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Dysregulation and chronicity of
pathogenic T cell responses in
the pre-diseased stage of lupus

Justus Ohmes, Sara Comdühr, Reza Akbarzadeh,
Gabriela Riemekasten and Jens Y. Humrich*

Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
In the normal immune system, T cell activation is tightly regulated and

controlled at several levels to ensure that activation occurs in the right

context to prevent the development of pathologic conditions such as

autoimmunity or other harmful immune responses. CD4+FoxP3+ regulatory

T cells (Treg) are crucial for the regulation of T cell responses in the peripheral

lymphatic organs and thus for the prevention and control of autoimmunity. In

systemic lupus erythematosus (SLE), a prototypic systemic autoimmune

disease with complex etiology, a disbalance between Treg and pathogenic

effector/memory CD4+ T cells develops during disease progression indicating

that gradual loss of control over T cell activation is an important event in the

immune pathogenesis. This progressive failure to adequately regulate the

activation of autoreactive T cells facilitates chronic activation and effector/

memory differentiation of pathogenic T cells, which are considered to

contribute significantly to the induction and perpetuation of autoimmune

processes and tissue inflammation in SLE. However, in particular in humans,

little is known about the factors which drive the escape from immune

regulation and the chronicity of pathogenic T cell responses in an early stage

of autoimmune disease when clinical symptoms are still unapparent. Here we

briefly summarize important findings and discuss current views and models on

the mechanisms related to the dysregulation of T cell responses which

promotes chronicity and pathogenic memory differentiation with a focus on

the early stage of disease in lupus-prone individuals.
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Introduction

Systemic lupus erythematosus (SLE) is a severe

multisystem autoimmune disease with complex pathogenesis

which is characterized by immune dysregulation and chronic

inflammation of various organs caused by the breach of immune

tolerance predominantly towards nuclear autoantigens, such as

double-stranded deoxyribonucleic acid (dsDNA). SLE primarily

affects young women of childbearing age and clinical

manifestations can range from relatively mild skin and joint

involvement to life-threatening disease including renal,

neurologic or cardiac inflammation (1, 2) . Tissue

inflammation and damage are mediated by the deposition of

immune complexes and by the infiltration with autoreactive

lymphocytes (2, 3). In particular, autoreactive CD4+ T cells are

considered to play a central role in the initiation and

perpetuation of the pathologic immune responses in several

ways: Follicular T helper (Tfh) cells, which represent a subset of

CD4+ T helper cells and which have the unique capability to

migrate to the outer edge of the B cell follicles in the lymphatic

organs in order to initiate germinal-center reactions (4), are

essential for the activation and differentiation of autoreactive B

cells in SLE (5, 6). Further, CD4+ effector T cells invade the

affected tissues and mediate tissue inflammation and damage by

cell-cell interactions and by the production of inflammatory and

cytotoxic cytokines such as interferon (IFN)-g and IL-17 (6, 7).

In addition, chronic activation of CD4+ T cells and the

generation of a robust autoimmune T cell memory may

contribute to the recurrence of disease flares, the persistence of

tissue inflammation and damage accrual and to treatment

refractory disease states (6, 8). Despite the controlled deletion

of most autoreactive T cells during T cell maturation in the

thymus, T cells that can recognize autoantigens are still

abundantly present in the healthy organism, but those do not

become pathogenic when kept under check by intact

mechanisms of peripheral self-tolerance (9). Regulatory CD4+

T cells (Treg) expressing the linage specific transcription factor

forkhead box P3 (FoxP3) are indispensable for the maintenance

of peripheral self-tolerance and thus for the prevention and

control of inflammation and autoimmunity throughout entire

life. Predominantly derived from a predetermined T cell

subpopulation in the thymus, CD4+FoxP3+ Treg mainly

recognize auto-antigens via their T cell receptor and are

required to regulate the activation and expansion of auto-

reactive T cells and other harmful immune cells in the

peripheral lymphatic organs (10–13). Given their crucial

function in immunoregulation and peripheral tolerance, it

appears obvious that disturbances in Treg biology contribute

to the development of autoimmune diseases such as SLE (14, 15).

