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immunotherapy response

Jinjin Chen1, Surong Chen1, Xichao Dai1, Liang Ma1, Yu Chen1,
Weigang Bian1* and Yunhao Sun2*
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Background: Preclinical trials of immunotherapy in ovarian cancer (OC) have

shown promising results. This makes it meaningful to prospectively examine

the biological mechanisms explaining the differences in response

performances to immunotherapy among OC patients.

Methods: Open-accessed data was obtained from the Cancer Genome Atlas

and Gene Expression Omnibus database. All the analysis was conducted using

the R software.

Results: We firstly performed the TIDE analysis to evaluate the immunotherapy

response rate of OC patients. The machine learning algorithm LASSO logistic

regression and SVM-RFE were used to identify the characteristic genes. The genes

DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were selected for molecular

typing. Our result showed that the patients in Cluster1 might have a better

prognosis and might be more sensitive to immunotherapy, including PD-1 and

CTLA4 therapy options. Pathway enrichment analysis showed that in Cluster2, the

pathway of EMT, TNFa/NF-kB signaling, IL2/STAT5 signaling, inflammatory

response, KRAS signaling, apical junction, complement, interferon-gamma

response and allograft rejection were significantly activated. Also, genomic

instability analysis was performed to identify the underlying genomic difference

between the different Cluster patients. Single-cell analysis showed that the DPT,

COL6A6, LSAMP and RUNX1T1 were mainly expressed in the fibroblasts. We then

quantified the CAFs infiltration in the OC samples. The result showed that patients

with lowCAFs infiltrationmight have a lower TIDE score and a higher proportion of

immunotherapy responders. Also, we found all the characteristic genes DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were upregulated in the patients

with high CAFs infiltration. Immune infiltration analysis showed that the patients in

Cluster2 might have a higher infiltration of naive B cells, activated NK cells and

resting Dendritic cells.
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Conclusions: In summary, our study provides new insights into ovarian cancer

immunotherapy. Meanwhile, specific targets DPT, RUNX1T1, PTPRN, LSAMP,

FDCSP, COL6A6 and CAFs were identified for OC immunotherapy.
KEYWORDS

ovarian cancer, immunotherapy response, cancer-associated fibroblasts, machine
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Introduction

Ovarian cancer (OC) represents the seventh most frequent

women malignancies around the world (1). Multiple factors

contribute to the development of OC, including hormone levels,

reproductive factors, genetic susceptibility, environmental

exposure, and lifestyle (1). For earl-stage OC, surgery remains

the best treatment option and can improve patient long-term

survival (2). However, only about 20% of OV patients can be

diagnosed and treated early due to unusual symptoms (2).

Unfortunately, due to the characteristics of high invasion and

metastasis, the prognosis of advanced OC is extremely poor (3).

Combined palliative surgery and chemotherapy are often used

to treat advanced OC, aiming to reduce patient pain and prolong

survival. In many cases, however, this benefit is limited (4). Despite

the use of targeted therapy drugs such as bevacizumab and PARP

inhibitors in OC treatment, the 5-year survival rate is still less than

50% (5). Moreover, over the past few decades, survival rates for OC

have not been significantly increased (5). There has been

considerable progress in immunotherapy in the past ten years,

bringing revolutionary changes to the management of solid tumors

(6). Although immunotherapy for OC has not been approved yet,

with the rapid development of immune checkpoint blockade,

cancer vaccine and adoptive cell therapy, there have been a large

number of pre-clinical trials of OC immune checkpoint inhibitor

therapy, for example, NCT03353831, NCT01772004 and others (7).

According to tumor biomarker stratification, identifying sensitive/

resistant subgroups might improve immunotherapy response

prediction. In light of the experience of other solid tumors and

preclinical trials of immunotherapy for OC, these markers mainly

include tumor mutation load, PD-L1, tumor infiltrating

lymphocytes, homologous recombination defects, and intratumor

neoantigen heterogeneity (8). Using these biomarkers to select ideal

immunotherapy candidates may be the future of OC treatment.

