology-based decisions are gaining prominence in the

therapeutic management of patients with IBD or chronic

inflammatory lesions of the stomach for instance (34, 35), this

makes it even possible to align molecular profiling with clinical

care. IMIDs share several targetable molecular drivers (36, 37),

and one can anticipate diseases involving organs not easily

accessible to biopsy collection will still benefit from knowledge

gains achieved through such longitudinal studies.
High dimensional single-cell
technologies: enhancing
immunopathology knowledge in IMIDs
for drug target discovery and patient
stratification

Empowered by the progress of next generation sequencing

(NGS) technologies, genomic assays are currently being used to

search for molecular patterns that can stratify patients’ lesions

beyond standard histological assays. Genomic assays that

include transcriptomic information contributed to the

identification of several molecular signatures of IMIDs, some

of which have been successfully correlated to distinct clinical
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outcomes (38–48). Strategies profiling tissues in bulk only

inform on the average expression profile of a mixture of

different cell types and cannot resolve cell-specific gene

expression programs (49). The development of high-resolution

profiling approaches including single-cell technologies have

significantly enhanced information obtained from limited

human biological specimens. The use of massively parallel

single-cell genomics assays can now routinely profile the

transcriptome of tens of thousands of cells. Beyond RNA, it is

possible to measure DNA, protein and epigenomic profiles with

single cell resolution (32). Spatial mapping technologies, which

inform on cellular organization and interactions in tissues,

provide additional layers of information. Significant progress is

being made in the development of robust computational

methods to determine cell types, states and spatial location,

including through the possibility to integrate multiple datasets

made publicly available (50–52). Together, these advances have

transformed the resolution and scale of tissue cell mapping of

IMIDs lesions.

In particular, single-cell RNA-sequencing (scRNA-seq)

provides an unbiased method to identify cellular subtypes and/

or states defined by distinct molecular programs based on the

analysis of thousands of genes, which has the potential to reveal

scarce cellular processes relevant to IMIDs pathogenicity. Using

scRNA-seq, the profiling of peripheral blood mononuclear cells

(PBMCs) from SLE patients allowed to identify the expansion of

populations of IFN-stimulated genes (ISG)hi monocytes,

plasmacytoid dendritic cells (pDCs), plasma cells (PCs), and

cytotoxic natural killer (NK) cells in patients with the highest

disease activity (53). An elevated IFN signature was also

observed in kidney tubular cells of non-responder patients (42,

43). In seropositive RA, scRNA-seq studies revealed the

expansion of fibroblast activation protein-a (FAPa)+

fibroblasts that comprised subsets of inflammatory

FAPa+THY1+, and destructive FAPa+THY1− fibroblasts,

respectively localized in the synovial sub-lining and lining

layers (54, 55). Building on these findings, further scRNA-seq

studies identified central roles of NOTCH3 signaling in

mediating the expansion of THY1+ inflammatory fibroblasts

(56). Using cytometry by time-of-flight (CyTOF), the same

group also described a population of CD4+ T peripheral helper

(TPH) cells organizing B-cell responses and antibody production

within pathologically inflamed synovial tissues (57). Through

scRNA-seq profiling studies, we and others later identified the

contribution of similar TPH cells to inflammatory processes

involved in ulcerative colitis and type 1 autoimmune hepatitis

respectively (58, 59). In atopic dermatitis (AD) and psoriasis,

scRNA-seq analyses of skin immune cells suggested pro-

inflammatory macrophage subsets could reactivate programs

at play during fetal development to promote angiogenesis and
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leukocyte infiltration (60). In turn, the study of synovial tissue

macrophages identified unique molecular states involved in

inflammation resolution and tissue repair, which, when

present in low proportions during remission phases, predicted

increased risk of RA flares (61).

Multimodal measurements provide ways to associate in

single cells analyses, several biological features that are

essential to the description of cellular states and functions.

Combined transcriptome and T-cell receptor (TCR) sequence

analyses allow to generate valuable information about T cell

clonal fates, dynamics and effector functions. Such approaches

revealed the expansion of T cell clones with cytokine signatures

relevant to type 2- and type 3-mediated pathogenicity in lesions

of AD and psoriasis respectively (60). In Crohn’s disease (CD),

Graham and colleagues recently showed that T cell responses to

an immunodominant epitope conserved across gut commensal

Bacteroidales shifted their cytokine responses from the

production of immunoregulatory IL-10 toward IL-17 during

disease flares (62). The combined profiling of gene expression

and genome-wide chromatin accessibility in single stromal cells

suggested the involvement of AP-1 family members in regulating

the transition of a discrete subset of LGR5+-scleroderma-

associated fibroblasts (ScAFs) from healthy to pathological

states in the skin of patients with autoimmune systemic

sclerosis (SSc) (44). Interestingly, contrary to immune

alterations, which were limited to patients with diffuse SSc,

ScAFs transitions were universal to both limited and diffuse

phenotypes. By unraveling a previously unappreciated

profibrotic cellular state, this study offers new opportunities to

target fibrosis not only in all forms of SSc but also in other IMIDs

with fibrotic complications such as RA and CD.