Indeed, it was shown in murine and later also in human SLE that

an acquired and progressive deficiency of the cytokine

interleukin-2 (IL-2), an essential growth and survival factor for
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Treg, promotes an imbalance between Treg and effector/

memory CD4+ T cells, which was associated with accelerated

disease activity (16–18). These pathophysiological findings have

stimulated the successful translation of low-dose IL-2 therapy

into clinical trials aiming to restore Treg activity in patients with

active SLE (19–24).

Given the pivotal role of T cells and their dysregulation in

SLE pathogenesis, it can be hypothesized that chronic T cell

activation and memory differentiation in early disease are key

events for the initiation and progression of autoimmunity

in SLE.
Genetic basis of aberrant T cell
activation in human and murine SLE

The development and progression of SLE involves a complex

interaction of genetic risk, diet, environmental influences, and

immune dysregulation (3, 25). Individuals with genetic risk

alleles for SLE who are exposed to environmental risk factors

during their lifetime could be more susceptible to autoimmune

diseases where synergistic interactions facilitate the onset of

pathogenic autoimmune responses. Up to now, several lines of

evidence indicate that genetic factors contribute to the

etiopathogenesis of SLE, supported by twin studies or familial

aggregation investigations (26). Specifically, GWAS data have

uncovered the involvement of several susceptible HLA and non-

HLA genes supporting that altered T cell signal transduction and

activation is important in SLE. Various proteins such as

cytokines and kinases essential for regulating T cell activation,

proliferation and differentiation, are encoded by these

susceptible loci. The HLA region contains several genes

encoding for molecules involved in antigen presentation or

immune-related proteins (27). In SLE, expression of HLA-DR,

which is an indicator of activated T cells, is elevated in

circulating T cells and the frequency of HLA-DR-expressing

CD3+ T cells is associated with SLE disease severity (28). Besides

HLA loci, genes outside the HLA region also appear to play an

important role in SLE development. For instance, a mutation in

the SLE risk gene PTPN22 (R620W), encoding for a tyrosine

phosphatase that regulates T cell signaling, is associated with

aberrant receptor signaling function on effector and memory T

cells as well as B cells (29). However, in polygenic diseases such

as SLE genetic contribution could be distinctly involved in

disease susceptibility at different ages (30) as suggested for

pediatric and adult-onset SLE. Pediatric SLE patients, in

particular those with monogenetic forms, are an inimitable

group to highlight the importance of genetic contribution, as

they develop disease earlier with a more severe disease

manifestation and a higher frequency of family history (31).

For example, a positive correlation between polymorphisms in

HLA genes and the age of SLE diagnosis has been shown,
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indicating that older patients have the higher genetic risk (32).

Conversely, higher number of SLE-associated non-HLA

polymorphisms are prevalent in the younger patients (32).

Analysis of candidate genes in children with SLE and their

parents has confirmed the involvement of SLE-associated genes,

including SELP (P-selectin gene) and IRAK1 (interleukin-1

receptor-associated kinase 1 gene), that are overexpressed in

CD4+ Treg from patients with SLE (33, 34). Investigating both

pediatric- and adult-onset patients with defined genetic defects

could also provide valuable models to elucidate T cell

dysregulation at the early phases of disease.

Parallel investigations over the last two decades indicated

many similarities in the genetic basis for susceptibility to SLE

between mice and men (3). In mice, the genetic involvement in

SLE etiology is evidenced by various susceptible inbred mouse

strains, which all develop a lupus-like disease, although to

different extent, such as the (NZBxNZW) F1 (NZBW),

NZM2410, and MRL–Faslpr strains (35). Similar to humans

with SLE, GWAS has identified over 100 loci related to

increased susceptibility for lupus-like disease in mice (36, 37).

