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Alarmins exist outside cells and are early warning signals to the immune system;

as such, alarmin receptors are widely distributed on various immune cells.

Alarmins, proinflammatory molecular patterns associated with tissue damage,

are usually released into the extracellular space, where they induce immune

responses and participate in the damage and repair processes of mucosal

diseases.In the stomach, gastric alarmin release has been shown to be involved

in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and

wound healing; moreover, this release causes damage and results in the

development of gastric mucosal diseases, including various types of gastritis,

ulcers, and gastric cancer. Therefore, it is necessary to understand the role of

alarmins in gastric mucosal diseases. This review focuses on the contribution of

alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric

mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new

perspective on the prevention and treatment of gastric mucosal diseases.

KEYWORDS
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Introduction

Alarmins are endogenous, constitutive molecules that are rapidly released from cells

in response to infection or tissue damage; thus, alarmins act as early warning signals to

the immune system by promoting the chemoattraction of antigen-presenting cells and

activating innate and adaptive immunity (1). Alarmins are distinct from microbial

pathogen-associated molecular patterns (PAMPs); rather, alarmins are derived from host

cell damage-associated molecular patterns (DAMPs) generated upon host cell injury and
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bind to pattern recognition receptors (PRRs) of the innate

immune system, thereby initiating downstream inflammatory

responses (2, 3). Under normal circumstances, alarmins are

present in intracellular granules, the nucleus or the cytoplasm

and are involved in protein regulation (4, 5). After alarmins are

rapidly released into the extracellular space in response to

stimuli such as degranulation, cell death, and induction,

receptor-expressing immune cells are recruited and activated,

which can help restore immune homeostasis and promote

epithelial repair (6); however, alarmin release can also lead to

persistent tissue damage (7, 8). All alarmins have the ability to

promote inflammation and immunity, but these factors play

different roles after recognition by different receptors (1, 9–12).

Alarmins are involved in processes such as inflammation,

antibacterial defense, adaptive immunity, and wound healing

and result in tissue damage and repair, highlighting the potential

value of alarmins (13–19).

Alarmins are diverse and can be generally classified as

antimicrobial peptides (AMPs), nuclear binding proteins, heat

shock proteins (HSPs), ionic binders, nucleotides/metabolites

(adenosine triphosphate and uric acid) and extracellular matrix

degradation products (20–24). However, some alarmin studies

revealed that nuclear binding proteins, including IL-33 (25–27)

and high mobility group B1 (HMGB1) (28), and AMPs,

including defensins (29, 30) and cathelicidin (31, 32), were

mainly involved in the development of gastric mucosal diseases.

Gastric mucosal diseases involve mucosal tissue damage and

include various types of gastritis, gastric ulcers (GUs) and gastric

tumors (33–35). Recent studies have shown that alarmins are

highly expressed in gastric mucosal diseases and initiate the close
Frontiers in Immunology 02
cooperation between innate and adaptive immunity to regulate

host damage and repair (36). Therefore, this review mainly

focuses on the pathophysiological roles of alarmins in gastric

mucosal injury and disease (Figure 1; Table 1) to provide new

insights into gastric mucosal diseases.
Gastric alarmin nuclear binding
proteins: IL-33 and HMGB1

Nuclear binding proteins are a class of DNA-binding

proteins that are involved in the regulation of transcription,

replication and repair (37). Alarmins classified nuclear binding

proteins in the stomach include IL-33 (38) and HMGB1 (39, 40),

which are released extracellularly, causing immune changes and

participating in the development of gastric mucosal diseases.
The expression pattern and functional
role of IL-33 in the stomach

IL-33 is a nuclear binding protein in the IL-1 cytokine family

(6, 41). Under physiological conditions, IL-33 translocates to the

nucleus and is involved in regulating gene expression (5) and the

maintenance of barrier function (42). The alarmin IL-33 is

released in response to epithelial barrier damage or cell

necrosis (43, 65) and signals through the IL-33 receptor

complex, which consists of interleukin-1 receptor-like 1 (ST2)

and interleukin-1 receptor accessory protein (IL1RAcP) (38).

