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Gliomas, originating from the glial cells, are the most lethal type of primary

tumors in the central nervous system. Standard treatments like surgery have

not significantly improved the prognosis of glioblastoma patients. Recently,

immune therapy has become a novel and effective option. As a conserved

group of transcriptional regulators, the Sry-type HMG box (SOX) family has

been proved to have a correlation with numerous diseases. Based on the large-

scale machine learning, we found that the SOX family, with significant immune

characteristics and genomic profiles, can be divided into two distinct clusters in

gliomas, among which SOX10 was identified as an excellent immune regulator

of macrophage in gliomas. The high expression of SOX10 is related to a shorter

OS in LGG, HGG, and pan-cancer groups but benefited from the

immunotherapy. It turned out in single-cell sequencing that SOX10 is high in

neurons, M1macrophages, and neural stem cells. Also, macrophages are found

to be elevated in the SOX10 high-expression group. SOX10 has a positive

correlation with macrophage cytokine production and negative regulation of

macrophages’ chemotaxis and migration. In conclusion, our study

demonstrates the outstanding cluster ability of the SOX family, indicating that

SOX10 is an immune regulator of macrophage in gliomas, which can be an

effective target for glioma immunotherapy.

KEYWORDS

gliomas, SOX10, immunotherapy, immune infiltration, immune microenvironment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007461/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007461/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007461/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1007461/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1007461&domain=pdf&date_stamp=2022-11-29
mailto:chengquan@csu.edu.cn
mailto:prjscience@csu.edu.cn
https://doi.org/10.3389/fimmu.2022.1007461
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1007461
https://www.frontiersin.org/journals/immunology


Xiao et al. 10.3389/fimmu.2022.1007461
Introduction

Gliomas, originating from the glial cells, are the most

lethal type of primary tumors in the central nervous system

(CNS) (1). According to theWHO classification criteria, they are

classified into four types inferred by malignancy (2). In depth,

grade II and III gliomas are classified as lower-grade gliomas

(LGG), grade IV (glioblastoma, GBM) as higher-grade gliomas

(HGG), by The Cancer Genome Atlas (TCGA). For most cases,

LGG with the isocitrate dehydrogenase (IDH) mutant for the

metabolic enzymes has a conspicuously better prognosis than

the IDH wild type, which are generally GBMs. To date, the

standard treatment contains surgery has not significantly

improved the prognosis and median overall survival (OS) of

GBM patients (3). As a consequence, a new and effective therapy

is of urgency.

Recent studies have found that as a constitutive part of the

tumor microenvironment (TME), tumor cells, stromal cells, and

infiltrating immune cells all serve a variety of biologically

important roles in glioma proliferation, progression, and

prognosis (4). Moreover, we and others have previously

suggested several immune-related prognostic biomarkers to

predict prognosis and immunotherapy efficacy perfectly (5, 6).

These may all contribute to the immune therapy of glioma.

Sry-type HMG box (SOX) family proteins are a conserved

group of transcriptional regulators depending on the high-

mobility group (HMG) domain to bind with DNA (7). The

SOX family has been revealed to have the correlation with

numerous diseases (8). Almost all SOX genes, for instance,

SOX1, SOX2, SOX7, and SOX10, have been found to have the

potential to regulate the progression of glioma, whose expression

levels are also related to the prognosis of patients (9–12). SOX

genes play an important role in this regulation, which are found

to be involved in the maintenance of the stemness or differential

initiation of glioma stem cells (13). For example, knockdown of

SOX1 expression in glioma stem cells has been found to impair

the self-renewal, proliferation, viability, and tumorigenesis

ability of glioma cells, while the overexpression of SOX1

promoted the malignant phenotype of glioma (9). However,

the overexpression of SOX11 prevents tumorigenic ability

in glioma-initiating cell-like cells and human glioma-initiating

cel ls derived from malignant gl iomas by inducing

neuronal differentiation (14). Moreover, previous studies have

confirmed that SOX is closely associated with the TME (15).

SOX genes in tumor cells influence the infiltration of immune

cells via paracrine signals, and vice versa (16). By giving tumor

cells the ability to evade NK cells, SOX2 and SOX9 have been

found to promote the immune evasion of tumor cells (17, 18).

