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Integrated machine learning
approaches for flow cytometric
quantification of myeloid-
derived suppressor cells in
acute sepsis
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Penn State Milton S. Hershey Medical Center, Hershey, PA, United States, 2Department of
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Hershey, PA, United States, 3Product Innovation Division, BD Life Sciences - FlowJo, Ashland,
OR, United States, 4Division of Pediatric Critical Care Medicine, Department of Pediatrics, Penn
State Milton S. Hershey Medical Center, Hershey, PA, United States
Highly heterogeneous cell populations require multiple flow cytometric

markers for appropriate phenotypic characterization. This exponentially

increases the complexity of 2D scatter plot analyses and exacerbates human

errors due to variations in manual gating of flow data. We describe a semi-

automated workflow, based entirely on the Flowjo Graphical User Interface

(GUI), that involves the stepwise integration of several, newly available machine

learning tools for the analysis of myeloid-derived suppressor cells (MDSCs) in

septic and non-septic critical illness. Supervised clustering of flow cytometric

data showed correlation with, but significantly different numbers of, MDSCs as

compared with the cell numbers obtained by manual gating. Neither

quantification method predicted 30-day clinical outcomes in a cohort of 16

critically ill and septic patients and 5 critically ill and non-septic patients.

Machine learning identified a significant decrease in the proportion of PMN-

MDSC in critically ill and septic patients as compared with healthy controls.

There was no difference between the proportion of these MDSCs in septic and

non-septic critical illness.

KEYWORDS

high parameter flow cytometry, sepsis - diagnostics, clustering analysis, clinical
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Introduction

Myeloid-derived suppressor cells (MDSCs) are a

heterogeneous population of myeloid cells that suppress T cell

and natural killer cell activity. Previously known as “natural

suppressor” cells, these cells are believed to be central to the

pathogenesis of cancer, where they cause immune dysfunction

and resilience to chemotherapeutic agents (1, 2). More recently,

MDSCs have also been implicated in the pathophysiology of

sepsis, the life-threatening organ dysfunction that results from a

dysregulated host immune response to infection (3, 4). However,

MDSCs may a l so p l ay a pro t e c t i v e ro l e du r ing

hyperinflammatory disease processes (5).

The rapid progression of sepsis leaves a narrow but critical

time window in which clinicians can potentially intervene to

improve patient outcomes. MDSCs have been proposed as a

therapeutic target in this window (3), although investigations

into their pathophysiology have met several challenges. First, the

current gold standard for quantifying MDSC number and/or

function involves a T cell proliferation assay which measures

their suppressive activity over several days. This delay impacts

our ability to intervene early in sepsis via the administration of

immune adjuvants to patients who may benefit from this

therapy. Second, sepsis is a highly heterogeneous syndrome

marked predominantly by hyper-inflammation in certain

patients and immune paralysis in others, but often by both

processes in concert (6, 7). It is likely that both MDSC number

and function are equally heterogeneous in these different sepsis

subtypes. Murine MDSCs are ubiquitously identified as CD11b+

Ly6G+ Ly6Clo (PMN-MDSC) or CD11b+ Ly6G- Ly6Chi

(monocytic, or M-MDSC). In contrast, there is tremendous

inconsistency in the nomenclature and surface markers that

characterize human MDSCs. Despite general guidelines

designed to minimize bias in the presentation and

interpretation of flow cytometric data, significant variations

between individuals and laboratories persist and may affect the

conclusions drawn from flow cytometry data (8, 9).

We hypothesized that the integration of supervised and

unsupervised clustering analyses, using machine learning

algorithms, would highlight MDSC subpopulations that correlate

with patient outcomes. We investigated our hypothesis by (1)

comparing MDSC quantification by using this approach with

results obtained using manual gating alone, and (2) examining the

relationship between the number of MDSCs calculated by each

method and patient outcomes. We completed all analyses by using

the Flowjo Graphical User Interface (GUI) to demonstrate that

meaningful machine learning approaches involving large flow

cytometric data sets does not require extensive knowledge of

bioinformatics or computer programming.
Frontiers in Immunology 02
Methods

Study participants

This prospective, observational trial was performed on

critically ill, adult patients and healthy control volunteers,

between 11/2021 and 6/2022. Hospitalized patients were

screened for potential sepsis, based on Modified Early

Warning Score-Sepsis (MEWS-Sepsis) Recognition Score (10–

12), by using a computational algorithm executed twice daily.