These receptors are widely expressed on various immune cells,
FIGURE 1

Alarmins are involved in the progression of gastric mucosal diseases. Up arrows represent alarmin upregulation, and down arrows represent
alarmin downregulation.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1008047
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1008047
including T helper type 2 (Th2) cells (44–46), activated T helper

type 1 (Th1) cells (47), cytotoxic T cells (48, 49), type 2 innate

lymphocytes (ILC2s) (50–54), eosinophils (55, 115), basophils

(56, 116), natural killer (NK) cells, NKT cells (57), mast cells

(MCs) (58, 117–119) and Treg cells (120). Therefore, these

factors are involved in coordinating immune defense and

repair mechanisms (121) and trigger adaptive immune

responses (122).

In the stomach, IL-33 is highly expressed and localized to the

nuclei of a subset of foveolar cells (also known as surface mucous

cells (SMCs) or pit cells) (38), but a small fraction of IL-33

positive cells colocalize with Ki-67. This finding suggests that

IL-33 expression changes as progenitors differentiate into pre-

SMCs; specifically, surface IL-33 expression is inhibited as SMCs

mature and migrate (65). Recent studies have shown that IL-33,

which is released extracellularly, is involved in gastric injury and

repair (36). In addition, recent studies have identified IL-33 as a

DAMP that signals innate immune cells in response to stress or

cell membrane disruption (123, 124) and that participates in the

development of gastric mucosal diseases (65).
Frontiers in Immunology 03
IL-33 release is involved in the
development of gastric mucosal diseases

IL-33 upregulation promotes the development
of chronic atrophic gastritis, gastric metaplasia
and gastric cancer

Chronic atrophic gastritis, spasmolytic polypeptide-

expressing metaplasia (SPEM) and GC are states along the

continuous developmental trajectory of gastric mucosal disease,

and IL-33 is a potential promoter of this process. IL33 is mainly

induced by chronic phosphorylation of signal transducer and

activator of transcription 3 (STAT3), and previous studies have

shown that overactivated STAT3 is involved in gastric

inflammation (59) and can lead to Th2-mediated gastric

metaplasia (65). Gastric metaplasia includes SPEM (60, 61) and

intestinal metaplasia. In SPEM, chief cells transdifferentiate into

cells with a mucinous metaplastic phenotype, usually in the

presence of parietal cell atrophy, epithelial barrier impairment,

and ulceration (62–64, 125–127), and express Muc6 and TFF2 at

the base of the gland (128). These findings suggest that SPEM
TABLE 1 Multiple gastric alarmins involved in the development of gastric mucosal diseases are mentioned in this review.

Gastric
alarmins

Type Localization Receptor Immune cells
activated/recruited by

alarmins

Physiological
function

Relationship with gastric
mucosal diseases

Nuclear
binding
proteins

IL-33 Gastric surface mucous
cell nucleus (29).

ST2
receptor
(29).

Th1 cells, Th2 cells,
cytotoxic T cells, Treg cells,
ILC2s, eosinophils, basophils,
NK cells, mast cells (37–55)

Regulate gene expression
and maintain gastric
barrier function (5) (35)
(56, 57).

IL-33 upregulation promotes the
development of chronic atrophic
gastritis, SPEM, GC (58) (59–64) (65,
66).
IL-33 upregulation promotes SPEM
formation after acute gastric injury
(64) (67–69).
IL-33 upregulation is associated with
injury and repair in H. pylori-
associated gastritis (6, 27, 70, 71)
(72).

HMGB1 The nucleus and
cytoplasm of gastric
epithelial cells (30).

TLR,
RAGE (73–
77).

Dendritic cells, T cell (78) Regulate gene
transcription and
maintain immune
homeostasis in the gastric
mucosa (79–81).

HMGB1 promotes gastric ulcer and
GC progression and exacerbates
mucosal damage (82–84) (85) (86–
88).

Antimicrobial
peptides

Defensins Gastric epithelial cell
membrane (89–91).

CCR2,
CCR6,
TLR4,
TLR9 (92–
94).