Therefore, the SOX family is crucial to the development

of gliomas, especially in the aspect of the TME and

immunotherapy. However, it remains unclear which one, as

well as the detailed function, of the SOX family plays the leading

role in glioma.
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Herein, our study extracted data from bulk tumor (The

Cancer Genome Atlas, TCGA; the Chinese Glioma Genome

Atlas, CGGA) and single-cell mRNA-seq databases (SCP50 and

SCP393; http://singlecell.broadinstitute.org). Cluster analysis

was performed, and SOX10 was identified as a distinguished

biomarker to explore the prognostic value and association with

the glioma immune microenvironment.
Materials and Methods

Data collection and preprocessing

1685 samples of diffuse glioma related data and complete

clinicopathological annotations were obtained from two

datasets: TCGA (https://xenabrowser.net/) and CGGA (http://

www.cgga.org.cn/). 672 samples in TCGA were used as the

training set, while 1013 samples in CGGA were used as the

validation set. We excluded samples with insufficient OS. The

RNA-sequencing data, SCP50 and SCP393, was collected form

Single Cell Portal platform (http://singlecell.broadinstitute.org).

To possessing a similar signal intensity with the RMA- processed

values, the fragments per kilobase million (FPKM) values were

transformed into transcripts per kilobase million (TPM) values.
Genomic alteration

We obtained the somatic mutation and copy number variant

(CNV) profiles from TCGA dataset. We used GISTIC 2.0

analysis (https://cloud.genepattern.org) to assess the landscape

of CNV, including the frequency of function mutation gain or

loss at the amplified or deleted peaks.
Unsupervised consensus clustering
for the SOX family and the selection
of SOX10

Using the ConsensusClusterPlus R package, we determined

the optimal cluster number and their constancy and authenticity

in TCGA cohort and meta-cohort. We performed principal

component analysis (PCA) to ensure the clustering tendency.

The LASSO-LR algorithm, Pamr algorithm, random forest

algorithm, XGboost algorithm, and Boruta algorithm were

used to screen out the most characteristic genes, SOX10.
TME immunological characteristic
analysis

The Estimation of STromal and Immune cells in MAlignant

Tumors using Expression data (ESTIMATE) algorithm was used
frontiersin.org
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to estimate the stromal score, immune score, and estimate score

of the infiltrating immune cells in the TME. The Tumor Immune

Estimation Resource 2.0 (TIMER2.0; http://timer.cistrome.org/)

web server was used to thoroughly evaluate the degree of

immune infiltrating cells in gliomas. We used the xCell

algorithm to ascertain the enrichment levels of 64 types of

immune cells. The proportions of 22 types of TME cells in

tumor tissues were evaluated by the CIBERSORT algorithm. The

R gene set variation analysis (GSVA) package was implemented

to calculate enrichment scores by single-sample gene set

enrichment analysis (ssGSEA). Besides, the EPIC algorithm,

MCPcounter algorithm, and QuantSeq algorithm were also

executed to estimate the immune infiltrating cell abundance.

Using ssGSEA, we evaluated the seven steps of cancer immune

cascades. This immunity cycle determined the destination of

tumor cells and reflected the immune response of the anticancer.

The subMap algorithm was used to evaluate the response to

therapies of anti-CTLA4 and anti-PD1. Also, the Tumor

Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.

harvard.edu/setquery/) and Tumor Immune Syngeneic MOuse

(TISMO) (http://tismo.cistrome.org) algorithm was utilized for

deducing the immune checkpoint blockade immunotherapy

responses in gliomas.
Single-cell sequencing

R package Seurat was employed to process the single-cell data

expressionmatrix. We used “NormalizeData” to renormalize data.

Then, 2,000 highly changeable genes were identified by

“FindIntegrationAnchors.” “FindIntegrationAnchors” and the

“Intergratedata” were used to merge GBM sample data sets.

“RunPCA” and “FindNeighbors” was used to perform PCA.

Afterwards, to alternately combine cells together, we used the

“FindClusters” function. Finally, to visualize the analyses,

“UMAP” was performed.
Multiplex immunofluorescence staining

We purchased the glioma tissue array from Wuhan Tanda

Scientific Co., Ltd. (NGL1021), with ethics approvement. SOX10

(Mouse, 1:100, Proteintech, China), CD163 (Rabbit, 1:3,000,

Proteintech, China), and CD68 (Rabbit, 1:3,000, Servicebio,

China) were the primary Abs. Horseradish peroxidase-conjugated

secondary antibody incubation (GB23301, GB23303, Servicebio,

China) was the secondary antibody. The tyramide signal was

amplified into TSA [FITC-TSA, CY3-TSA, 594-TSA, and 647-

TSA (Servicebio, China)]. The stained slides were scanned using the

TissueFAXS platform (TissueGnostics, Vienna, Austria). The

spatial analysis of the stained cells was performed using the

StrataQuest software (TissueGnostics, Vienna, Austria).
Frontiers in Immunology 03
Drug response prognostication

All pharmacogenomic data were downloaded from the

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org/). The semi-inhibition rate (IC50) reckoned by

the pRRophetic R package was utilized to predict the drug

susceptibilities and responses.
Statistical analysis

The overall survival of divergent groups was assessed

by Kaplan–Meier curves (KM curves) with the log-rank test.