Two investigators then independently assessed each identified

patient for study inclusion according to Sepsis-3 criteria (4).

Specifically, sepsis was defined as a change in sequential organ

failure assessment (SOFA) score of two or more in the setting of

clinically suspected or microbiologically-proven infection.

Critical illness was defined as the need for continuous

intravenous infusion of vasopressors to maintain a mean

arterial pressure of ≥65 mmHg, and/or the need for

continuous respiratory support and monitoring, and/or the

need for continuous renal replacement therapy. Critically ill

and non-septic patients included adult patients who were older

than 18 years and fulfilled criteria for critical illness but not

sepsis. Healthy volunteers included non-hospitalized adults

that did not have major medical comorbidities, did not take

immune-suppressive medications, and did not have known

immunologic disorders. To minimize the potential or

confounding effects, we excluded patients with active

hematologic malignancies, autoimmune disorders and those

who were receiving immunomodulating therapies. All

participants provided informed consent in accordance with

the institutional Human Study Protection Office (Protocols

#15328 and #10357).
Clinical variables

Patient data for critically ill, septic (CIS) and non-septic

(CINS) patients was obtained from the electronic medical

record. We utilized the Charlson Comorbidity Index, Acute

Physiology and Chronic Health Evaluation (APACHE II) and

Sequential Organ Failure Assessment (SOFA) scores to classify

illness severity (13–16).
Processing of blood samples

Venous blood samples were collected in tubes containing

ethylenediamine tetra-acetic acid (EDTA), within 24h of the

onset of critical illness +/- sepsis (day 1). Complete blood count
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was assessed by the institution ’s clinical laboratory.

Furthermore, 100µl of whole blood was blocked with mouse

serum (0.5:1, M5905, Sigma-Aldrich, St. Louis, MO), for 5

minutes at room temperature followed by addition of e780

Fixable Viability Dye (1:800, cat #65-0865, eBioscience, San

Diego, CA). The following antibodies were then added for 20

minutes at room temperature, in the dark: anti-CD66b-FITC

(1:20, cat #555724, BD Biosciences, San Diego, CA), anti-

CD115-PerCP-Cy5.5 (1:200, clone 9-4D2-1E4, #347309,

Biolegend, San Diego, CA), anti-CD16-BV421 (1:80, clone 368,

#562874, BD), anti-CD11b-BV605 (1:80, clone ICRF44,

#301332, Biolegend), anti-HLA-DR-BV650 (1:80, clone L243,

#307649, Biolegend), anti-CD15-BV711 (1:80, clone W6D3,

#563142, BD), anti-CD14-BV786 (1:80, clone M5E2, #563699,

BD), anti-Lineage Cocktail CD3/19/20/56-APC (1:20, #363601,

Biolegend), anti-CD45-AF700 (1:80, clone 2D1, #368513,

Biolegend), anti-CD33-PE (1:20, #555450, BD), anti-CD123-

PE-Cy7 (1:80, clone 7G3, #560826, BD). This antibody panel

was created following a literature search into recently published

strategies for identifying human MDSCs (17–21).

Following antibody staining, red blood cells were lysed, and

leukocytes were washed and fixed. Counting Beads (Invitrogen,

Waltham, MA) were added to a separate sample of lysed,

unstained cells. Analysis was performed on FACSymphony A3

(Becton Dickinson & Company, Franklin Lakes, NJ) and using

Flowjo v10.8.1 (BD Biosciences). Instructions for installing and

running each plugin via the Flowjo GUI is found in the

Supplementary Material.
Manual gating of flow cytometric data

MDSCs nomenclature was consistent with recently

described minimal phenotypic characteristics necessary to

identify cells as MDSC (22) and with nomenclature utilized in

a comparable study of septic patients (21). M-MDSCs were

CD11b+, CD15–, CD14+, HLA-DR–; PMN-MDSCs were CD15+,

CD14–, CD11b+, SSChi; early (e)-MDSCs were CD3–, CD14–,

CD15–, CD19–, CD56–, HLA-DR–, CD33+, CD11b+. Flow data

was analyzed, and manual gating performed and presented, in

accordance with guidelines for the use of flow cytometry in

immunologic studies (8) (Figure 1A).
Machine clustering of flow
cytometric data

A comprehensive literature search revealed that the only

between-study consistency in human MDSC characterization is the

pan-myeloid, CD11b+ surface marker. Thus, we pre-processed flow

data by first applying bead compensation and then by manually

gating for viable, CD11b+ singlets using Flowjo 10.8.1 (BD

Biosciences) (Figure 1B). Flowjo is a GUI, used to launch the
Frontiers in Immunology 03
plugins detailed below. We employed a ‘lowest common