In the context of T cell-associated genetic alterations, the Sle1a

gene segment in the NZM2410 lupus-prone strain is responsible

for the increased activation of conventional CD4+ T cells (Tcon)

and for the low numbers of CD4+FoxP3+ Treg (38, 39). The

Sle1c2 sublocus is another lupus susceptibility gene segment,

which contributes to an elevated CD4+ T cell activation, a robust

age-dependent expansion of IFN-g-expressing Th1 cells, and a

decrease in Treg counts (40). Signal transducer and activator of

transcription (STAT) 4, a transcription factor engaged in the

signal transduction of several cytokine receptors that plays a

significant role in regulating T cell activation and differentiation

is also a candidate gene for susceptibility to SLE. The deficiency

of the Stat4 gene in lupus-prone mouse models has confirmed its

major effect on lupus severity, leading to reduced autoantibody

production and T cell activation (41). Deficiency of Fli1, a

transcription factor that is expressed by T cells, in MRL/lpr

mice leads to diminished T cell activation, decreased expression

of the Th1-associated chemokine receptor CXCR3 in T cells, and

finally to reduced disease activity (42).

These findings in both humans and mice indicate that

variants in several genes that are involved in T cell activation

and differentiation are associated with SLE susceptibility and

severity. In addition, CD4+ T cells from patients with active SLE

exhibit a global DNA hypomethylation (43, 44) which is likely to

cause an overexpression of numerous relevant genes.
Abnormal T cell signaling in humans

Several studies have proven that T cells from SLE patients

exhibit an abnormal signaling profile which can be detected

already at the onset stage of disease (45, 46). One possible

explanation for the excessive T cell response to antigen
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stimulation in SLE is related to an early abnormality in the

molecular signaling pathway of T cells (3). In SLE patients, the

complex of CD3 proteins, which is assembled with the TCR,

shows defects in terms of a diminished expression of the CD3z
chain, which is the only subunit that is both genetically and

structurally distinct from the CD3d, ϵ, and g complex members

(45, 47–49). In addition to the diminished expression of CD3z, it
was shown that the functionally and structurally homologous Fc

receptor gamma subunit (FcRg) occupies the binding space of

CD3z which may play a major role in the aberration of the

antigen receptor-initiated signaling and therefore lead to a

variety of pathogenic changes in the SLE T cell phenotype (46,

50). During the regular immune response in healthy individuals,

CD3z recruits the tyrosine kinase zeta-chain-associated protein

kinase-70 (ZAP-70), which ensures a controlled moderate

calcium influx at the end of the signaling cascade (50, 51). In

SLE T cells the replacement of CD3z with the FcRg, induces the
binding of the spleen tyrosine kinase (Syk) with high affinity

instead of ZAP-70, which results in a much stronger calcium

influx into the T cell cytoplasm and which in turn leads to a

decreased activation threshold of CD4+ T and B cells upon

autoantigen recognition. The increased intracellular calcium

content leads to upregulation of calcium-triggered calcium/

calmodulin-dependent protein kinase IV (CaMK4) (52, 53),

which mainly regulates various transcription factors through

phosphorylation, such as the cAMP-responsive element

modulator a (CREMa) (54, 55). CREMa is known to

negatively regulate IL-2 transcription and to induce the

expression of IL-17 (56, 57), which is likely to promote the

disbalance between Treg and Tcon, as the growth and survival of

Treg are severely impaired due to the limited availability of IL-2.

The mammalian target of rapamycin (mTOR), a serine-

threonine kinase localized in the outer mitochondrial

membrane, has been identified as a central regulator of T cell

lineage specification, serving as a physiological sensor of

mitochondrial dysfunction and ATP depletion in T cells (58).

mTOR translates a variety of environmental information into

signals that control either nutrient supply, cAMP levels, and

osmotic stress, as well as cellular processes including protein

biosynthesis and autophagy (59). mTOR complex 1 (mTORC1)

is considered essential for Th1 and Th17 differentiation, whereas

mTOR complex 2 (mTORC2) is important for Th2

differentiation in mice (60). Both complexes suppress the

transcription factor FoxP3 and thus inhibit the differentiation

of FoxP3+ Treg (61). In SLE patients, it was shown that mTOR

activation in double negative (DN) T cells was increased and

preceded disease flares (62). In more detail, mTORC1 activity

was found to be increased, whereas mTORC2 activity was

reduced accompanied by an increase in Th17 cells (63).