All OS curves were produced by the survminer R package.

Mutation landscape OncoPrint was executed by the maftools

R package. Heatmaps were pictured found on the R package

complexHeatmap. Student’s t-test was conducted to analysis

normally distributed variables between the two groups while

one-way analysis of variance (ANOVA) was conducted to

analysis normally distributed variables between multiple

groups. The Wilcoxon test was applied to analysis non-

normally distributed variables between the two groups while

Kruskal-Wallis test was applied to analysis normally distributed

variables between multiple groups. R 3.6.3 was used to conduct

all statistical analyses. Statistics were considered significant when

p-value< 0.05.
Results

Two distinct clusters of the SOX family

Firstly, we evaluated the clustering capabilities of the SOX

family and visualized it (Figure 1A). To choose the ideal cluster

number, the stability of clustering was appraised by the

ConsensusClusterPlus package in TCGA (Figures 1B, C). It

was found that k = 2, with the flattest CDF curve, is the

optimal choice (Figure 1B). Then, clustering tendency was

evaluated by principal component analysis (PCA). We used

blue dots to represent cluster1, while red dots represent

cluster2. SOX clusters were separated significantly, indicating a

high-quality consensus cluster result (Figure 1D).

We further explored the overall survival of glioma patients in

cluster1 and cluster2, p < 0.001. The Kaplan–Meier curves firmly

demonstrated that cluster2 had higher and more prolonged

survival than cluster1 (Figure 1E). Besides, Figures 1F, G show

the global view of mutational distribution in cluster1 and

cluster2, respectively. As a biomarker related to the

malignancy of gliomas, IDH1 mutation took up 69% of the

general in cluster2, much higher than that of cluster1, 44% (19,

20). Cellular tumor antigen p53 (TP53) alteration was presented

similarly in cluster1 (37%) and cluster2 (45%). In cluster1, the
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FIGURE 1

Cluster analysis of the SOX family. (A) Visualization of cluster analysis. (B, C) Determination of the number of clusters. (D) Significant separation
of SOX clusters by PCA. Blue dots represent cluster1, while red dots represent cluster2. (E) Kaplan–Meier overall survival curves comparing
cluster1 and cluster2 in gliomas. (F) Detection of the genes with the highest mutation frequency in cluster1. (G) Detection of the genes with the
highest mutation frequency in cluster2.
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following three genes ranked by frequency were alpha-

thalassemia/mental retardation syndrome x-linked chromatin

remodeler (ATRX) (22%), epidermal growth factor receptor

(EGFR) (16%), and titin (TTN) (16%), while those in cluster2

were ATRX (29%), CIC (19%), and TTN (14%). In conclusion,

the SOX family has a close correlation with the prognosis and

proliferation of gliomas.
Immune characteristics of two clusters

We investigated the TME characteristics of cluster1 and

cluster2. We evaluated the ESTIMATEScore, ImmuneScore, and

StromalScore of the two clusters in TCGA dataset (Figures 2A–C).

Among these three evaluations, scores of cluster1 were all higher

than those of cluster2. Moreover, they could be thought to have a

significant difference, on account of p < 0.001. Then, we calculated

the proportion of five immune subtypes in the two clusters

(Figure 2D). Immunologically Quiet was generally presented in

cluster2 (more than 50%) and was partially observed in cluster1

(less than 50%). On the contrary, Lymphocyte Depleted was the

frequentist immune subtype in cluster1, which took up over 50%.

Moreover, we found that the TME indicator scores of cluster2

seemed to be lower than those of cluster1, which indicated a

weaker immune response (Figure 2E). It also revealed the

difference between the two clusters.

We calculated relating levels of 64 cell types by the xCell

algorithm and clusters in TCGA (Figure 2F). We defined four

subtypes of glioma: pro-neural (PN), classical (CL), neural (NE),

and mesenchymal (ME), among which CL and ME are more severe

(21). It is found that some types of cells are different in the two

clusters with statistical significance. Plasma cells and neurons are

more positively related to cluster2, while macrophages, macrophages

M1, and macrophages M2 are more positively related to cluster1.

Additionally, we used box plots to present the proportions of 22 TME

cell types in tumor tissues with cluster1 and cluster2 (Figure 2G).