Researchers have great convenience to investigate further with

the rapid development of bioinformatics technology (9). In our

study, we performed the TIDE analysis to evaluate the

immunotherapy response rate of OC patients. The machine

learning algorithm LASSO logistic regression and SVM-RFE were

used to identify the characteristic genes. The genes DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were selected
02
for molecular typing. Our result showed that the patients in

Cluster1 might have a better prognosis and might be more

sensitive to immunotherapy, including PD-1 and CTLA4 therapy

options. Pathway enrichment analysis and genomic instability

analysis were performed to identify the underlying biological

difference between the different Cluster patients. Single-cell

analysis showed that the DPT, COL6A6, LSAMP and RUNX1T1

were mainly expressed in the fibroblasts. Next, we found that the

patients with low CAFs infiltration might have a lower TIDE score

and a higher proportion of immunotherapy responders.
Methods

Data assessment

A comprehensive retrieval and data quality evaluation of the

public database was carried out when the study began. Data

quality assessment includes i). Probe numbers; ii). Expression

profile magnitude; iii) Clinical information. Finally, the open-

accessed data of The Cancer Genome Atlas (TCGA), as well as

GSE51088 (10) and GSE53963 (11) from the Gene Expression

Omnibus (GEO) database were selected. Detailed, the

transcriptional profiling data were “STAR-Counts” form and

the clinical information was “bcr-xml” form. The expression

profile of GSE51088 and GSE53963 were downloaded from the

link of “Series Matrix File(s)” and annotated based on the

platform files (GSE51088: GPL7264; GSE53963: GPL6480). Sva

package was utilized for data combination and batch effect

reduction. The basic information of the enrolled patients was

shown in Table 1.
Tumor immune dysfunction
and exclusion

TIDE algorithm was performed to predict the underlying

immunotherapy response of OV patients (http://tide.dfci.

harvard.edu/). All the patients were assigned a TIDE score, in

which TIDE > 0 were defined as immunotherapy non-responder

and < 0 were defined as immunotherapy responders (12, 13).
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The evaluation of the patient’s response to PD-1 and CTLA4

therapy was conducted through submap analysis, which is an

unsupervised subclass mapping method that reveals common

subtypes between independent datasets (https://cloud.

genepattern.org/gp).
Machine learning algorithm and
molecular subtyping

The machine learning algorithms, including LASSO logistic

regression and support vector machine recursive feature

el imination (SVM-RFE) were used to identi fy the

characteristic genes (14, 15). Molecular subtyping was

conducted based on the ConsensusClusterPlus package in

R software.
Pathway enrichment analysis and
genomic instability

Gene Set Enrichment Analysis (GSEA) was performed to

compare the underlying biological differences between the two

groups (16). The reference gene set was Hallmark,

c2.cp.kegg.v7.5.1.symbols and c5.go.v7.5.1.symbols gene sets

obtained from https://www.gsea-msigdb.org/gsea/downloads.

jsp. Genomic instability analysis was evaluated, including the

tumor mutation burden (TMB), microsatellite instability (MSI)

and tumor stemness (mRNAsi and EREF-mRNAsi). ClueGO

analysis is a plug-in of Cytoscape that could decipher

functionally grouped gene ontology and pathway annotation

networks (17).
Single sample gene set enrichment and
immune infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) was

used to quantify the infiltration of cancer-associated fibroblasts
Frontiers in Immunology 03
(CAFs) (18). The reference genes was shown in Supplementary

Table S1. CIBERSORT algorithm was used to quantify 22

immune cell infiltration of OC immune microenvironment (19).
Single-cell level

The analysis of the characteristic genes at the single cell level

was based on the Tumor Immune Single-cell Hub website

(TISCH, http://tisch.comp-genomics.org/). With TISCH, cell-

type annotations at the single-cell level are available, allowing

exploration of tumor microenvironments (TME) across a variety

of cancer types.
Statistical analysis

All the statistical analysis was performed in R software.