Immature DCs,
monocytes and T cell (95–
97).

Antibacterial and
Maintain gastric mucosal
immune homeostasis (90)
(98, 99).

DEFA5 upregulation inhibits the
development of GC (100).
Downregulation of defensins
promotes the progression of
Helicobacter pylori-associated
gastritis (30, 101–103).

Cathelicidin The cytoplasm of surface
epithelial cells, chief cells
and parietal cells of the
fundic gland (104).

FPRL1,
TLR7-9
(105–108).

Neutrophils, Monocytes,
Plasmacytoid, myeloid DCs
(109, 110).

Inhibit H. pylori and
regulate gastric mucosal
immune function (111,
112).

Catherin deficiency promotes the
development of H. pylori-associated
gastritis, gastric hyperplastic polyps
and GC (104, 113) (111, 114),.
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develops as a physiological healing response after injury through

the transdifferentiation of zymogen-secreting cells into mucinous

cell metaplasia. Furthermore, studies in a long-term

adrenalectomy SPEM model (129) have shown that SPEM

progression is delayed in only IL-33 KO mice and that

treatment of mice with recombinant IL-33 induces gastritis with

a potential SPEM phenotype (65). Thus, IL-33 may be an

important initiator of SPEM development. However, another

study reported (66) that IL-13 KO mice are resistant to SPEM

but still exhibit immune cell infiltration, possibly due to

limitations of the L635-induced acute SPEM model. However,

IL-33 is critical for promoting signaling through the downstream

factor IL-13 to drive the induction of metaplasia (66); notably, the

IL-33 and IL-13 cytokine signaling networks promote SPEM by

driving M2 macrophage polarization (130) and affect

mitochondrial metabolism (131). These findings were validated

in mouse models and in human metaplastic tissues; one study

confirmed that M2 macrophages promote SPEM expansion and

intestinal metaplasia in the presence of inflammation and parietal

cell shrinkage (130), and other studies validated that M2

macrophages promote SPEM progression (66, 130). In addition,

IL-33 can affect many immune cell types to regulate SPEM

development. ILC2s play an important role in this process, as

gastric immune cell infiltration and SPEM are largely blocked by

ILC2 depletion (65, 67), suggesting that these cells may be the

main responders to gastric IL-33 release. However, some

researchers have suggested that MCs may drive SPEM

development through IL-13 (68), and IL-33 is upstream of IL-

13 (66). Therefore, the IL-13-mediated activation of ILC2s or MCs

may be a complementary mechanism by which immune cells

induce SPEM development. In addition, it has been suggested that

eosinophils contribute to SPEM (25), although some researchers

believe these cells are dispensable (69). However, the depletion of

eosinophils significantly reduces local IL-33-producing M2

macrophages and SPEM (25). Thus, IL-33 is a key mediator of

chronic gastritis (CG) and intestinal metaplasia that promotes

metaplasia and M2 macrophage-dependent eosinophilic

infiltration, leading to SPEM progression (25). These data

suggest that IL-33 is a potential therapeutic target for

precancerous lesions of the gastrointestinal tract.

Furthermore, the metaplastic program can be perpetuated

by persistent injury and chronic inflammatory stimulation,

leading to the transformation to GC (36). Some researchers

have shown that IL-33 can promote continuous GC cell growth

by inducing the MC-dependent production and release of

macrophage-attracting factors (27) or by activating the

mitogen-activated protein kinase (MAPK) pathway, which

includes extracellular signal-regulated kinases (ERKs) such as

ERK1/2, JNK and p38 (70, 71), thereby promoting GC

proliferation, differentiation, migration and apoptosis (132).

Interestingly, a recent study showed that IL-33 can inhibit

cyclin C (CCNC, G0/G1 transition) and cyclin B1 (CCNB1,

G2/M transition) and that cysteine aspartase-3 (CASP3)
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activation decreases tumor cell proliferation and thus may be

involved in cell proliferation in an environment- and cell type-

dependent manner (72). Therefore, IL-33 may be an

immunotherapy target for preventing the progression of CG to

early stage GC.