Only four cell types had significant differences: B cells memory,

macrophages M0, M1, and neutrophils. B cells memory in cluster2

were higher than in cluster1. Meanwhile, macrophages M1 and

neutrophils in cluster2 were lower than in cluster1.
Distinct genomic profiles of the
two clusters

Considering the apparent differences in overall survival and

immune characteristics in cluster1 and cluster2, genomic profiles

of the two clusters were supposed to be distinct. To validate it, we

analyzed the co-occurrence/mutual exclusivity of the 25 most

altered genes in cluster1 (Figure 3A) and cluster2 (Figure 3B). The

strongest co-occurrent couples of gene mutation in cluster1 and

cluster2 were IDH1 and ATRX, IDH1 and CIC, IDH1 and

FUBP1, ATRX and TP53. IDH1 and EGFR were mutually
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exclusive pairs in cluster1 and cluster2. Higher co-occurrence is

usually functionally linked to the proliferation of gliomas (22, 23).

Then, we used a forest plot to list the 11 most variated genes

between the two clusters (Figure 3C). Except for IDH1 and CIC,

the other nine genes were more likely to mutate in cluster1.

Furthermore, we compared the frequency of different somatic

mutations between the two clusters, including the single-

nucleotide polymorphism (SNP), single nucleotide variant

(SNV), deletion, insertion, and intergenic region (IGR). The

frequency of insertion and deletion seemed to be non-

statistically different, while SNPs were a little more common in

cluster1 (Figure 3D). Among the identified SNVs, C was more

presumably to mutate to T, which was also the most common

mutation in cluster1 (Figure 3E). Transformation of splice region

and missense were more common in cluster1 than in cluster2

(Figure 3F) (24). Amplifications and deletions of chr7 and chr10

have statistically differences in cluster1 and cluster2 (Figure 3G).
Identification of SOX10 as a
prognostic gene

To distinguish the two clusters more accurately and precisely, we

executed machine learning and prediction on the two populations,

screening out the most characteristic genes. Using the LASSO-LR,

XGboost, Boruta, Pamr, and RandomForest machine learning

algorithms, we filtrated 15, 5, 11, 5, and 4 genes, correspondingly

(Figures 4A–E). We used a Venn diagram to take the intersection of

the five algorithms (Figure 4F). These two characteristic genes in the

intersection corner, SOX10 and sex determining region Y (SRY),

were the most potential to best classify the two clusters (25).

Considering that SRY mainly depends male sex, we identified

SOX10 as a biomarker of glioma prognosis.
The prognostic potential of SOX10

We performed a survival analysis of different SOX10

expressions in pan-glioma, LGG, and GBM based on TCGA

and CGGA datasets (Figures 5A, B). The Kaplan–Meier curves

more securely demonstrated that grievous survival mischief in

glioma patients with high SOX10. However, the GBM Kaplan–

Meier curves in TCGA were contrary to those in CGGA, which

could account for the small number of samples of GBM patients

in TCGA. Moreover, we predicted the value of SOX10, IDH, and

subtype measured by receiver operating characteristic (ROC)

curves in TCGA dataset (Figure 5C). The results firmly proved

that SOX10 was a predictor of IDH and subtype. The ROC

curves exhibited high sensitivity and specificity, with all areas

under the curves (AUC) bigger than 0.7 and 0.9.

Additionally, to probe the latent pathological function of

SOX10, the KEGG and GO enrichment analyses were performed.

Figure 5D depicts 20 related pathways in the two selected pathways.
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FIGURE 2

Immune characteristics of the clusters. (A) ESTIMATEScore (B) ImmuneScore. (C) StromalScore of cluster1 and cluster2 in TCGA. ***p < 0.001.
(D) The proportion of five immune subtypes in cluster1 and cluster2. p = 0.004388. (E) The tendency of the difference between two clusters
based on TME indicator scores. (F) Dendrogram corresponding to the 64-cell type level calculated by xCell and clusters in TCGA. *p < 0.05,
**p < 0.01, ***p < 0.001. (G) Box plots of the proportions of 22 TME cell types in tumor tissues with cluster1 and cluster2. The dispersed dots
represent values of TME cell expression in each cluster. **p < 0.01, *p < 0.05, NS, no significance.
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FIGURE 3