Disease-associated cell subtypes do not act in isolation but

involve cellular interactions between distinct immune and non-

immune cell populations, which together participate in shaping

the organization of pathophysiological responses in lesions.

Profiling cellular interactions is only possible using

technologies that provide single cell resolution at scale. We

and others recently identified cellular interactions that

correlated with disease course (58, 63–69). Using single cell

profiling of advanced ileal CD (iCD) lesions, we described a

cellular module consisting of 5 different cell populations that

accumulated in inflamed lesions of a subset of patients. We also

identified the potential drivers of this pathogenic response

through the characterization of ligand-receptor pairs

preferentially enriched in these patients and confirmed

inferred cellular interactions using spatial mapping by

multiplex imaging (63, 70). Finally, we developed an analytical

strategy allowing to test in large cohorts of patients, the

association between the presence of this cellular response in

inflamed tissues and relevant clinical parameters. Using this
frontiersin.org
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approach, we characterized the cellular and molecular

framework in which lies anti-TNF resistance in iCD. As

discussed further below, strategies as ours demonstrate the

possibility to use scRNA-seq as a way to agnostically identify

clinically meaningful molecular layers of patient stratification in

polygenic IMIDs, which can serve as a rational basis to

implement the design of clinical trials.
Unraveling immunopathology
heterogeneity using single-cell profiling
of disease lesions

The unique potential for single-cell profiling strategies to

identify distinct cellular and molecular organization among

clinically and histologically homogenous patients provides

enormous opportunities to transform clinical care (Figure 1).

The single-cell profiling of human lesions should help reveal

distinct cellular and molecular patterns of disease lesions and

stratify patients beyond the clinical and histological diagnosis. It is

important, however, that such profiling be done first on lesions
Frontiers in Immunology 05
naïve of treatment to reduce the confounding variable induced

upon exposure to drug and maximize the chances to identify

relevant molecular drivers of diseases. In clinical trial design, the

identification of disease molecular patterns will enable a balanced

distribution of patients with distinct immunopathogenic

signatures and help reveal the efficacy of drug treatment in

specific subset of patients. Such studies will also help the

identification of biomarkers of response to treatment and help

maximize therapeutic management. In addition, longitudinal

mapping of cellular distributions and their molecular dynamics

in lesional tissues during treatment should help identify molecular

criteria of therapeutic response that are critically needed, as

pathogenic processes in tissues can remain active despite

apparent clinical recovery. Quantification of cellular and

molecular responses could then serve as primary endpoints to

guide therapeutic strategies. Dynamic mapping could also help

unravel cellular and molecular processes enriched in responder

and non-responder patients. Such results should guide ongoing

R&D efforts to identify novel potential targets and combination

therapies that associate synergistic drugs targeting distinct

molecular pathways. Finally, systematic single-cell profiling of
A B

D EC

FIGURE 1

Unraveling immunopathology heterogeneity using single-cell profiling of disease lesions. (A) The characterization of distinct immunopathogenic
responses in lesional tissues between subgroups of clinically similar patients can help derive stratifying cellular and molecular signatures. (B) If two
pathogenic responses are causing a similar clinical disease but only signature 1 is responding to Drug A, random or biased enrichment of signature 1
in Placebo vs. Drug A group could mislead to Drug A inefficacy in the disease. (C) Monitoring cellular and molecular responses in tissues during the
course of treatment can help define molecular endpoints of remission in patients with clinically inactive disease. (D) Monitoring cellular and
molecular responses in tissues during the course of treatment can help identify immune pathways unaffected by the drug that could be targeted by
another therapy. (E) Similar immunopathogenic responses occurring in distinct tissues and diseases can be targeted by the same immunotherapy.
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human lesions may reveal pathogenic pathways that are shared

among distinct clinical and histological entities, and ultimately

lead to a molecular classification of diseases and the design of

novel therapies that target molecular drivers of diseases

irrespective of the clinical diagnosis (71).
Clinical translation of single-cell based
models to large clinical cohorts

A major goal of single-cell profiling and multiplex imaging

technologies is to associate clinically relevant outcomes with

cellular signatures. scRNA-seq enables to agnostically resolve the

organization of complex cellular signatures in tissue lesions. Cost

and labor constraints, however, restrain its application to small

cohorts of patients. Because the distributions of clinical and/or

demographic parameters can be highly intercorrelated, it is

necessary to disentangle confounding factors in order to

extract clinically meaningful molecular signatures, which is

only possible with large cohorts. We suggest to overcome these

limitations using a 2-steps strategy. In a “molecular discovery”

phase, relevant cellular signatures are first identified by applying

high-resolution single-cell profiling to a small cohort of patients
Frontiers in Immunology 06
thoroughly selected by experienced clinicians (Figure 2A). In a

“clinical association” phase, large numbers of patients are

profiled using approaches with mitigated cellular or molecular

resolutions. The clinical value of high-resolution-based

molecular signatures is then tested by applying a

computational method tailored to project the data from

samples profiled at lower-resolution onto the model devised

during the “molecular discovery” phase (Figures 2B, C). This 2-

steps strategy hence allows to link at minimal cost relevant

metadata (clinical records, genetic information etc.) from a large

number of patients with the cellular signatures detected by

scRNA-seq.