Moreover, it is worth mentioning that IL-33 promotes the

development of SPEM upon acute gastric mucosal injury (67).

The occurrence of SPEM at the ulcer margins of regenerating

gastric glands (63, 133) represents a repair process after acute

mucosal injury (63, 134). Moreover, recent studies have shown

that IL-33 mRNA is rapidly upregulated in acute gastric injury

through TFF2 and phosphorylated ERK1/2, while the activation

of ERK1/2 and the expression of the innate immunity cytokines

IL1a, IL1b, and IL6 are increased (65), suggesting that IL-33 can

mediate acute inflammatory injury in the stomach. IL-33 is

released into the extracellular environment, and the IL-33

receptor engages a signaling pathway as a key regulator of

SPEM development, thereby promoting cytokine and immune

regulation in response to acute gastric epithelial injury (66).

Mice lacking IL-33 or subunits of the IL-33 receptor complex fail

to develop SPEM following acute parietal cell loss (66).

Therefore, the gastric alarmin IL-33 plays an important role in

gastric focal and diffuse injury, and alterations in IL-33 result in

the development of gastric mucosal diseases.

IL-33 is involved in the occurrence of
Helicobacter pylori (H. pylori)-related
mucosal diseases

Recent studies have suggested that IL-33 may be an alarmin in

H. pylori-positive patients (135). IL-33 is highly expressed in the

mucosa of patients withH. pylori-infected gastritis (136), and ST2

is recruited into membrane rafts in response to IL-33 release byH.

pylori-infected gastric epithelial cells (137), which promotes the

production of tumor necrosis factor-a (TNF-a) by MCs and

inhibits the proliferation of gastric epithelial cells, leading to the

progression of H. pylori-associated gastritis and bacterial

colonization (138). Moreover, one study found that IL-33 can

regulate the phenotype and activity of MCs. IL-33 stimulates the

expression of the Dectin-1, Dectin-2, RIG-I and nucleotide-

binding oligomerization domain-containing protein 1 (NOD1)

receptors in mature MCs to enhance and modulate the

inflammatory response, perhaps stimulating MCs to release

numerous proinflammatory and immunomodulatory factors

and induce migratory responses during H. pylori infection

(139). However, another study showed that IL-33 expression

increases during acute H. pylori infection and may promote

gastric mucosal regenerative activity through collagen I (140).

This finding suggests that IL-33 not only represents damage in H.

pylori-related gastric mucosal disease but also may be involved in

tissue repair processes. IL-33 is released into the extracellular

environment, where it has been shown to recruit immune cells to

enhance mucosal immune defense and repair mechanisms. IL-33

attracts circulating innate immune cells by activating resident IL-
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1R4+ (ST2)MCs and dendritic cells (DCs) and releasing cytokines

and chemoattractants (141, 142), essential processes for damage

repair. Proteases released by activated MCs convert IL-33 to a

more active form (143), thereby amplifying the initial effect of IL-

33 and attracting more immune cells to migrate to the site of

injury. Moreover, activated MCs and DCs produce IL-33 (144,

145), activating specific immune cells to release mediators that

stimulate fibroblasts to initiate wound healing (146) and close the

gap in the barrier (147–149). Furthermore, IL-33 production is

promoted by NOD1 signaling in chronic H. pylori-infected

gastritis, which prevents excessive inflammation (150).

Therefore, IL-33 has a dichotomous role in H. pylori infection-

related gastric mucosal disease, acting as both an accelerator

of disease progression and a key factor in reversing

disease exacerbation.

Furthermore, it is interesting that IL33 induces a Th2-biased

response. However, the downregulation of IL33 mRNA or IL33

knockout in H. pylori-positive human gastric samples and mice

with a chronic H. pylori infection may lead to Th1/Th17

immune dysregulation during subsequent pathology (65), and

both conditions have been shown to evoke precancerous changes

(78, 151, 152). These data suggest that chronic H. pylori-

mediated inhibition of gastric IL33 may be a key event in GC

progression, preventing the induction of Th2 immunity and

dysregulating the local immune response to Th1/Th17 cells,

thereby exacerbating carcinogenesis. Therefore, IL-33 is critical

in H. pylori-associated gastritis and GC.
The expression pattern and
functional role of HMGB1 in
the stomach

The HMG superfamily of nucleosome-binding proteins can

be divided into three subfamilies: HMGA, HMGB, and HMGN

(73). HMGB is the most common gastric HMG protein, and

HMGB1 has been widely studied in gastric diseases (39, 40).