Distinct genomic profiles of the two clusters. The co-occurrence or mutual exclusivity of the top 25 most mutated genes in (A) cluster1 and (B)
cluster2. *p < 0.01, `p < 0.05. (C) Demonstration of the 11 most altered genes between the clusters by the forest plot. Frequency comparison
according to (D) variant type, (E) SNV, and (F) variant classification between the two clusters. (G) Amplifications and deletions in two clusters of
SOX family by GISTIC 2.0. ***p < 0.001, **p < 0.01, *p < 0.05, NS, no significance.
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The high expression of SOX10 seems to be correlated with the

negative regulation of regulatory T-cell differentiation, DNA

replication, and mismatch repair. Besides, Figure 5E demonstrates

the abundance of infiltrating immune cell groups with divergent
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SOX10 expressions identified by the CIBERSORT, ESTIMATE,

MCP, and TIMER algorithms of TCGA datasets. With the

increasing expression of SOX10, the proportion of B cells, T cell

CD4, and macrophages increased.
A B C

D

E

F

FIGURE 4

Identification of SOX10 as a prognostic gene by machine learning. (A) The assessment of the weighted importance of genes between two
clusters by the LASSO-LR algorithm. (B) The evaluation of feature importance of genes between two clusters by the XGboost algorithm. (C) The
selection of all relevant features of genes between two clusters by the Bruta algorithm. (D) The assessment of genes between two clusters by
the Pamr algorithm. (E) The evaluation of genes between two clusters by the random forest algorithm. (F) Validation of the intersection of
glioma prognostic genes from LASSO, Xgboost, Boruta, Pamr, and Random Forest.
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SOX10 is associated with
immunotherapy response

As manifested in the heatmap (Figure 6A), SOX10 was

negatively correlated with T-cell dysfunction, implying its

potential impact on immunotherapy. Specifically, SOX10

positively correlated with the normalized Z score from
Frontiers in Immunology 09
selection log2FC in the CRISPR screen dataset and normalized

expression value from immune-suppressive cell types.

Metabolism has been considered a vital determining factor

in the survivability and potency of immune cells (26). We

explored correlations between SOX10 and enrichment scores

of metabolism-pertinent pathways and cancer-immune cascade

steps by GSVA. Figure 6B concludes that SOX10 was negatively
A B

C

D

E

FIGURE 5

The prognostic potential of SOX10. Kaplan–Meier overall survival analysis of SOX10 in GBM, LGG, and pan-glioma based upon the (A) TCGA and
(B) CGGA datasets. (C) Predictive value of SOX10, IDH, and subtype measured by ROC curves in TCGA dataset. (D) The heatmap for gene set
variation analysis of SOX10 from TCGA. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (E) Heatmap visualized the abundance of infiltrating
immune cell groups with divergent SOX10 degree. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6

Roles of SOX10 in immunotherapy response, metabolism phenotypes, and biomarker relevance. (A) Heatmap showing the correlation with T-
cell dysfunction, normalized Z score, and normalized expression. (B) Correlations between SOX10 and enrichment outcomes of metabolism-
relevant pathways together with cancer-immune cascade steps. (C) Immunotherapy response of SOX10 in immunotherapy cohorts. (D) Immune
effector molecule relevance of SOX10 in immunotherapy cohorts. (E) Biomarker relevance of SOX10 in immunotherapy cohorts.
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associated with cardiolipin biosynthesis, citric acid cycle, trans-

sulfuration, pyrimidine metabolism, ubiquinone, and another

terpenoid. Notably, SOX10 was observed to be correlated with

most steps of the immune cascade.

Then, to thoroughly analyze the prospective merit of SOX10 as a

new immune target in pan-cancer, sensitive drugs predicated on

SOX10 expression were predicted (Figure S1A). We also explored the

semi-inhibition rates of gefitinib and nilotinib. The results showed

that the estimated IC50 was higher in low-expression SOX10 than in

high-expression (Figure S1B, C). Another noteworthy observation

was that SOX10 could significantly predict immunotherapy response,

whose responders were correlated with SOX10 levels (Figure 6C).

Besides, SOX10 could significantly predict the cytokine treatment of

immune effector molecules in four immunotherapy cohorts

(Figure 6D). We also computed the biomarker pertinence of

SOX10 by comparing it with normalized biomarkers based off of

their prognosticative ability of response outcomes and OS of human

immunotherapy cohorts. Fascinatingly, it was found that SOX10 gave

an AUC of more than 0.5 in eight out of the 25 immunotherapy

cohorts (Figure 6E). SOX10 presented a better predictive value than B

clonality, with AUC values over 0.5 in 8 immunotherapy cohorts.