denominator’ approach to minimize bias, to preserve integrity of

the dataset and to rely predominantly on machine learning for

subsequent exploration. 2D scatter plots clearly delineated between
FIGURE 1

Manual versus machine gating of MDSC populations. (A)
Representative manual gating strategy used to identify MDSC.
M-MDSCs are CD11b+, HLA-DR-, CD15-, CD14+; PMN-MDSCs
are CD15+, CD14-, CD11b+, SSChi; e-MDSCs are CD14-, CD15-,
CD3-, CD19-, CD20-, CD56-, HLA-DR-, CD33+, CD11b+. (B)
Stepwise integration of supervised, machine learning techniques
facilitates analysis of high parameter flow cytometric data.
Rudimentary gating isolates viable singlets, and subsequent
manual gating for the ‘lowest common denominator’ (CD11b+
surface marker, in this case) enriches the population of interest.
Downsizing to a minimal, common cell count eliminates
sampling bias. (C) cyCombine corrects for technical artifacts
arising from different experiments. (D) User optimizes number of
FlowSOM clusters to appropriately fit the model to the data set.
FlowSOM, generates a minimal spanning tree and illustrates
marker positivity of each identified cluster. (E) Dimensionality
reduction allows two-dimensional data representation while
preserving the global data structure. Proximal clusters on the 2-
dimensional plot have closely related surface marker profiles. (F)
FlowSOM and UMAP data are integrated in Cluster Explorer,
allowing in-depth data exploration and cluster interrogation.
PMN-MDSC, M-MDSC and e-MDSC were determined based on
the definitions established in A, and by using a conservative
estimate of >10% of maximum positive/negative intensity to
denote marker positive/negative status respectively.
Unannotated cell populations do not meet criteria for M-, PMN-
or e-MDSC. (G) Hyperfinder optimizes polygon gating of
populations of interest. (H) The Hyperfinder algorithm is then
applied to flow data from step (B) Displayed is an example of
Hyperfinder gating for e-MDSC cluster.
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CD11b- and CD11b+ populations in all samples (Supplementary

Figure 1). We then used the Flowjo Downsample plugin v3.3.1 to

export an equalnumberofnormallydistributedCD11b+ events from

each sample for subsequent processing (7000 events in this case).

Given the stepwise collection of blood samples over the study

period, batch correction was performed by using cyCombine, a

plugin running in the R programming language (Figure 1C) (23).

CyCombine integrates cytometry data from different experiments,

maintaining the biologic variance and structure of data while

minimizing dataset differences due to technical variance (23).

Supervised clustering was then performed by FlowSOM v3.0.18 (R

language plugin), a self-organizing map algorithm that provides

visual representation of data by using a minimal spanning tree (24)

(Figure 1D). Different cluster numbers were selected and the output

was analyzed by the operator to determine appropriate fitting to

the dataset.

Uniform Manifold Approximation and Projection (UMAP

v3.1, Python) was used for dimensionality reduction (25)

(Figure 1E). UMAP is a scalable machine learning algorithm

that creates an intuitive, 2-dimensional map wherein spatial

proximity of clusters implies similar cell marker phenotype.

Comparison of clusters, automated
gating and iterative application
to samples

ClusterExplorer v1.6.6 allows the integration of one or more

clustering strategies with user-defined surfacemarkers of interest and

dimensionality reduction x and y parameters. We selected

ClusterExplorer heat map as the primary tool with which identify

discreteMDSCpopulations, basedon the intensityofdifferent surface

markersas theyrelate toaprioridefinitionsofeachof the threeMDSC

sub-types (Figure 1F). ClusterExplorer can present data on profile

graphs with relative expression levels of surface markers, and in bar

charts showing the relative numbers of events in each cluster.

After identifying MDSC subsets, Hyperfinder v0.6.8 (Java)

was used to optimize the gating strategy for each identified cell

population (maximum of 8 gates, target F-measure beta of 1)

(Figure 1G). F-measure is the harmonic mean of yield and

purity, with a score of 1 indicating equal contributions of yield

and purity. The resulting gating algorithm for each MDSC

subset was then retroactively applied to the original CD11b+

population from each sample (Figure 1H). The number of cells

identified by this approach that met criteria for e-MDSC, M-

MDSC and PMN-MDSC was compared with equivalent

populations of cells identified by manual gating.

