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CD38-specific nanobodies
allow in vivo imaging of
multiple myeloma under
daratumumab therapy
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Rationale: Recent studies have demonstrated the feasibility of CD38-specific

antibody constructs for in vivo imaging ofmultiplemyeloma. However, detecting

multiple myeloma in daratumumab-pretreated patients remains difficult due to

overlapping binding epitopes of the CD38-specific imaging antibody constructs

and daratumumab. Therefore, the development of an alternative antibody

construct targeting an epitope of CD38 distinct from that of daratumumab is

needed. We report the generation of a fluorochrome-conjugated nanobody

recognizing such an epitope of CD38 to detect myeloma cells under

daratumumab therapy in vitro, ex vivo, and in vivo.

Methods: We conjugated the CD38-specific nanobody JK36 to the near-

infrared fluorescent dye Alexa Fluor 680. The capacity of JK36AF680 to bind

and detect CD38-expressing cells pretreated with daratumumabwas evaluated

on CD38-expressing tumor cell lines in vitro, on primary myeloma cells from

human bone marrow biopsies ex vivo, and in a mouse tumor model in vivo.

Results: Fluorochrome-labeled nanobody JK36AF680 showed specific binding

to CD38-expressing myeloma cells pretreated with daratumumab in vitro and

ex vivo and allowed for specific imaging of CD38-expressing xenografts in

daratumumab-pretreated mice in vivo.

Conclusions: Our study demonstrates that a nanobody recognizing a distinct,

non-overlapping epitope of CD38 allows the specific detection of myeloma

cells under daratumumab therapy in vitro, ex vivo, and in vivo.

KEYWORDS

CD38, daratumumab, multiple myeloma, nanobody, fluorescence imaging,
flow cytometry
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Introduction

CD38 is a major target for the therapy of multiple myeloma

(MM). Daratumumab is a CD38-specific monoclonal antibody

with high efficacy as monotherapy or combination therapy for

relapsed and newly diagnosed multiple myeloma (1–4).

Daratumumab therapy has been integrated into international

treatment guidelines and has become the standard of care (5).

Reliable and accurate assessment of treatment response is

needed even in the presence of therapeutic daratumumab

plasma levels. Unfortunately, this presents a diagnostic

challenge since daratumumab interferes both with flow

cytometry (6–9) as well as with free light chain assays (10) and

serum immunofixation electrophoresis (11).

Myeloma manifestations can alternatively be detected in vivo

by cross-sectional imaging techniques such as whole-body

computed tomography, magnetic resonance imaging (12), and
18F-FDG-positron emission tomography (PET) (13–15). These

imaging techniques detect medullary and extramedullary

myeloma lesions with high sensitivity (16). However, these

techniques do not allow monitoring of CD38 expression or

prediction of susceptibility to daratumumab treatment since

they are not antigen-specific to CD38.

Immuno-positron emission tomography using radiolabeled

CD38-specific antibodies overcomes this challenge, thereby

enabling the detection and visualization of CD38-expressing

myeloma cells in vivo (17–20). Unfortunately, detecting

multiple myeloma in daratumumab-pretreated patients

remains difficult due to overlapping binding epitopes of

currently available CD38-specific imaging antibody constructs

and daratumumab. Therefore, the development of alternative
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antibody constructs targeting a different epitope of CD38

is needed.

Nanobodies are single variable immunoglobulin domains

derived from camelid heavy-chain antibodies (21). CD38-

specific nanobodies can be used either for the treatment of

multiple myeloma by generation of nanobody-based heavy-

chain antibodies (hcAbs) (22–26), nanobody-based CARs (27),

and nanobody-based BiKEs (28), or for in vivo imaging of

multiple myeloma (29). Their small molecular size

(Figures 1A, B), low immunogenicity, and ease of formatting

make them ideally suited for in vivo imaging purposes (21,

30–33).

The aim of our study was to generate a fluorochrome-

conjugated nanobody recognizing an epitope of CD38 distinct

from that of daratumumab to detect tumor cells under

daratumumab therapy in vitro, ex vivo, and in vivo.
Materials and methods

Cell lines

Three human multiple myeloma cell lines (LP-1, U266,

RPMI-8226), two human Burkitt lymphoma cell lines (Daudi

and CA-46), and a murine B cell lymphoma cell line (YAC-1)

were obtained from the German Collection of Microorganisms

and Cell Culture (DSMZ, Braunschweig, Germany). Human cell

lines were chosen due to their uniform expression of CD38.