However, the prognosticative ability of SOX10 was lower than that of

the TIDE (AUC > 0.5 in 18 immunotherapy cohorts), MSI score

(AUC > 0.5 in 13 immunotherapy cohorts), TMB (AUC > 0.5 in 8

immunotherapy cohorts), CD274 (AUC > 0.5 in 21 immunotherapy

cohorts), CD8 (AUC > 0.5 in 18 immunotherapy cohorts), IFNG

(AUC> 0.5 in 17 immunotherapy cohorts), T clonality (AUC> 0.5 in

9 immunotherapy cohorts), and Merk 18 (AUC > 0.5 in 18

immunotherapy cohorts).
Single-cell sequencing and SOX10
co-expression on glioma cells

Finally, we utilized single-cell sequencing to analyze the

circumstances of stratification, identification, and SOX10

co-expression on glioma cells. UMAP determined by

Copynumber Karyotyping of Tumors analysis stratified cells

into diploid (average) status and aneuploid (malignant) status

(Figure 7A). At the same time, we identified cell types and used

UMAP to make it intuitionistic, which demonstrated 13 cell

clusters (Figure 7B). Similarly, the co-expression status of

different types of cells is shown in Figure 7C. Figure 7D

shows the division of cell clusters into two groups, based

upon the high and low expression levels of SOX10. In the

high-expression cluster of SOX10, OPC was observed to take

more than 50% of all TME cells, followed by neuroprogenitor

cells (NPC), mesenchyme (MES), and astrocyte (AC)

(Figure 7E). In descending order, the proportion of subtypes

in a low-expression cluster of SOX10 was NPC (less than 50%),

MES, AC, and OPC. The expression level of SOX10 in different

subtypes is shown in the violin plot (Figure 7F). It was found

that SOX10 had a high expression in neoplastic cells,
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astrocytes, neurons, oligodendrocytes and oligodendrocyte

progenitor cells.

Subsequently, we performed enrichment analysis to determine

the correlation between different immune regulatory processes

and SOX10 expressions. High-expression SOX10 was significantly

positively associated with the Notch signaling pathway and

migration and activation regulation of the macrophage. In

contrast, low-expression SOX10 was positively associated with

the activation of MAPK activity, MAPK signaling pathway, and

regulation of T-cell migration (Figure 7G). Moreover, we drew

correlation circles for positively and negatively correlated

checkpoint genes, growth factors, cytokines, and other genes in

the SOX10 high-expression group (Figures 7H–K). For checkpoint

genes, we could see a strong correlation in LGALSS of M1

macrophages and HAVCR2 of microglial cells, macrophages,

M2 macrophages, and M1 macrophages themselves (Figure 7H).

Also, HAVCR2 of M1 and M2 macrophages seemed to be

regulated by LGALS9 of many cells, such as neoplastic cells,

microglial cells, and neural stem cells. As for the growth factors,

IGF2 of unknown cells showed robust correlations with IGF1R,

IGF2R, and INSER of the other six cell types (Figure 7I).

Macrophages may interact with microgial cells via CCL4, and

interact with T cells and oligodendrocyte progentior cells via IL 1B

(Figure 7J). The correlation with other genes could be found in

Figure 7K by the same means.
Differences in cells neighboring SOX10-
expressed cells

We performed multiplex immunofluorescence in the

controlled group and different grades of glioma groups to

further characterize the relationship between SOX10-expressed

cells and neighboring CD68+CD163+ cells, and CD8+ cells. The

results revealed that SOX10 expression is elevated with

the increase in glioma grades (Figures 8A, B). Besides, with the

increase in SOX10 expression, neighboring CD68+ cells,

CD163+ cells, and CD8+ cells are also increased (Figures 8C,

D). The quantity of CD8+ cells at the distance of 0–25 mm and

25–50 mm neighboring SOX10-expressed cells exploded in the

Glioma WHO IV group, while the amount of CD68+CD163+

cells also increased. Hence, we concluded that CD68+CD163+

M2 macrophages, and CD8+ T cells, were the prepotent

infiltrated immune cell types in glioma. Meanwhile, SOX10

expression is a regulator of neighboring immune cells.
Discussion

In recent years, studies revolving around gliomas are mostly

concentrating on the TME, which is suggested to be one of the

main obstacles to improving the prognosis and OS of HGG

patients (27). To explore and clarify the mechanism of how
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FIGURE 7