Consistent with this, inhibition of mTORC1 by rapamycin

promoted the expansion of the CD4+FoxP3+ Treg population

and the suppression of Th17 cells, and was capable to decrease

disease activity in patients with active SLE (63–65).
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Similarly, also the serine-threonine kinases Rho-associated

protein kinases (ROCK) 1 and 2 play an important role in SLE

pathogenesis. Generally, ROCKs regulate migration, activation,

and differentiation of T cells and are crucial for controlling

cytoskeletal components including the ezrin/radixin/moesin

(ERM) proteins (45, 66). ERMs are important for the

association of plasma membrane proteins with actin filaments,

and regulate migration and cell adhesion through association

with the intracellular domain of CD44 (67). Signaling through

ROCK2 also plays an important role in the differentiation of

Th17 cells and Tfh cells (45). PBMC and T cells from patients

with SLE show significantly higher activity of ROCK and ERM

compared to healthy controls (68, 69) and expression levels of

CD44 are strongly increased in T cells and correlate with disease

activity (68, 70), suggesting that increased adhesion and

migration of SLE T cells occurs due to the steady activation of

the CD44-ROCK-ERM axis (45).

Interferons (IFNs), in particular type I IFNs, play a central

role as initiators of the pathogenic immune response in SLE.

Nucleic acids released from apoptotic cells and immune

complexes trigger the production type-1 IFNs by tissue

resident plasmacytoid dendritic cells. Type-1 IFNs exert

stimulatory effects on a variety of immune cells including T

cells through activation of the STAT1 pathway (71–73).

Consistent with this, it was reported that the expression levels

of STAT1 were increased in CD4+ T cells from SLE patients and

positively correlated with disease activity (74, 75). In addition,

high levels of STAT1 phosphorylation were observed in

activated Treg that were decreased in numbers, and it was

shown that type-1 IFNs can induce apoptosis in Treg via the

IRAK1 pathway (75, 76), indicating that type-1 IFNs negatively

interfere with Treg homeostasis and survival.

Whether these abnormal signaling events are acquired

during disease progression or genetically determined, however,

remains to be determined.
Abnormal T cell phenotype in humans

Up to now the earliest time point for which data on the T cell

phenotype from SLE patients are available is at the onset of

disease. In SLE patients with established clinical manifestations,

different subsets of T cells with an abnormal activation pattern can

be identified, which mediate inappropriate inflammatory

responses and support enhanced B cell activation (3, 6). The

frequencies of Ki67+, proliferating CD4+FoxP3- conventional T

cells (Tcon) is strongly increased in patients with active SLE and

correlates with disease activity (17, 77), indicating that aberrant

Tcon activation is associated with disease activity and severity.

Th17 cells, a subset of CD4+ T helper cells, show an overactivation

and express increased levels of IL-17, which promotes

inflammation and systemic tissue damage by recruiting
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neutrophils, monocytes and other immune cells to the inflamed

tissues and by inducing autoantibody production (78, 79).

Interestingly, the rarely present double negative (DN) T

lymphocytes lacking the CD4 and CD8 co-receptors (<5% of T

lymphocytes in healthy individuals) are increased in SLE patients

and induce the production of anti-dsDNA antibodies by

autoreactive B cells. These DN T cells differ in the secretion of

cytokines such as IL-1b and IL-17 and are also found in cellular

infiltrates in renal biopsies from patients with lupus nephritis (80).