Kaplan-Meier (KM) survival curve was used to compare the

prognosis difference between two groups. The receiver operating

characteristic (ROC) curve was utilized to evaluate the

prediction ability of specific features. The significance of a

difference was determined by the p-value (p < 0.05). Student

T-tests were performed on data with normal distribution. Non-

normal distributions were tested with the Mann-Whitney U test.
Results

Identification of the characteristic gene
of immunotherapy response

The flow chart of our whole study was shown in

Supplementary Figure S1. TIDE analysis was firstly performed

based on the OC patients in TCGA database, in which TIDE > 0

were defined as immunotherapy non-responder and < 0 were

defined as immunotherapy responders (Figure 1A). LASSO

logistic regression and SVM-RFE algorithms were utilized to

screen the characteristic genes of patients in the immunotherapy

responder group (Figures 1B-D). Finally, these two algorithms

identified 34 characteristic genes (Figure 1E).
Molecular typing

Our goal is to identify the patients with different prognosis

and immunotherapy response rates by clustering samples. Next,

we performed the univariate Cox regression analysis and the

characteristic genes DPT, RUNX1T1, PTPRN, LSAMP, FDCSP

and COL6A6 were identified for molecular typing (Figure 2A).
TABLE 1 Basic information of enrolled patients.

Clinical Features Number of patients (n) Percentage (%)

Age

<=60 326 55.5%

>60 261 44.5%

Grade

G1 6 1.0%

G2 69 11.8%

G3 495 84.3%

G4 1 0.2%

Unknown 16 2.7^
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In detail, the ConsensusClusterPlus package was used for

molecular typing in the patients of TCGA database (Figure 2B

and Supplementary Figure S2). In all subtypes, dividing patients

into two subtypes provides the best differentiation (Figure 2C).

The KM survival curve showed that the patients in Cluster2

might have a worse prognosis (Figure 2D). Also, we found that

the patients in Cluster2 might have a higher TIDE score than

those in Cluster1 (Figures 2E, F). Moreover, DPT, RUNX1T1,

PTPRN, LSAMP, FDCSP and COL6A6 all showed a good

prediction ability of patients immunotherapy response

(Figures 2G-L, DPT, AUC = 0.808; RUNX1T1, AUC = 0.785;

PTPRN, AUC = 0.787; LSAMP, AUC = 0.821; FDCSP, AUC =

0.669; COL6A6, AUC = 0.765).
Frontiers in Immunology 04
Patients in Cluster1 are more sensitive
to immunotherapy

According to the TIDE result, we found that the proportion of

immunotherapy responders in Cluster1 is 41.6%, which is greatly

higher than the 11.7% in Cluster2 (Figures 3A, B). Submap

algorithm indicated that the Cluster1 patients are sensitive to

both PD-1 and CTLA4 therapy (Figure 3C). Meanwhile, DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 all showed a

higher expression level in immunotherapy non-responders

patients (Figures 3D-I). Furthermore, we try to validate our

results in the GSE cohorts. GSE51088 and GSE53963 were

selected (Figure 3J). Sva package was used for data combination

and batch effect reduction (Figure 3K).
B C D

E

A

FIGURE 1

Identification of the characteristic gene of immunotherapy response. (A) TIDE analysis was performed to evaluate the immunotherapy response
of TCGA-OC patients, in which TIDE > 0 were defined as immunotherapy non-responder and < 0 were defined as immunotherapy responders;
(B, C) LASSO logistic regression algorithm; (D) SVM-RFE algorithm; (E) LASSO logistic regression and SVM-RFE algorithms identified 34
characteristic genes.
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Validation in combined GSE cohorts
We next performed the TIDE analysis in the combined GSE

cohort (Figure 4A). Same with the result in TCGA, the patients

in Cluster1 had a lower TIDE score and a higher proportion of
Frontiers in Immunology 05
immunotherapy responders than those in Cluster2 (Figures 4B-

D and Supplementary Figure S3). KM survival curve showed

that the patients in Cluster2 might have a worse survival

(Figure 4E). Meanwhile, clinical correlation analysis showed

that the patients in Cluster2 might have a more progressive

clinical stage, but not pathological grade (Figures 4F, G).
B C

D E F

G H I

J K L

A

FIGURE 2

Molecular typing based on DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6. (A) Among all the characteristic genes, DPT, RUNX1T1, PTPRN,
LSAMP, FDCSP and COL6A6 were identified for their prognosis correlation (P < 0.05); (B) ConsensusClusterPlus package was used for molecular
typing in the patients of TCGA database; (C) Dividing patients into two subtypes provides the best differentiation; (D) KM survival curve of
patients in Cluster1 and Cluster2; (E, F) The patients in Cluster2 had a higher TIDE score than Cluster1; (G–L) The prediction ability of DPT,
RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 on patients immunotherapy response.
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B C