Stratification, identification, and SOX10 co-expression on glioma cells by single-cell sequencing analysis. (A) UMAP projection determined by
CopyKat analysis. (B) UMAP projections of different cells, color-coded by cell types. (C) Annotation of different cell types and the expression of
SOX10 in each cell type. (D) UMAP projections of two cell groups based on the expression of SOX10. (E) The proportion of glioma subtypes in
the high and low SOX10 expression group. Astrocytes (AC), neural progenitor cells (NPC), mesenchyme (MES), and oligodendrocyte precursor
cells (OPC). (F) Violin plot of SOX10 expression distribution of divergent cell clusters. (G) Enrichment analysis correlating divergent immune
regulatory processes with high and low SOX10 expressions. (H) Correlation circles for positively and negatively correlated checkpoint genes in
the high expression group of SOX10. (I) Correlation circles for positively and negatively correlated growth factors in the high expression group
of SOX10. (J) Correlation circles for positively and negatively correlated cytokines in the high expression group of SOX10. (K) Correlation circles
for positively and negatively correlated other genes in the high expression group of SOX10.
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FIGURE 8

Differences in CD68, CD163 macrophages, and CD8 T cells neighboring SOX10-expressed cells. (A) Multiplex immunofluorescence staining of
SOX10 (pink), CD68 macrophages (yellow), CD163 macrophages (green), CD8 T cells (orange), and DAPI (blue). (B) Multiplex
immunofluorescence images of M2 macrophage markers CD68+ and CD163+, and CD8+ T cell marker CD8+ in control, Glioma WHO I,
Glioma WHO II, Glioma WHO III, and Glioma WHO IV groups, respectively. The scatter diagrams display the quantity of CD68+ cells, CD163+
cells, CD68+CD163+ cells, CD8+ cells, and SOX10 expressed cells and the quantity of CD68⁺CD163⁺ cells along with CD8+ cells at different
locations neighboring SOX10 expressed cells at 0–25 and 25–50 mm. Images of automatically identified staining by the TissueFAXS and
StrataQuest software in (C) Glioma WHO III group and (D) Glioma WHO IV group.
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infiltrating immune cells in the glioma TME influence the

prognosis and OS, much large-scale bioinformatic analyses

have been performed, and several biomarkers have been found

(5, 28, 29). However, as a typical transcription factor family, the

expression of the SOX family in gliomas has not been fully

discussed before. We are the first to evaluate the cluster ability

thoroughly and other characteristics of the SOX family and

analyze SOX10 expression profiles in gliomas in prognostic

potential, immune response, and co-expression in single-cell

sequencing. Significantly, our results suggest that the SOX family

has two distinct clusters regarding gliomas. Compared with

cluster1, cluster2 seems to have a higher OS but weaker

immune response. Correspondingly, the genomic profiles of

the two clusters are dissimilar. IDH has co-occurrent relations

with many other genes, such as ATRX, CIC, and FUBP1, which

are potent regulators of cell growth (30). IDH1 is more likely to

mutate in cluster2. More importantly, our analysis of SOX10

expression files in gliomas implies its predictive ability.

Moreover, overexpression of SOX10 indicates a worse OS and

prognosis. Also, SOX10 has the potential to predict

immunotherapy response and immune effector molecules.

A complex range of genomic alterations also has clinical

implications for glioma classification and prognosis. In SNV

analysis, several frequent somatic mutations in gliomas,

including IDH1, TP53, and ATRX, have been found to present

more in cluster2 than in cluster1 (31, 32). Besides, as mentioned

before, the TME has been reported to influence the gene

expression of gliomas and the infiltration circumstance of

stromal and immune cells, which are significant indicators of

predicting prognosis (33). Data on the ESTIMATE algorithm

show that stromal, immune, and ESTIMATE scores are higher in

cluster1. The results indicate a worse prognosis and shorter OS

in cluster1. Consequently, the SOX family is thought to have the

cluster ability in gliomas to predict malignancy.

The SOX family has been confirmed to be closely associated

with the immune features of the TME. In gliomas, the copious

SOX family has played a crucial role in cell differentiation. Also,

the SOX family and their mRNA expression levels have been

associated with glioma patients’ prognosis (13). In our study, the

high expression of SOX10 is related to shorter OS in glioma.

An epigenome profiling of GBM indicates that SOX10, an

oligodendrocyte forerunner marker and chromatin modifier, is a

dominant regulator in RTK I-subtype tumors (34). It also affects the

glioma TME. This is consistent with our results. Numerous types of

immune cells are enriched in high-SOX10-expression patients in

our analysis of infiltrating immune cell populations. Our results

suggest that an increased expression of SOX10 is associated with the

DNA replication, mismatch pair, and regulation of negative

regulatory T-cell differentiation. With increasing SOX10

expression, B cells, T cell CD4, and macrophages are elevated.

We can infer that SOX10 is correlated with T-cell dysfunction with

the heatmap. As a consequence, we draw a conclusion that SOX10

is a significant regulator in the glioma TME.
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Based on the types of function and activation, macrophages

can be divided into two types: M1 macrophages and M2

macrophages (35). M1 macrophages are induced by LPS, INF-

g, and TNF-a and mainly release TNF-a, CXCL9, and CCL4.