Statistical analyses

Analysis was performed in Prism v.9.3.1 (Graphpad

Software, San Diego, CA), with statistical details contained

within the respective figure legends.
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Results

We screened 1750 patients identified by MEWS-Sepsis

criteria at a tertiary care academic medical center, of which

1596 did not meet inclusion criteria for sepsis and critical illness,

and 128 patients met study exclusion criteria. Our study cohorts

consisted of 17 critically ill and septic (CIS) patients, 5 critically

ill and non-septic (CINS) patients and 5 healthy volunteers. This

convenience sample was selected based on the importance of

MDSCs in the pathophysiology of CIS patients, combined with

the severity of illness and high mortality rate experienced by

these patients. The data of one septic patient was excluded from

analysis due to profound leukopenia and insufficient number of

cells for flow cytometric analysis. Table 1 compares the

demographic profile of CIS and CINS patients. The mean age

of healthy volunteers was 43 years (range 24-63) and 80% were

male. One was Asian, another Hispanic and three Caucasian.

Conventional, manual gating of flow cytometric data was first

performed (Figure 1A). Supervised machine learning and

machine-optimized gating for PMN-MDSC, M-MDSC and

eMDSC was run in parallel by using the strategy described in

Figures 1B–H. CyCombine corrected for batch effects resulting

from experiments spanning over an 8-month period (Figure 2).

FlowSOM was repeated with cluster numbers varying from 8 to

24, and it identified 14 unique cell clusters as the optimum balance

between underfitting and overfitting the model to the data

(Figure 3). The UMAP transformation and 14-cluster FlowSOM

model were then integrated by using ClusterExplorer, where user-

driven exploration of the data revealed one likely M-MDSC

metacluster, one e-MDSC cluster and one PMN-MDSC cluster

that were consistent with the definitions established above.

Each of these three clusters was further interrogated by using

the Hyperfinder tool, to determine the optimal flow gating

strategy (Figure 1G). Hyperfinder reported gating F-measures

of 0.97 for the e-MDSC cluster, 0.90 for the M-MDSC cluster

and 0.98 for the PMN-MDSC cluster. Supplementary Figure 2

juxtaposes the results of manual and machine gating strategies.

The number of MDSCs, as assessed by machine gating,

correlated with but was significantly different from, that

identified by manual gating alone (Figures 4A, B). When

gating strategy was factored, using 2-way ANOVA, there

remained a significant difference both in the number and in

the percentage of PMN-MDSC and e-MDSC between CIS, CINS

and healthy cohorts (Figures 4B, C). Interestingly, while total

leukocyte count was significantly higher in CIS patients as

compared with healthy volunteers (p=0.04), PMN-MDSCs by

machine gating were significantly lower in CIS patients

(p=0.0005), and PMN-MDSCs did not significantly differ

between cohorts when assessed by manual gating alone. There

was no difference between number of PMN-MDSCs in CIS and

CINS cohorts, when assessed by a machine gating

strategy (Figure 4C).
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Neither manual nor machine gating demonstrated a

correlation between MDSC number/percentage and 30-day

clinical outcomes (hospital readmission rate, secondary

infection rate, mortality rate) in CIS or CINS cohorts
Frontiers in Immunology 05
(Figure 4D). Linear regression analysis did not demonstrate a

significant relationship between death-free days or hospital

length of stay and PMN-MDSCs, M-MDSCs or e-MDSCs.

There was a positive correlation between the number of
TABLE 1 Patient demographics and outcomes.

Critically ill, septic (n=17) Critically ill, non-septic (n=5)

Age, mean (range) 71 (31–91) 76 (59–88)

Female 12 (71%) 2 (40%)

Septic shock on admission 3 (18%) NA

Comorbidities

Cancer 6 (35%) 1 (20%)

Cardiovascular disease 8 (47%) 4 (80%)

Peripheral vascular disease 2 (12%) 1 (20%)

Diabetes 7 (41%) 1 (20%)

Gastrointestinal disease 6 (35%) 3 (60%)

Hepatic disease 0 1 (20%)

Hypertension 9 (53%) 4 (80%)

Kidney or Urologic disease 4 (24%) 3 (60%)

Cerebrovascular or Neurologic disease 5 (29%) 2 (40%)

Obesity 5 (29%) 1 (20%)

Respiratory Disease 4 (24%) 1 (20%)

Thyroid Disease 6 (35%) 1 (20%)