D E F

G H I

J K
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FIGURE 3

Cluster1 and Cluster2 had different immunotherapy response. (A, B) The proportion of immunotherapy responders and non-responders
in Cluster1 and Cluster2 patients; (C) Submap algorithm indicated that the Cluster1 patients are sensitive to both PD-1 and CTLA4
therapy; (D–I) The expression level of DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 in immunotherapy responders and non-
responders; (J–K) Sva package was used for data combination and batch effect reduction of GSE51088 and GSE53963.
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Meanwhile, no significant difference was observed between the

patients in different age group (Figure 4H).
Pathway enrichment analysis

GSEA analysis showed that in Cluster2, the pathway of

epithelial mesenchymal transition (EMT), TNFa/NF-kB

signaling, IL2/STAT5 signaling, inflammatory response, KRAS

signaling, apical junction, complement, interferon gamma

response, allograft rejection were significantly activated

(Figure 5A). ClueGO analysis showed that in the Cluster2, the

terms of phospholipase C-activating G protein-coupled receptor

signaling, regulation of sprouting angiogenesis, neural crest cell

migration, sex determination, spleen development, chondrocyte

development, roof of mouth development, glycosaminoglycan

biosynthetic process, negative regulation of coagulation,
Frontiers in Immunology 07
monocyte chemotaxis, endocrine process, cell adhesion

mediated by integrin, cartilage development and cardiac

muscle cell contraction (Figure 5B). Gene ontology (GO)

analysis showed that in the Cluster2, the terms of cellular ion

homeostasis, negative regulation of cell differentiation,

embryonic morphogenesis, metal ion homeostasis, positive

regulation of cell death, positive regulation of locomotion,

regulation of defense response, taxis, tissue morphogenesis

were upregulated (Supplementary Figure S4A). Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis showed

that in the Cluster2, the terms of cytokine cytokine receptor

interaction, focal adhesion, chemokine signaling pathway,

neuroactive ligand-receptor interaction, cell adhesion

molecules cams, toll-like receptor signaling pathway, ECM

receptor interaction, hematopoietic cell lineage, leukocyte

transendothelial migration, leishmania infection were

upregulated (Supplementary Figure S4B).
B

C D E

F G H

A

FIGURE 4

Validation in GSE cohort. (A) TIDE analysis was performed in the combined GSE cohort; (B) In the GEO cohort, Cluster2 also had a higher TIDE
score; (C, D) The proportion of immunotherapy responders and non-responders in Cluster1 and Cluster2 patients; (E) KM survival curve of
Cluster1 and Cluster2 patients; (F–H) Clinical differences between Cluster1 and Cluster2 (gender, age and grade). * = P < 0.05.
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Genomic instability analysis

In addition, the copy number profile of the OC patients in

TCGA was evaluated, including the gain/loss percentage and the

gistic score (Figures 6A, B and Supplementary Figure S5). CNV

burden analysis showed the patients in Cluster2 might have a

higher burden of copy number loss in the focal level, while no

significant difference was observed in the CNV burden of other

levels (Figures 6C-F). Moreover, we found that the patients in

Cluster2 had a higher TMB_score than that in Cluster1
Frontiers in Immunology 08
(Figure 6G). No remarkable difference was found in

MSI_score (Figure 6H). However, we noticed that Cluster1

had a higher mRNAsi score (Figure 6I). No significant

difference was found in EREG-mRNAsi (Figure 6J).
CAFs is associated with the
immunotherapy response of OC

We further explored the characteristic genes in the single-

cell level of OC. The result showed that the DPT, COL6A6,
B

A

FIGURE 5

Pathway enrichment analysis. (A) GSEA analysis of Cluster2 based on the Hallmark gene set; (B) ClueGO analysis in Cytoscape software.
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LSAMP and RUNX1T1 was mainly expressed in the fibroblasts

both in minor-lineage and malignancy option (Figures 7A, B).

Therefore, we think it would be interesting to know if CAFs

could affect the immunotherapy response rate in OC patients.

Then, we performed ssGSEA analysis to quantify the infiltration

level of CAFs in OC patients (Figures 8A, B). In TCGA cohort,

the result showed that the patients with low CAFs infiltration

might have a lower TIDE score and a higher proportion of

immunotherapy responders (Figures 8C, D; 46.8% vs 16.7%).