M2 macrophages mainly release TGF-b and CCL1 (36).

Macrophages, especially M2 macrophages, are negatively

associated with the survival of glioma patients (37). In our

study, macrophages elevate in the SOX10 high expression

group. Especially for CD68+CD163+ M2 macrophages

neighboring SOX10-expressed cells, an increased number of

these macrophages are found with the elevation of SOX10

expression. Besides, CD8+ T cells are also found to explode at

the distance of 0–25- and 25–50-mm neighboring SOX10 high-

expression cells. The results indicate that SOX10 regulates the

types and quantity of glioma infiltrated immune cells.

GSVA shows a negative association with SOX10 and

cardiolipin biosynthesis, citric acid cycle, trans-sulfuration,

pyrimidine metabolism, and ubiquinone. SOX10 also has

pleiotropic effects in cancer-immune cascade steps.

Considering metabolism is a vital determining factor in the

survivability and potency of immune cells, SOX10 is supposed to

be a more remarkable biomarker in immunotherapy response

than B clonality (26).

The SOX family has also been found to have the ability to

regulate stem and progenitor cells in adult tissues (38). Our

single-cell sequencing results reveal that SOX10 is highly

expressed in OPC and NPC, indicating a regulatory function.

An immune checkpoint, manifesting the capability of inhibiting

T-cell function, refers to specified molecular interactions at the

interface between antigen-presenting cells and T cells (39). In

melanoma, regulated by fat mass and obesity-associated protein,

enrichment of SOX10 decreases the effect on anti-PD-1 blockade

immunotherapy (40). Similarly, our data imply that SOX10 can

predict anti-PD1 and anti-CTLA4 immune therapy responses.

Besides, we have found correlations between SOX10 and

HAVCR2, LGALS9, and CD70. These results suggest a

coordinated role with SOX10 and those immune checkpoints

in glioma development.

Glioma invasion is driven by autocrine signaling transmitted

by secretory factors that signal through receptors on the tumor,

including growth factors and cytokines (41). We have found that

IGF2R, INSR, and IGF1R have a tight relationship with SOX10

in gliomas. Besides, EGFR amplification and PTEN inactivation

in GBM have recently been shown to regulate the activity of the

DNA repair (42). Overexpression of EGFR drives GBM cell

invasion. Gefitinib is a tyrosine kinase inhibitor targeting EGFR

(43). The semi-inhibition rate demonstrates that the estimated

IC50 is lower in the high-expression SOX10 group than in the

counterpart, which suggests that high-expression SOX10 has

higher sensitivity to gefitinib; in other words, gefitinib is more

effective in gliomas overexpressing SOX10 (44). Our data

indicate that gefitinib might be a molecularly targeted agent

for treating patients with highly expressed SOX10.
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Notwithstanding, the complete comprehensive information,

specific functions, and clarified mechanisms of these SOX families

in gliomas and many other diseases have not been fully explored

and explained. It is reported that as an oncogene, more than 50%

of the cancer patients present NOTCH activation mutations (45).

The activation of NOTCH significantly favors tumor progression

(46). It is accordant with our data. We have discovered through

the enrichment analysis that the high expression of SOX10 has a

positive correlation with the NOTCH signaling pathway. Tumor-

associated macrophages have a complex interaction with glioma

progression (47). In our study, positive regulation of macrophage

chemotaxis and activation are also related to the high expression

of SOX10, which may be the reason for the elevation of

macrophages in the high expression SOX10 group. Therefore, it

can be surmised that the overexpression of SOX10 may activate

macrophages and then elevate the number of CD68+CD163+

macrophages, which are important components of the immune

microenvironment. Then, macrophages release cytokines to

regulate the signaling pathway, such as NOTCH, to affect

glioma progression. Consequently, we infer that the

overexpression of SOX10 can promote glioma progression.

In conclusion, our study demonstrates the outstanding cluster

ability of the SOX family. Cluster2 has a better prognosis and

longer OS than cluster1. Concentrating on SOX10, multiple results

imply that it has a multifaceted prognostic value in gliomas. In

gliomas, SOX10 overexpression corresponds to immune

infiltration and bleak prognosis. However, Gefitinib and

Nilotinib have more utility in patients with highly expressed

SOX10. Except for PD1 and EGFR, our results suggest that the

high expression of SOX10 may also correlate with other potential

immune checkpoints. Given that, SOX10 has the potential to be an

auspicious target for glioma immunotherapy.
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