Initially, HMGB1 was shown to be a DAMP. Therefore, as an

alarmin, HMGB1 can be actively secreted by various

inflammatory cells (74), passively released by necrotic and

apoptotic cells (75–77, 153, 154), and selectively released

through tumor cell autophagy (75, 79). Extracellular HMGB1

activates DCs to promote their functional maturation and

stimulates them to secrete HMGB1, thereby maintaining

antigen-specific T-cell proliferation, preventing T-cell

activation-dependent apoptosis and promoting Th1-skewed

differentiation (80). In addition, HMGB1 usually binds to

Toll-like receptors (TLRs) or receptors for advanced glycation
Frontiers in Immunology 05
end products (RAGEs) (81, 82, 155–157) to activate innate

immunity (83, 84), thereby participating in tissue repair.

In the stomach under physiological conditions, HMGB1 is

mainly localized in the nucleus and cytoplasm of gastric

epithelial cells (39) and is involved in transcriptional

regulation as a chromatin-binding factor associated with

specific DNA-binding proteins (158, 159). HMGB1 is

significantly upregulated in gastric mucosal diseases, and upon

upregulation, HMGB1 acts as a potent chemokine, triggering the

infiltration of inflammatory immune cells and increasing the

progression of gastric mucosal diseases (40, 160). Therefore,

HMGB1 is a key inflammatory signal in controlling gastric

mucosal diseases (160, 161).
HMGB1 promotes the development of
gastric mucosal diseases

HMGB1 enhances GC proliferation
and metastasis

Early studies showed that HMGB1 levels are highly correlated

with the depth of invasion, lymph node metastasis, tumor size and

poor prognosis of GC (85). Therefore, a great deal of research has

been conducted to understand the relationship between HMGB1

and GC. Initially, some researchers suggested that inhibiting

HMGB1 could upregulate Mcl-1 transcription, thereby

increasing autophagy and promoting GC cell apoptosis (28),

which paved the way for later studies on the role of HMGB1 in

GC. Since, researchers have proposed many mechanisms to

explain the involvement of HMGB1 in GC proliferation and

metastasis, such as the HMGB1-mediated PI3K/Akt/HIF-1a
signaling pathway (162) and activation of the MEK/ERK or NF-

kB signaling pathway to induce GC cell proliferation through

interactions with RAGE (163, 164). Moreover, HMGB1 can also

enhance the expression of cyclins, thereby inducing epithelial–

mesenchymal transition and matrix metalloproteinase (MMP)

expression and promoting the upregulation of RAGE, which

activates the Akt/mTOR/P70S6K and ERK/P90RSK/CREB

signaling pathways to regulate GC cell proliferation and

migration (165). In addition, another study showed that the

HMGB1/TLR4/MyD88 signaling pathway promotes GC

progression and that silencing HMGB1/TLR4/MyD88 signaling

in GC cells with HMGB1 siRNA significantly inhibits GC cell

proliferation, migration and invasion and induces apoptosis via

the NF-kB pathway (86). Moreover, recent studies have shown

that exosomes released by GC cells carry HMGB1, which can

induce N2 neutrophil polarization through the HMGB1/TLR4/

NF-kB signaling pathway, resulting in GC cell proliferation and
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migration (87). These data suggest that HMGB1 may represent a

new therapeutic target in GC.