The same conclusion was observed in the GSE cohort

(Figures 8E, F, 75.7% vs 47.9%). Notably, the patients in

Cluster2 had a higher CAFs infiltration in both TCGA and

GSE cohorts, which might partly explain the higher proportion

of immunotherapy non-responders in Cluster2 (Figures 8G, H).

Interestingly, we found all the characteristic genes DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were

upregulated in the patients with high CAFs infiltration
Frontiers in Immunology 09
(Figure 8I). Immune infiltration analysis showed that the

patients in Cluster2 might have a higher infiltration of naive B

cells, activated NK cells and resting Dendritic cells (Figures 8J,

K). Pathway enrichment analysis showed that in the patients

with high CAFs infiltration, the pathways of EMT, TNF-a
signaling, apical junction, IL2/STAT5 signaling, inflammatory

response, allograft rejection, KRAS signaling, myogenesis, UV

response, complement were activated (Supplementary

Figure S6).
Discussion

There is a huge public health impact associated with OC,

especially since there are so many forms of OC, each with a

unique biology and prognosis (20). Immunotherapy has shown

promising application prospects in a variety of solid tumors (21).
B

C D E F

G H I J

A

FIGURE 6

Genomic instability analysis. (A) The gistic score of copy number profiles of TCGA-OV in Cluster1; (B) The gistic score of copy number profiles
of TCGA-OV in Cluster2; (C–F) The difference of CNV burden in focal gain, focal loss, arm-level gain and arm-level loss in Cluster1 and Cluster2
patients; (G–J) The difference of TMB, MSI, mRNAsi and EREG-mRNAsi in Cluster1 and Cluster2 patients. * = P < 0.05. The expanded form of ns
= not significant.
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Also, in OC, relevant preclinical trials have been carried out with

encouraging results. Therefore, prospectively exploring the

internal biological mechanisms behind the patients with

different response performances to immunotherapy in OC

is meaningful.

Here, we performed the TIDE analysis to evaluate the

immunotherapy response rate of OC patients. The machine

learning algorithm LASSO logistic regression and SVM-RFE

were used to identify the characteristic genes. The genes DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were

selected for molecular typing. Our result showed that the

patients in Cluster1 might have a better prognosis and might

be more sensitive to immunotherapy, including PD-1 and

CTLA4 therapy options. Pathway enrichment analysis showed

that in Cluster2, the pathway of EMT, TNFa/NF-kB signaling,

IL2/STAT5 signaling, inflammatory response, KRAS signaling,

apical junction, complement, interferon-gamma response and

allograft rejection were significantly activated. Also, genomic

instability analysis was performed to identify the underlying

genomic difference between the different Cluster patients.

Single-cell analysis showed that the DPT, COL6A6, LSAMP

and RUNX1T1 were mainly expressed in the fibroblasts. We

then quantified the CAFs infiltration in the OC samples. The

result showed that patients with low CAFs infiltration might

have a lower TIDE score and a higher proportion of

immunotherapy responders. Also, we found all the

characteristic genes DPT, RUNX1T1, PTPRN, LSAMP,

FDCSP and COL6A6 were upregulated in the patients with

high CAFs infiltration. Immune infiltration analysis showed that

the patients in Cluster2 might have a higher infiltration of naive

B cells, activated NK cells and resting Dendritic cells.
Frontiers in Immunology 10
During the past two decades, immunotherapy has evolved

rapidly and revolutionized treatment options for many cancers.

Recently, immune checkpoint inhibitors have been investigated

for possible use in reversing immunosuppressive TME,

including CTLA4 and PD-1/L1 inhibitors (22). As oncolytic

viruses, cancer vaccines, and adoptive cell therapy have

advanced rapidly, immunotherapy has also gained much

attention in OC therapy. Currently, most types of OC

immunotherapy treatment options, like CAR-T and immune

checkpoint inhibitors are in clinical trials (23). Although

promising approaches have been developed for OC

immunotherapy, the immunosuppressive TME still needs to

be overcome to improve the effectiveness of immunotherapy

(24). In our study, we found that the CAFs was tightly associated

with the immunotherapy response of OC patients. Previous

studies have explored the role of CAFs in cancer

immunotherapy. Through Single-cell analysis, Kieffer et al.