Stable expression of Photinus pyralis luciferase (Promega,

Madison, WI, USA) in Daudi luc, CA-46 luc, YAC-1 luc, and

LP-1 luc cell lines was achieved by lentiviral transduction as
A B C

FIGURE 1

Structure, binding sites, and purity of JK36AF680 nanobody, JK36 heavy chain antibody, and daratumumab. (A) Comparison of different antibody
constructs targeting CD38. The framework of single-domain antibody (nanobody) JK36 is indicated in blue with the CDR-regions indicated in
red. Heavy-chain antibody JK36-hcAb consists of two heavy chains each containing nanobody JK36 fused to the hinge (black), CH2, and CH3
domains (yellow) of human IgG1. The conventional human IgG1 mAb daratumumab is also indicated in black and yellow. The hydrophobic
interface between the two variable domains of daratumumab is replaced by a corresponding hydrophilic region in JK36, accounting for the
excellent solubility of this VHH domain in absence of a light chain. (B) Daratumumab (epitope E1) and JK36AF680 (epitope E3) recognize two
distinct, non-overlapping epitopes (E1 and E3) of CD38. Epitope 2 (E2) is recognized by nanobody JK2 (not shown) and was used in our study
for control staining of CD38. (C) 1 µg of purified JK36AF680, JK36-hcAb, and daratumumab were size-fractionated by SDS-PAGE and visualized
by Coomassie staining. Superimposed fluorescent signals (yellow) were recorded using a near-infrared fluorescence in vivo imaging system.
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described previously (25, 34). YAC-1 luc cells were stably

transfected with human CD38 using the expression vector

pEF-DEST51 (29), yielding YAC-1 CD38+ cells. Untransfected

YAC-1 cells served as negative controls.
Production and labeling of
antibody constructs

Human CD38-specific nanobody JK36 was generated from

an immunized llama as described previously (29, 35). His/myc-

tagged nanobody JK36 was produced in HEK293-6E cells and

purified from supernatants using immobilized metal affinity

chromatography (29). Nanobody JK36 was labeled with the

fluorescent dye Alexa Fluor 680 (JK36AF680) according to the

manufacturer ’s instructions using succinimidyl esters

(Invitrogen, Karlsbad, CA, USA).

Heavy chain antibodies (hcAbs) JK36-hcAb and isotype

control L-15-hcAb were generated by subcloning the coding

region of nanobody JK36 and isotype control nanobody L-15

upstream of the coding region for the hinge, CH2, and CH3

domains of human IgG1 in the pCSE2.5 vector (kindly provided

by Thomas Schirrmann, University of Braunschweig,

Braunschweig, Germany) (24). HcAbs were produced in

HEK293-6E cells and purified from supernatants by affinity

chromatography using protein A sepharose (36, 37).

Daratumumab (Darzalex) was purchased from Janssen-Cilag,

Neuss, Germany.

The purity of antibody constructs was assessed by SDS-

PAGE and InstantBlue™ Coomassie staining. Alexa Fluor 680-

labeling of nanobody JK36 was controlled by imaging

fluorescence levels using the IVIS-200 in vivo imaging device

(PerkinElmer, Waltham, MA, USA).

Monoclonal antibody HIT2PerCP/Cy5.5 was purchased from

Becton Dickinson, Franklin Lakes, NJ, USA (25).
Flow cytometry

For CD38-expression analyses, CD38-positive cells and

CD38-negative control cells were incubated with JK36AF680

(0,2 μl in 100 μl PBS/BSA) at 4 °C for 30 min. Cells were

washed twice and analyzed using a FACS Canto II flow

cytometer and FlowJo software (Becton Dickinson, Franklin

Lakes, NJ, USA).

CD38 pretreatment (i.e., cross-blockade) analyses were

performed by pre-incubating cells with an excess (200 nM) of

daratumumab or JK36-hcAb at 4 °C for 30 min. Cells were then

incubated with nanobody JK36AF680 (1:500 in PBS/BSA) to

detect unblocked epitopes using flow cytometry.
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Biolayer interferometry

The extracellular domain of human CD38 (aa 46-300) was

produced, purified, and biotinylated as described previously (22,

28). Biolayer interferometry analysis was performed at 20°C in

kinetic buffer (PBS containing 1% bovine serum albumin, and

0.005% (v/v) polysorbate 80 (Tween 80, Sigma-Aldrich, St.