Severity of Illness

APACHE II score 24 ± 7 28 ± 5

SOFA score 7 ± 3 8 ± 4

Charlson Comorbidity Index 6 ± 3 7 ± 2

Laboratory Values

Leukocyte Count (x103/µl) 21 ± 11 16 ± 11

Absolute lymphocyte count (x103/µl) 0.8 ± 0.4 1.3 ± 1.2

Absolute monocyte count (x103/µl) 0.7 ± 0.8 1.5 ± 0.9

Lactic acid (mg/dL) on admission 3 ± 2 3 ± 2

Outcomes

Secondary infection rate 4 (23%) 0

In-hospital mortality rate 7 (41%) 1 (20%)

30-day mortality rate 7 (41%) 1 (20%)

Hospital length of stay (days) 11.9 ± 6.4 14.6 ± 4.7

Death-free days until follow-up (days) 60.2 ± 72 43.8 ± 36.7

ECOG/Zubrod Score at hospital discharge 3.4 ± 1.9 3.8 ± 0.8

ECOG/Zubrod Score at 30d 2.7 ± 1.2 3.0 ± 1.4

30-day hospital readmission rate 2 (12%) 0

Culture-positive sepsis rate 15 (88%) NA

Total days of antibiotics within first month (days) 10.6 ± 7.4 4.4 ± 5.2

Hospital Discharge Disposition

Discharged to home 7 (41%) 0

Discharged to nursing facility or to long-term acute care hospital 3 (15%) 5 (100%)
NA, Not Applicable.
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MDSCs assessed by machine versus manual gating, although the

R2 value was low (Figure 4E). Severity of illness scores (SOFA,

APACHE II) did not appear to be related to number of MDSCs,

whether assessed by manual or by machine gating.
Discussion

Advanced flow cytometric tools have led to exponential

increases in the size of datasets, the time taken to explore

these datasets and the complexity of data analysis. This has

created the imperative for efficient analytic tools that still allow

meaningful human input. A recent study analyzed MDSCs

derived from the peripheral blood mononuclear cells of septic

patients, by using FlowSOM mapping (21). We present an

alternative, semi-automated, supervised approach to identify

MDSCs in whole blood. Our approach utilizes novel,

complementary flow cytometric tools and could potentially be

applied to future, prospective clinical trials that target highly

heterogeneous cell populations.
Frontiers in Immunology 06
The main strength of our study is its presentation of an

exclusively GUI-based approach to multiparameter flow

cytometric analysis, obviating the need for computer

programming expertise. We are not advocating for complete

automation of data analysis or for the removal of human input.

Rather, we present a pipeline wherein complementary tools

allow the exploration of large datasets accumulated over

several experiments, while allowing user input at key junctures

of the analysis. Our workflow also allows the simultaneous

visualization of several cell markers, removing the need for

multiple, pair-wise comparisons of individually standardized

scatter plots.

While the size of our critically ill cohorts was small, our

analysis did not corroborate our hypothesis that certain MDSC

subpopulations correlate with 30-day clinical outcomes.

However, our data revealed an interesting depression in the

proportion of PMN-MDSC in the acute sepsis cohort, as

compared with healthy patients. This decrease was observed at

a time when leukocyte and neutrophil counts are typically

elevated. This observation is especially significant since (1) we
A

B

C

FIGURE 2

Correction of batch effects is an integral component of machine learning, as it minimizes data artifact due to technical variance between
experiments. (A) UMAP representation of data reveals a homogenous, ‘streaky’ color pattern, characteristic of batch artifact. (B) Normalization of
data allows the scalable, unbiased integration of multiple cytometry datasets for primary analysis. (C) cyCombine dramatically improves batch
effect artifact.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1007016
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bonavia et al. 10.3389/fimmu.2022.1007016
analyzed whole blood (rather than PBMC), and (2) it is therefore

likely that a portion of these scant PMN-MDSCs are mature

neutrophils, since CD11b+CD15+CD14−CD33+/lowCD66b+

markers enrich for neutrophils at all maturation stages (10).

High PMN-MDSCs within the first week of sepsis onset have

been recently associated with secondary infections, while M-

MDSCs appear to be more abundant in sepsis survivors

(26). While MDSCs are known to expand and acquire their

suppressive potential during protracted sepsis (13), there is

limited human data about the kinetics and immune function

of this population in early sepsis. If corroborated in a larger

patient population, our findings may suggest that machine

learning can detect subtle changes in MDSC subtypes before

they are detectable by conventional flow gating approaches.