HMGB1 is involved in the progression of GUs
HMGB1 can be activated and released into the extracellular

environment through inflammatory stimulation, oxidative stress

and other injuries (88). HMGB1 is released into the extracellular

environment and stimulates cytokine production through RAGE

or TLR4, which triggers inflammation and recruits leukocytes to

the site of tissue damage (166). Neutrophils are the most

common cell type recruited, and excess neutrophil infiltration

is a negative regulator of GU healing (167). Neutrophil

extravasation to the injury site increases ROS levels (168), and

high ROS levels can damage the gastric mucosal barrier by

oxidizing cellular proteins and lipids (169), thereby increasing

permeability and leading to inflammation. Moreover, ROS

production can stimulate the release of inflammatory

cytokines such as TNF-a and NF-kB from macrophages (169).

TNF-a blocks gastric microcirculation around the mucosa of the

ulcer, further delaying ulcer healing (170).

Moreover, HMGB1 binds to RAGE or TLR4, which can

inhibit the phosphorylation and proteasomal degradation of

IkBa, releasing NF-kBp65 for transport to the nucleus and

thereby activating the proinflammatory NF-kB pathway [6,7]

and triggering the transcription of proinflammatory cytokines

such as IL-1b and TNF-a (171) to exacerbate gastric ulceration

(172, 173). Moreover, reducing gastric oxidative stress can

interfere with NF-kBp65 binding to the promoter region of

target proinflammatory cytokines and thereby inhibit the redox-

sensitive NF-kB pathway (174). Therefore, inhibiting the

HMGB1/RAGE pathway may protect against GU injury.

Furthermore, GU induction experiments showed that

HMGB1 expression increases in response to activation of the

nucleotide-binding domain and leucine-rich repeat protein 3

(NLRP3) inflammasome and NF-kBp65 (175). Previous studies

have demonstrated that HMGB1 activates the NLRP3

inflammasome (176) and is involved in a variety of

inflammatory diseases (177–179), which may create a positive

feedback effect on GU. The NLRP3 inflammasome, an important

proinflammatory mediator that is involved in ulcer

pathogenesis, is activated by binding to PRRs, which increases

the expression of pro-IL-1b and pro-TNF-a (95), thereby

damaging the gastric mucosa. Therefore, high HMGB1

expression is one reason for delayed GU healing. When the

HMGB1/NLRP3/NF-kB pathway is inhibited, the expression of

IL-1b and TNF-a is downregulated, thereby promoting GU

healing. However, some researchers hold the opposite view

because extracellular HMGB1 and RAGE induce the migration

and proliferation of vascular-associated stem cells (angioblasts),
Frontiers in Immunology 06
which may promote tissue regeneration (96). Moreover, studies

have demonstrated that HMGB1 can reduce tissue damage in

inflammatory bowel disease and other complex inflammatory

diseases by regulating autophagy and apoptosis (97). Therefore,

HMGB1 may have dual roles in GUs, both damaging tissue and

promoting tissue repair and resisting damage.
Gastric alarmin AMPs: Defensins
and cathelicidin

AMPs are an original immune mechanism, and this class of

peptides and small proteins has microbicidal activity. Initially,

AMPs were extensively studied in insects and other

invertebrates. However, there is growing evidence that AMPs

also play a crucial role in human immunity. There are two types

of AMPs in human tissues and cells called defensins and

cathelicidins, which are mainly produced by epithelial cells

and neutrophils (92). Because of the immune effect of defensin

and cathelicidin in gastric diseases, they have received increasing

attention. AMPs have antimicrobial activity in the stomach,

acting as a mucosal defense mechanism at key locations in the

mucus layer (93).
Expression patterns and functional roles
of defensins in the stomach

Defensins, including a-, b-, and q-defensins, are cationic

antimicrobial host defense peptides consisting of a characteristic

b-sheet and six disulfide-linked cysteines (89, 94). In humans,

the defensin subfamily mainly includes a- and b-defensins (18).
Of the six human a-defensins, human neutrophil peptides 1-4

(HNP-1, HNP-2, HNP-3 and HNP-4) are mainly produced by

neutrophils (90), whereas the best-studied b-defensins (HBDs,

HBD1–HBD4) (91) are produced by various epithelial and

mucosal cells (98). Human defensins bind to receptors (99,

180, 181), including CC chemokine receptor 2 (CCR2) (182),

CCR6 (100), TLR4 (183) and TLR9, to induce chemokine-

mediated immune cell migration to sites of tissue damage and

thus participate in tissue damage and repair.