Louis, MO, USA)). For individual antibodies, concentrations

of 500 nM per antibody were used while antibody combinations

were analyzed at a concentration of 250 nM per antibody to

allow for complete saturation of CD38. Biolayer interferometry

measurements were carried out using a BLItz system (FortéBio,

Fremont, CA, USA).

Streptavidin-coated biosensors were placed in wells

containing only kinetic buffer for 30 seconds to establish a

baseline signal. Sensors were then transferred to wells

containing the biotinylated extracellular domain of human

CD38 for 90 seconds to allow for association of CD38 to the

sensor. This was followed by 30 seconds of dissociation in kinetic

buffer. CD38-coated sensors were subsequently dipped into wells

containing the blocking antibody daratumumab for 90 seconds

to saturate epitope E1. Sensors were then moved to wells

containing both the blocking antibody daratumumab and a

second antibody (daratumumab, JK36-hcAb, or L-15-hcAb)

for 90 seconds. This permitted assessment of binding of the

second antibody to CD38 in the presence of the blocking

antibody as opposed to solely evaluating binding to CD38.

This protocol considers any possible inhibitory effects that

excess unbound daratumumab might have on secondary

antibody binding. A final washing step in kinetic buffer was

performed for 90 seconds to monitor the dissociation of CD38-

bound antibodies. The resulting dataset was plotted using

GraphPad Prism 9.3.1 (GraphPad Software, CA, USA).
Fluorescence microscopy

YAC-1 CD38+ cells were incubated with an excess of

daratumumab (3 μg/100 μl), JK36-hcAb (3 μg/100 μl), or no

blocking agent at 4 °C for 20 min. Cells were washed once with

PBS/0,02% BSA. Cells were then resuspended in 100 μl PBS/BSA

containing JK36AF680 at a dilution of 1:500 and diamidino-

phenylindole (DAPI) at a dilution of 1:5000 (v/v) and

incubated at 4 °C for 20 min to stain CD38 and nuclei,

respectively. Stained cells were washed twice before

resuspension in 100 μl of PBS/BSA. Twenty μl of each sample

was subsequently placed on a glass microscopy slide without

addition of a fixative agent. Cell samples were then captured

using a Zeiss Axio Observer microscope with a 40x EC Plan-
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Apochromat Oil lens. Microscopic images were analyzed using

ZEN Pro 3.4 software (Zeiss, Oberkochen, Germany) and

Affinity Designer 1.10.5 (Serif, Nottingham, UK).
Flow cytometric analysis of primary
human bone marrow samples

Aspiration of fresh bone marrow was approved by

the Institutional Review Board (PV5505). Fresh bone marrow

aspirates were collected from nine newly diagnosed, untreated

multiple myeloma patients. Ficoll-Paque density gradient

centrifugation (Sigma-Aldrich, St. Louis, MO, USA) was carried

out to isolate bone marrow mononuclear cells (BM-MNCs).

Remaining erythrocytes were depleted by resuspending

the resulting cell pellet in red cell lysis buffer (NH4Cl +

KHCO3 + EDTA).

BM-MNCs were stained using PacO and a panel of

fluorochrome-labeled antibodies targeting CD19, CD38, CD39,

CD45, CD55, CD56, CD59, CD138, CD229, CD319 and

analyzed by flow cytometry to determine the degree of bone

marrow infiltration with malignant plasma cells (27). Multiple

myeloma cells were identified by high expression of CD38.

Blocking assays were carried out by incubating BM-MNCs

without (positive control) or with 100 nM of daratumumab or

JK36-hcAb in PBS/BSA at 4 °C for 30 min. After one washing

step, detection nanobody JK36AF680 was added for another

30 min. Mean fluorescence intensities (MFI) of bound

nanobody JK36AF680 were assessed by flow cytometry. Relative

fluorescence intensities (%) of multiple myeloma cells labeled

with nanobody JK36AF680 were calculated as follows:

relative   fluorescence   intensitysample  ½%�

=
MFI   (AF680)sample

MFI   (AF680)positive   control
x100%

Significant differences in relative fluorescence intensities

were calculated by using one-way ANOVA (GraphPad

Prism 9.3.1).
In vivo and ex vivo imaging

Animal experiments were approved by the local animal

welfare commission (N069/2018). Six-week-old female NMRI

Foxn1nu mice were acquired from Charles River (Charles River

Laboratories, Sulzfeld, Germany) and kept in their cages for two

weeks. Eight-week-old mice were kept on an alfalfa-free diet for

one week prior to in vivo imaging experiments to reduce

autofluorescence of the intestine (38).