Similarly, CD4+ T cells that express the Th1-associated chemokine

receptor CXCR3 are abundantly present in the inflamed kidneys

and their numbers in the urine are predictive for disease flares

(81). More recently T follicular helper cells (Tfh) have been

recognized as an important T cell population in SLE. Tfh cells

are a heterogenous subset of CD4+ T cells that have the capability

to migrate into the lymphoid follicles via the chemokine receptor

CXCR5 and to induce the activation and differentiation of

autoreactive B cell as part of the germinal-center reaction (4). In

peripheral blood of patients with SLE numbers of Tfh cells, in

particular of so-called circulating precursor Tfh cells, are elevated

and correlate with disease activity (5, 82). CD4+ T cells lacking

expression of the co-stimulatory receptor CD28 (CD4+CD28lo

cells), which are considered to represent chronically activated

memory/effector CD4+ T cells, where shown to be expanded and

to produce IFN-g in patients with moderately active SLE (83). In

patients with juvenile-onset SLE, elevated CD8+ effector memory

T-cell frequencies indicated more persistently active disease over

time. Active SLE is further characterized by a decline in

CD4+FoxP3+CD127lo Treg that express high levels of CD25

(CD25hi Treg), a subset of Treg with a high suppressive

capacity, and by an imbalanced proliferation between Treg and

Tcon in favor of an enhanced Tcon proliferation (17). The

reduced frequencies of CD25hi Treg and the Treg/Tcon

proliferation imbalance, which both correlated with disease

activity, are typical indicators of a low availability of IL-2 and

constitute the most relevant defects in Treg biology in SLE, which,

however, can be corrected by treatment with low doses of IL-2 (17,

19, 21). Nevertheless, although the central role of T cells in

established SLE has been well recognized over the last decades,

phenotypic alterations of immune cells in a pre-diseased state still

remain poorly explored due to lack of material from humans.
Abnormal T cell phenotype in early
murine SLE

Similar to other autoimmune diseases, it is proving difficult to

study the origin and development of SLE before the onset of clinical

symptoms in humans, and hence, mouse models of SLE provide

valuable tools for the assessment of alterations at a cellular and

molecular level before disease onset and during the progression

of disease.
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The NZBW mouse model is considered to authentically

resemble most features of human SLE (35, 36). These mice

spontaneously develop the lupus-like disease within 4 to 6

months of age, which provides a condition to study cellular and

molecular changes of immune cells at the pre-diseased stage

before disease onset. It has long been shown that immune

responses such as the balance between T cell populations are

altered by age in NZBW mice (84, 85). More recent studies

indicated that increased CD4+ T cell activation and memory

differentiation are detectable in lymphoid organs a long time

prior to the appearance of clinical manifestations and even

before relevant titers of the autoantibodies can be measured in

the plasma, suggesting that aberrant T cell activation is an early

event in this autoimmune condition (16). We have investigated

the phenotypic changes of conventional CD4+FoxP3- T cells

(Tcon) and CD4+FoxP3+ Treg during disease progression in

NZBW mice including young clinically healthy mice as well

mice at the disease onset and with established disease (16).

CD4+ Tcon from lymphoid organs of young, clinically healthy

mice at an age between 8-12 weeks already showed signs of

increased activation and memory formation evidenced by

higher frequencies of CD69+ and CD44+ among CD4+ Tcon

compared to healthy BALB/c mice. Frequencies and numbers

of activated and memory CD4+ Tcon and IFN-g producing Th1
cells further increased substantially during progression to

disease onset and active disease. A lower prevalence of

CD4+FoxP3+ Treg, which had an intact suppressive function,

was already detectable in young pre-diseased NZBW mice

compared to BALB/c mice. In parallel, these mice also had

higher frequencies of CD69+ and CD44+ Treg suggesting that

Treg activation with the attempt to counteract the increased

Tcon activation occurs already early in disease development.

Phenotypically, Treg from young mice still expressed normal

levels of CD25 and IL-2 production by CD4+ T cells was also

not impaired in young mice indicating that, in contrast to the

later disease stages, lack of IL-2 may not be responsible for the

low prevalence of Treg which instead is rather genetically

determined (16). This is supported by studies in congenic

mouse strains related to the NZBW strain that indicated that

the low prevalence of Treg was linked to the disease-related

Sle1a locus (86). Alternatively, the Treg deficiency may be

caused by an impaired thymic Treg generation, however, we

found that the numbers and proliferation rates of thymic Treg

were normal in young NZBW mice (16). A decrease in CD25

expression in Treg and a diminished proliferation ratio

between Treg and Tcon, which are indicators of Treg

exhaustion due to IL-2 deficiency, could be observed earliest

at the onset stage of disease, when IL-2 production by CD4+ T

cells was also found to be significantly impaired (16), indicating

that IL-2 deficiency is an acquired and potentially reversible

phenomenon in SLE. Although the origins of IL-2 deficiency

are certainly complex and not fully understood, we propose
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that it might be caused by the repression of IL-2 synthesis that

occurs in chronically activated Tcon (21). Similar phenotypic

alterations of Treg and Tcon could also be observed in the

autoimmune susceptible NZB parental strain that develops a

milder form of lupus, and to a lesser extent also in the clinically

healthy NZW strain, suggesting that genetic alterations from

both strains contribute to T cell hyperactivity in murine

lupus (16).
Abnormal T cell signaling and
metabolism in early murine SLE

As described previously in humans, murine SLE T cells also

exhibit rewiring of their TCR, in which expression of the CD3z
chain is reduced (45). This reduction or even complete deletion

leads to a severe systemic inflammatory response in mice (87).