Defensins are localized at the cell membranes in the gastric

surface epithelium (32, 184), where they participate in host

antibacterial defense (29) and coordinate innate and adaptive

immunity to maintain gastric mucosal homeostasis (101, 102).

Defensin expression is increased in gastric mucosal diseases,

including CG, GU, benign gastric polyps (BGPs) and GC (30,

103, 185), and defensins are involved in the progression of

gastric mucosal diseases.
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Defensins promote the development of
gastric mucosal diseases

Defensins are involved in the
development of GC

Recent studies have shown that a-defensin 5 (DEFA5)

overexpression inhibits the development of GC (186).

Mechanistically, DEFA5 induces cell cycle arrest by binding to

BMI1, reducing its binding to the CDKN2a locus and

upregulating the expression of the cyclin-dependent kinase

inhibitors p16 and p19, therefore significantly increasing the

number of cells in the G1 phase and inhibiting tumor growth

(186). Therefore, DEFA5 may act as a tumor suppressor in GC.

Overall, defensins play key regulatory roles in the occurrence

of GC.
Defensin release caused by H. pylori-
associated gastric mucosal diseases

Recent studies have shown that defensins, including HNP1-

3 and HBD1-4 (30, 187–189), are highly expressed in H. pylori-

associated gastritis, and this increased expression may represent

a defensive response of the gastric mucosal barrier to limit

infection (190). However, as bacteria and immunity begin to

compete, H. pylori virulence factors activate the NLRC4

inflammasome and the NF-kB pathway, resulting in the

downregulation of defensin expression (191). Moreover, H.

pylori-infected cells block interferon b (IFNb), IL-6 and IL-22

signaling to suppress defensin production (192), which results in

increased colonization of the stomach by antibiotic-resistant

bacteria (193). These events promote the persistence of bacteria

in the gastric niche, leading to gastritis, ulcers and even cancer

(188). However, another study reported unexpected results;

specifically, the marked increase in defensin HNP1-3 in H.

pylori-infected patients (30) formed a positive feedback cycle

with neutrophils (194). This finding may relate to IL-8 release by

H. pylori-infected gastric epithelial cells, which stimulates

massive neutrophil infiltration (195) and the release of a-
defensins (105, 109, 110), with direct toxic effects on tissue

cells. Moreover, a-defensins stimulate epithelial cells to secrete

IL-8 (106), which further increases gastric inflammation and

exacerbates injury (107, 108). Thus, defensins have dual roles in

H. pylori-associated gastritis: they are involved in protecting the

gastric mucosa and can deleteriously promote the recruitment

and accumulation of inflammatory cells that mediate the

progression of gastritis.

In addition, there is some evidence that defensins are

involved in the progression of GC. H. pylori infection induces

HBD-2 and HBD-3 mRNA expression in human gastric

adenocarcinoma cell lines (104, 113), but HBD-2 protein was

not detected in specimens fromH. pylori-negative patients (196).

In conclusion, defensins may be novel targets for the treatment

of H. pylori-associated gastritis and GC.
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Expression pattern and functional
role of cathelicidin in the stomach

Cathelicidins are a conserved family of host defense peptides

that inhibit microorganisms (110) and modulate immune

responses. Typically, cathelicidins are expressed in epithelial

cells, lymphocytes and monocytes (110, 111). Cathelicidins use

human formyl peptide receptor-like-1 (FPRL1) to induce

neutrophil and monocyte migration (112, 114) or activate

plasmacytoid and myeloid DCs via TLR7, 8 or 9, all of which

have been shown to contribute to autoimmune disease and

wound healing (197–200). In the cathelicidin family, LL-37/

human cationic AMP 18 (hCAP18) is the only member

expressed in humans. LL-37 is expressed in the cytoplasm of

normal gastric fundic gland surface epithelial cells, chief cells

and parietal cells (nuclear or membrane); however, when the

gastric mucosa is damaged, hCAP18 activates the innate

immune system in the stomach to participate in disease

progression (31).
Cathelicidins promote the development
of gastric mucosal diseases