Our small sample size is reflective of the severity of illness

required for our patients to meet study inclusion criteria (i.e., both

sepsis and critical illness). While the population studied

constitutes only a small proportion of all hospitalized patients, it

accounts for a high healthcare burden, morbidity, andmortality. It

is also the patient population in which expansion of MDSCs has

been most extensively described, following acute infection (3, 17,

18, 27, 28). It is therefore imperative to study these patients and

better understand their underlying pathophysiology.

Another limitation of our study is that we cannot, with

certainty, conclude that the analyzed cell populations constitute

‘true’MDSCs without ascertaining their cell-suppressive potential
Frontiers in Immunology 07
in vitro. Conversely one cannot quantify suppressive potential of a

selected cell population without first isolating cells by their surface

markers. The importance of assessing suppressive MDSC cell

activity early in sepsis may be further obviated by recent evidence

demonstrating thatonlyMDSCs that are obtained at>14dayspost-

sepsis significantly suppress T lymphocyte proliferation and IL-2

production (13). Unlike murine studies, humanMDSCs produced

early in sepsis may have not yet adopted immunosuppressive

properties, increasing the importance of accurate flow cytometric

quantification of these cell populations.

Batch effects need to be accounted for when combining

results obtained on different experimental days. Our analyses

demonstrate an appropriate compensation for batch effects by

using the cyCombine tool (23). CytoNorm is another Flowjo tool

that is available for correction of batch effects. However, it

requires the careful selection of experimental controls, which

are challenging to obtain in a clinical study that recruits patients

on an ongoing basis.

While not mandatory for the approaches described above,

knowledge of the R programming language may allow further

in-depth exploration of flow data sets. Github is a collaborative

platform that hosts additional, R-based tools such as Milo, which

is not yet available in the Flowjo GUI. Milo is a differential

abundance testing tool that can reveal subtle cell state

perturbations that are otherwise obscured by clustering

approaches (29).
A B C

FIGURE 3

FlowSOM is repeatedly performed on the dataset, increasing cluster number at each iteration, and projecting clusters onto the dimensionally
reduced, UMAP image at each iteration. The user determines the balance between underfitting (A) and overfitting (C) the model to the data, to
derive a biologically meaningful cluster number (B).
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In conclusion, the semi-automatedpipeline thatwedescribemay

be particularly useful when employing multiple flow parameters in

the investigationof highlyheterogeneous cell populations. It excels in

the quantification of cell populations with intermediate phenotypes,

and it is designed for use by immunologists having familiarity with

Flowjo but minimal expertise in computer programming. The

supervised approach allows users to provide input at key stages of

the pipeline (e.g., selection of optimal cluster number), ensuring that

the analysis remains biologically relevant and consistent with the

goals of the investigation.
Frontiers in Immunology 08
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A

B

D

E

C

FIGURE 4

PMN-MDSCs and e-MDSCs are decreased in acute sepsis. (A) Two-way ANOVA demonstrates significant differences between the percentage of
MDSCs by patient cohort. When controlling for gating strategy, PMN-MDSCs and e-MDSCs were significantly different between CIS, CINS and
healthy patients (p=0.0006 and p=0.0013), while M-MDSCs did not differ. (B) These findings were consistent with absolute cell counts, where
PMN-MDSCs and e-MDSCs differed (p=0.02 for both) although M-MDSCs did not differ between cohorts. (C) Despite higher leukocyte counts
in CIS patients as compared with healthy patients, percentage of PMN-MDSCs was significantly decreased in sepsis, as assessed by machine
gating. (D) Proportion of PMN-MDSCs did not predict 30-day clinical outcomes in CIS and CINS patients. (E) Positive correlation between MDSC
population by manual gating versus machine learning. CIS, critically ill and septic (N = 16), CINS, critically ill and non-septic (N = 5). N for
healthy donors = 5. ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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SUPPLEMENTARY FIGURE 1

Representative flow cytometric data illustrating CD11b-BV605 (y-axis)
against cell viability (x-axis) in critically ill and septic, critically ill and

nonseptic and healthy patients respectively. CD11b-BV605 fluorescence
intensity >103 was used as a cutoff value for CD11b expression, based on

histogram data demonstrating a bimodal distribution separated at this
cutoff value.

SUPPLEMENTARY FIGURE 2

Juxtaposition of MDSC clusters generated manually versus via supervised

mach ine lea rn ing wi th F lowSOM algo r i thm fo l lowed by
Hyperfinder gating.
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