However, the pathologic changes in T cell signaling are not

limited to this single signaling pathway. Interestingly, the

entire CD4+ T cell life span from activation and proliferation

to differentiation is strictly regulated by cellular metabolism

(88, 89). A recent study in lupus-prone B6.Sle123 and in SLE

patients demonstrated that both aerobic glycolysis and

mitochondrial oxidative phosphorylation are elevated in

CD4+ T cells (90). The pathophysiological relevance of these

findings was confirmed by showing that the application of the

glycolys is inhibi tor 2-deoxy-D-glucose and of the

mitochondrial metabolism inhibitor metformin, were capable

to suppress autoimmunity, decrease IFN-g and IL-17

production and restore IL-2 synthesis, indicating that an

altered cellular metabolism contributes to chronic T cell

activation in SLE (90, 91). These data were collected at the

onset stage of disease; however, it is reasonable to assume that

corresponding events also occur at the pre-diseased stage of

SLE and serve as initiators for subsequent pathological changes

in cellular metabolism. In addition, and similar to studies in

humans, the mTOR inhibitor rapamycin was capable to restore

T cell metabolism and to decrease disease activity in lupus-

prone MRL/lpr mice (92, 93).
Proposed model of T cell
dysregulation in SLE pathogenesis

Taking current knowledge into consideration, we propose a

simplified model that may explain the gradual and progressive

failure to adequately regulate the activation of autoreactive T

cells in the immune pathogenesis of SLE which facilitates

chronic activation of pathogenic T cells and promotes the

generation of a robust autoimmune memory (Figure 1).

In health there is a homeostatic balance between Treg
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and autoreactive Tcon that prevents the development of

autoimmunity. In SLE distinct genetic alterations modified by

environmental factors contribute to disease pathology. Initially,

the accumulation of nuclear autoantigens which also serve as

endogenous danger signals and induce the expression of pro-

inflammatory cytokines, in particular of type-1 interferons, leads

to the presentation of autoantigens by dendritic cells in an

inflammatory context to autoreactive Tcon in the lymphoid

tissues and consecutively to their activation and differentiation

into effector/memory T cells and Tfh cells. In the early stage, the

expansion of autoreactive T cell clones, which is facilitated by

aberrant signaling and metabolism causing a lowered activation

threshold, is partially counter-regulated by a functionally intact,

yet already numerically restricted Treg population. The presence

of pro-inflammatory cytokines upon antigen recognition also

confers resistance in Tcon to Treg mediated suppression which

further enhances the escape of autoreactive Tcon from immune

regulation. During further progression of disease and due to the

persistence of autoantigens and inflammatory signals, the pool

of autoreactive effector/memory Tcon continuously expands,

while their chronic and repetitive activation leads to the

repression of IL-2 synthesis. The decreasing availability of IL-2

in turn impairs the adequate expansion of the Treg population in

order to sufficiently counter-regulate the hyperactivity of Tcon

which further facilitates the escape of autoreactive T cells and the

chronicity of pathogenic T cell responses. This vicious cycle of a

self-amplifying disruption of Treg homeostasis leading to

progressive and chronic hyperactivity of autoreactive Tcon

may continue for several years until numbers of Treg decline

below a critical size and clinical manifestations emerge.
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While the role of T cells and their dysregulation in

established SLE is currently relatively well understood, little is

still known about the mechanisms and molecular pathways

which drive the escape from immune regulation and the

chronicity of pathogenic T cell responses in the very early

stage of disease. Continuing research efforts in this field

provide the unique opportunity to identify novel therapeutic

targets that might be capable to prevent the occurrence of

clinical manifestations or to induce long-lasting remission.
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FIGURE 1

Model of T cell dysregulation in SLE pathogenesis.
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