Inhibitory effect of cathelicidins on gastric
hyperplastic polyps and GC

As the only cathelicidin in humans, LL-37 is absent or

expressed at very low levels in gastric hyperplastic polyps and

gastric tumors (31, 201). Moreover, exogenous LL-37 can block

GC cells in the G0/G1 phase and inhibit cell proliferation, and

the deletion of endogenous LL-37 stimulates DNA synthesis in

GC cells, indicating its antiproliferative effect. LL-37 reduces the

production of cytokines such as TNF-a and IL-6 by activating

p44/42 MAPK and controlling IL-32 (202), which may inhibit

tumor growth. In addition, LL-37 may inhibit mitosis through a

proteasome-dependent mechanism that activates bone

morphogenetic protein (BMP) signaling (201). Therefore, LL-

37 may function as a tumor suppressor peptide in gastric

carcinogenesis. Moreover, studies have demonstrated that

inhibiting LL-33 N-formyl peptide receptors (FPR1, FPR2, and

FPR3) leads to the inhibition of tumor angiogenesis (31).

Therefore, LL-37 is a protective factor in gastric hyperplastic

polyps and GC, bringing new hope for anticancer therapeutics.

Cathelicidin deficiency promotes the
development of H. pylori-associated gastric
mucosal diseases

Cathelicidin is an important promoter of gastric mucosal

repair and mucosal barrier protection (203). Increased

production of LL-37/hCAP18 by gastric epithelial cells

contributes to host mucosal defense in H. pylori-associated

gastritis (204). Moreover, cathelicidin can inhibit the growth
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1008047
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1008047
of H. pylori, destroy the bacterial biofilm, and induce

morphological changes in the H. pylori membrane, thereby

resisting damage (203). In addition, studies have shown that

cathelicidin-knockout mice exhibit greater H. pylori

colonization; increased production of the proinflammatory

cytokines IL-6, IL-1b and ICAM1; and lower expression of the

anti-inflammatory cytokine IL-10, which causes tissue damage

(203). In addition, rat studies have shown that the host defense

peptide rCRAMP promotes GU healing by directly stimulating

the transforming growth factor alpha (TGF-a)-dependent
transactivation of epidermal growth factor receptor (EGFR)

and the downstream signaling mediators ERK1/2 in epithelial

cells of the stomach (205). Therefore, cathelicidin plays an

important regulatory role in H. pylori-associated gastritis and

GU and may be a new target for the treatment of H. pylori-

associated gastric mucosal diseases.
Alarmins function as diagnostic
markers or therapeutic factors in
other immune diseases

Recent studies have revealed that alarmins may be diagnostic

markers and therapeutic targets (206–209). For example, the

release of the active 18/21 kDa fragments of IL-33 may promote

the expansion of proinflammatory signaling, a potential

indicator of inflammation in response to damage (206). In

addition, studies have shown that the progression of intestinal

inflammation can be significantly inhibited by anti-HMGB1

neutralizing antibodies (210, 211), suggesting that host defense

peptides may have a role in the development of antibacterial,

anti-inflammatory and immunomodulatory therapeutics (212).

Alarmins have also been used in studies of other diseases as an

inflammatory factor assay (213), prognostic assessment (214),

and drug therapy in patients with asthma (215, 216) or atopic

dermatitis (217).
Conclusions

Previous studies have revealed the role of certain alarmins in

gastric mucosal repair and have provided convincing evidence

that these alarmins promote the proliferation and migration of

neighboring cells, recruit various immune cells for antibacterial

responses and tissue damage repair, and protect the mucosal

barrier. Based on these functions, alarmins are potential

therapeutic targets in inflammation and even cancer. However,

continued alarmin stimulation can also lead to tissue damage

and even cancer. This review provides a basic, systematic
Frontiers in Immunology 08
summary of gastric alarmins, which will prompt researchers to

focus on the functional diversity of alarmins in gastric mucosal

diseases and provide new perspectives for both treatment

and prevention.
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