It is possible to decrease the molecular resolution of scRNA-

seq by reducing the number of readouts per cell and/or by

reducing the number of single-cells per sample. Besides, the cost

of scRNA-seq has largely decreased over the past decade, and is

expected to drop even more in the near future (72). These

approaches nevertheless require cost and labor-intensive steps of

tissue dissociation for single-cell processing and library-

preparation, which are expected to remain significant and

challenging for implementation in clinical trials. An alternative

approach that we and others privileged (63, 64, 68) was to use

data from tissues sequenced in bulk for the “clinical association”
A B DC

FIGURE 2

A 2-steps strategy for the implementation of molecular stratification criteria into the design of clinical trials. (A) In a “molecular discovery” phase,
relevant cellular signatures are first identified by applying high-resolution single-cell profiling to a small cohort of patients. (B) In a “clinical
association” phase high-resolution-based signatures are confirmed on a large number of patients by projecting the data obtained after low-
resolution profiling onto a model devised during the “molecular discovery” phase. (C) Molecular scores derived from the agnostically identified
signatures are then tested for their association with relevant clinical parameters. (D) Molecular criteria are implemented to guide the design of
clinical trials.
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phase (Figures 2B, C). By projecting the data obtained after

profiling ileal biopsies with low resolution RNA-seq onto a

model derived by the high-resolution scRNA-seq analysis of a

small cohort of CD patients, we confirmed our findings on a

large number of patients and were able to associate the

enrichment of this cellular signature with a poor response to

anti-TNF Abs (63). The strength and applicability of RNA seq-

based stratification to guide group design in clinical trials were

recently demonstrated by Pitzalis and colleagues in RA. In this

study, the authors showed that the molecular stratification of RA

synovial tissue from patients with inadequate response to anti-

TNF Abs outcompeted histopathological classification to define

subgroups matching clinical responses. Patients with a low or

absent B-cell lineage expression signature in synovial tissue

better responded to the IL-6 receptor antagonist tocilizumab,

than to B-cell depleting rituximab (73). Ancillary analyses in a

follow-up study further revealed that humoral immune response

gene signatures associated with response to rituximab and

tocilizumab, while patients with a stromal/fibroblast signature

were refractory to all medications (41). Overall, these studies

thus emphasize the importance of including molecular

signatures into clinical algorithms to improve the usage of

available biotherapies and guide drug development priorities

for refractory patients. We believe that the power of such

molecular signatures could be significantly enhanced by

applying our 2-steps strategy combining profiling approaches

and should be translatable to the design of next-generation

clinical trials (Figure 2D).
Conclusion

In this perspective we highlight the enormous potential of

single-cell profiling strategies to identify cellular and molecular

patterns of diseases within clinically and histologically

homogenous cohorts of patients. We reflect on our poor

understanding of human disease pathophysiology which stems

from limited accessibility of human tissues. We argue that

single-cell strategies are uniquely able to provide the

granularity required to mine complex disease processes and

identify cellular and molecular patterns of diseases that can
Frontiers in Immunology 07
dramatically enhance knowledge of human diseases

pathophysiology and potential therapeutic strategies.
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Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based
biomarker analysis of the phase 4 R4RA randomized trial. Nat Med (2022)
28:1256–68. doi: 10.1038/s41591-022-01789-0

42. Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, et al. The
immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol
(2019) 20:902–14. doi: 10.1038/s41590-019-0398-x

43. Der E, Suryawanshi H, Morozov P, Kustagi M, Goilav B, Ranabothu S, et al.
Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis
reveal type I IFN and fibrosis relevant pathways. Nat Immunol (2019) 20:915–27.
doi: 10.1038/s41590-019-0386-1

44. Gur C, Wang S-Y, Sheban F, Zada M, Li B, Kharouf F, et al. LGR5 expressing
skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell (2022)
185:1373–1388.e20. doi: 10.1016/j.cell.2022.03.011

45. McKinney EF, Lyons PA, Carr EJ, Hollis JL, Jayne DRW,Willcocks LC, et al.
A CD8+ T cell transcription signature predicts prognosis in autoimmune disease.
Nat Med (2010) 16:586–91. doi: 10.1038/nm.2130

46. McKinney EF, Lee JC, Jayne DRW, Lyons PA, Smith KGC. T-Cell
exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.
Nature (2015) 523:612–6. doi: 10.1038/nature14468

47. Friedrich M, Pohin M, Jackson MA, Korsunsky I, Bullers SJ, Rue-Albrecht
K, et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with
inflammatory bowel disease that does not respond to therapies. Nat Med (2021)
27:1970–81. doi: 10.1038/s41591-021-01520-5

48. Soret P, Le Dantec C, Desvaux E, Foulquier N, Chassagnol B, Hubert S, et al. A
new molecular classification to drive precision treatment strategies in primary
sjögren’s syndrome. Nat Commun (2021) 12:3523. doi: 10.1038/s41467-021-23472-7

49. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell
heterogeneity. Nat Rev Immunol (2018) 18:35–45. doi: 10.1038/nri.2017.76
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