Tumors were generated by subcutaneously injecting mice

with 1x107 CD38-negative YAC-1 cells on the left shoulder and

5x106 CD38-positive YAC-1 cells on the right shoulder in 0.2 μl
Frontiers in Immunology 04
of 50% RPMI and 50% Matrigel (Becton Dickinson, Franklin

Lakes, NJ, USA). This established murine lymphoma model (29)

was chosen because the reliable subcutaneous growth of YAC-1

cells allows for intraindividual comparison of antigen-positive

and antigen-negative tumors using near-infrared fluorescence

imaging. This would not have been feasible using a disseminated

human myeloma model. Numbers of injected cells were adjusted

to account for the slightly slower growth rate of CD38-negative

vs. CD38-positive YAC-1 cells. Tumor locations at shoulder

level were chosen to maximize the distance to the kidneys and

liver, which had shown high fluorescence signals in previous

studies (29, 33). After six days, mice (total, n=30) were

intravenously injected with either 100 μl of isotonic saline

containing 500 μg of daratumumab (n=10 mice) (Janssen

Biotech, Horsham, PA, USA), 250 μg of JK36-hcAb (n=10

mice), or no blocking agent (n=10 mice). After 24 hours, mice

were intravenously injected with 50 μg of JK36AF680.

In vivo near-infrared fluorescence imaging was performed

under isoflurane anesthesia before and 2, 4, 6, 12, and 24 hours

after injection of JK36AF680 using a small animal imaging system

(IVIS-200, PerkinElmer, Waltham, MA, USA) (29). After

qualitative imaging in vivo, quantitative off-line analyses were

performed by placing ROIs around CD38-positive tumors,

CD38-negative tumors (negative control), and the hind limb

(background signal). Total radiant efficiency was determined

with Living Image 4.2 software (PerkinElmer) and the

background value was subtracted. Tumor-to-background ratios

were calculated by dividing the tumor uptake value by the

background value. Radiant efficiencies and tumor-to-

background ratios were compared between treatment groups

using a mixed-effect analysis with Tukey’s multiple comparison

test (GraphPad Prism 9.3.1).

For ex vivo validation of in vivo measurements, three mice

from each treatment group were sacrificed six hours after

injection. Tumors and organs (muscle, spleen, lungs, liver,

kidneys, stomach, intestine) were dissected and imaged ex vivo

with the IVIS-200 system.
Ex vivo flow cytometric analyses of cells
from explanted subcutaneous tumors

Single cell suspensions from explanted and dissected CD38-

positive and CD38-negative tumors were generated by passage

through a cell strainer with a pore size of 70 μm (Corning Life

Sciences, Corning, NY, USA).

Cell surface levels of CD38 on resuspended tumor cells were

determined using hcAb JK2 rabbit IgG, which binds a third

epitope of CD38 distinct from that of both daratumumab and

JK36-hcAb. Bound JK2-hcAb was detected with a rabbit IgG-

specific, R-phycoerythrin-conjugated secondary antibody (Cat.-

No. 711-116-152, Jackson ImmunoResearch, Ely, UK) (29).
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Quantification of in vivo injected and tumor-bound blocking

antibodies daratumumab and JK36-hcAb was performed by

labeling resuspended tumor cells with an R-phycoerythrin-

conjugated human IgG-specific secondary antibody (Cat.-No.

709-116-149, Jackson ImmunoResearch). Mean fluorescence

intensities were obtained by flow cytometry to determine and

compare binding (i.e. blocking efficiencies) of daratumumab and

JK36-hcAb.

Quantification of in vivo injected and tumor-bound imaging

nanobody JK36AF680 was performed by flow cytometric analysis

of resuspended tumor cells. Mean fluorescence intensities of

CD38-labeling efficiencies with JK36AF680 were compared

between groups of mice pre-treated with either daratumumab,

JK36-hcAb, or saline.

To determine the maximum achievable labeling efficiency of

CD38 with JK36AF680, cells were labeled ex vivo with saturating

doses (100 nM) of JK36AF680.