identified eight CAFs clusters and they found that PD-1 and

CTLA4 proteins were upregulated by cluster 0/ecm-myCAF in

regulatory T lymphocytes (Tregs), which increases CAF-S1

cluster 3/TGFb-myCAF cellular content (25). Obradovic et al.

performed scRNA-seq on the cancer tissue obtained from four

advanced-stage head and neck squamous cell carcinoma patients

treated with the aPD-1 therapy, nivolumab (pretreatment and

posttreatment). They revealed that a significant change was

observed in the abundance of fibroblasts following treatment

with nivolumab and they also identified different CAFs clusters,

which have a potential guiding effect (26).

Six characteristic genes were identified, including DPT,

RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6. In OC,

Yeh et al. found that in OC, the aberrant TGFb/SMAD4
frontiersin.or
B

A

FIGURE 7

Single-cell level of DPT, RUNX1T1, LSAMP, FDCSP and COL6A6 in OC. (A) DPT, COL6A6, LSAMP and RUNX1T1 were mainly expressed in the
fibroblasts in minor-lineage option; (B) DPT, COL6A6, LSAMP and RUNX1T1 were mainly expressed in the fibroblasts in and malignancy option.
g
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B
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FIGURE 8

CAFs is associated with the immunotherapy response of OC. (A, B) ssGSEA algorithm was used to quantify the CAFs infiltration in TCGA and
GSE cohorts; (C, D) In TCGA, patients with low CAFs infiltration had a lower TIDE score and a higher proportion of immunotherapy
responders; (E, F) In the GEO cohort, patients with low CAFs infiltration had a lower TIDE score and a higher proportion of immunotherapy
responders; (G) In TCGA, patients in Cluster2 had a higher CAFs infiltration; (H) In the GEO cohort, patients in Cluster2 also had a higher
CAFs infiltration; (I) DPT, RUNX1T1, PTPRN, LSAMP, FDCSP and COL6A6 were upregulated in the patients with high CAFs infiltration; (J, K)
Immune infiltration analysis of Cluster1 and Cluster2. * = P < 0.05, *** = P < 0.001.
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signaling can induce epigenetic silencing of putative tumor

suppressor RUNX1T1 (27). Sun et al. indicated that lncRNA

EPB41L4A-AS2 hamper the development of OC by sequestering

microRNA-103a and upregulating transcription factor

RUNX1T1 (28). Moreover, Wang et al. indicated that FDCSP

could facilitate OC metastasis by promoting cancer cell

migration and invasion (29). Also, we found that DPT,

COL6A6, LSAMP and RUNX1T1 were mainly disturbed in

the fibroblast. Kang et al. demonstrated that COL6A6 is

expressed in fibroblast and has the potential to be a target of

head and neck squamous cell carcinoma (30). In osteosarcoma,

Feleke et al. found that LSAMP was highly expressed in the

osteoblastic osteosarcoma cells and CAFs, which have the

potential to be a therapeutic target (31).

Pathway enrichment analysis showed in Cluster2, the

pathway of EMT, TNFa/NF-kB signaling, IL2/STAT5

signaling was significantly activated. EMT plays an important

role in promoting tumor malignant biological behavior. In OC,

Wu et al. found that ST3GAL1 could contribute to migration,

invasion and paclitaxel resistance in OC through EMT induced

by TGF-b1 (32). Liang et al. revealed that lncRNA PTAR could

promote EMT and invasion in OC by competitively binding

miR-101-3p to upregulate ZEB1 expression (33). Immune

infiltration analysis showed that Cluster2 had a lower

infiltration level of activated NK cells. Research has

demonstrated that NK cells can kill ovarian cancer cells

effectively. A lower NK cells infiltration might be partly

responsible for the worse prognosis of Cluster2.

Several limitations should be noted. Firstly, the population in

our analysis was mainly White patients and the underlying race

bias is inescapable. Asian and African large-scale sequencing

data should be paid more attention in the future. Secondly, there

is still no open-accessed genomic data of OC patients with

immunotherapy. The response rate predicted by TIDE analysis

is still affected by the bioinformatics algorithm and hard to fully

reflect the real situation.
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Pathway enrichment analysis of the CAFs.
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