CD38-positive and CD38-negative YAC-1 luc cells from cell

culture were incubated as described above and served

as controls.
Results

Purity of nanobody JK36, JK36-hcAb, and daratumumab

was confirmed by SDS-PAGE analyses. Successful labeling of

purified nanobody JK36 with Alexa Fluor 680 (JK36AF680) was

verified by imaging of the SDS-PAGE gel with the in vivo

imaging system (Figure 1C).
Simultaneous binding of nanobody JK36
and daratumumab to purified CD38

Biolayer interferometry was used to determine whether

nanobody JK36 and daratumumab bind simultaneously to

CD38. After binding of biotinylated CD38 to a streptavidin-

coated sensor, blocking antibody daratumumab and secondary

antibodies (JK36-hcAb, daratumumab, or isotype control L-15-

hcAb) were added sequentially (Figure 2).

The results show an increase in signal intensities upon the

addition of the blocking antibody daratumumab. After adding

the secondary antibody JK36-hcAb, a strong increase in signal

intensity was observed, indicating simultaneous binding of

daratumumab and JK36-hcAb. In contrast , adding

daratumumab as a secondary antibody did not lead to further

signal increase, indicating saturated binding of daratumumab as

the primary antibody to CD38. Isotype control L-15-hcAb also

did not lead to a signal increase, indicating specific binding of

JK36-hcAb to CD38.

These results demonstrate that nanobody JK36 and

daratumumab bind independently and simultaneously to CD38.
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Specific binding of nanobody JK36AF680

to daratumumab-pretreated myeloma
cells in vitro and ex vivo

In vitro binding of nanobody JK36AF680 to daratumumab-

pretreated cells was assessed using five human (LP-1, U266,

RPMI-8226, CA46, Daudi) lymphoma cell lines, and one murine

lymphoma cell line transfected with human CD38 (YAC-1

CD38+) (Figure 3A). CD38-specific monoclonal antibody

HIT2PerCP/Cy5.5 was used as control. Cells were incubated

without or with saturating doses of daratumumab and then

stained with nanobody JK36AF680 or monoclonal antibody

HIT2PerCP/Cy5.5 followed by flow cytometry.

The results show that both nanobody JK36AF680 and

monoclonal antibody HIT2PerCP/Cy5.5 bound to all six CD38-

expressing cell lines. Pretreatment with daratumumab almost

completely blocked binding of HIT2PerCP/Cy5.5, indicating that

daratumumab and HIT2 bind to overlapping epitopes on CD38.

Pretreatment with daratumumab did not block binding of

JK36AF680, confirming independent binding of nanobody JK36

and daratumumab. Pretreatment of cells with heavy chain

antibody JK36-hcAb completely blocked the binding of nanobody

JK36AF680, confirming specific binding to human CD38.

Ex vivo binding of nanobody JK36AF680 to daratumumab-

pretreated primary myeloma cells was assessed using cell
FIGURE 2

Biolayer interferometry sensograms demonstrating simultaneous
binding of nanobody-based JK36-hcAb and daratumumab to
purified CD38. Streptavidin-coated biosensors were used to
capture the biotinylated extracellular domain of CD38. Sensors
were then dipped into wells containing daratumumab in excess
before being transferred to wells containing both daratumumab
and secondary antibodies at the indicated time points. An
increase in signal indicates binding to the sensor. Dissociation
was allowed by washing in buffer and is indicated in grey.
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suspensions from human bone marrow biopsies from patients

with multiple myeloma (Figure 3B). The results confirmed

specific labeling of daratumumab-pretreated primary myeloma

cells with nanobody JK36AF680. Again, pretreatment of cells with

heavy chain antibody JK36-hcAb completely blocked the

binding of nanobody JK36AF680.

Fluorescence microscopy of JK36AF680-labeled YAC-1 CD38

+ cells revealed prominent staining of the cell surface

(Figure 3C). Pretreatment with daratumumab did not affect

cell surface labeling with JK36AF680, while pretreatment with

JK36-hcAb completely blocked binding of JK36AF680.

These results demonstrate that nanobody JK36AF680 can be

used for the specific detection of daratumumab-pretreated

CD38-expressing cells in vitro and ex vivo and therefore

warrants further evaluation for imaging of CD38-expressing

tumors in vivo.
Frontiers in Immunology 06
Nanobody JK36AF680 allows specific
imaging of daratumumab-pretreated
CD38-positive tumors in vivo

In vivo imaging experiments using nanobody JK36AF680 were

performed in mice carrying tumors der ived from

subcutaneously injected YAC-1 cells. All mice were bearing

two subcutaneous tumors for comparative analyses of in vivo

imaging signals: one CD38-positive tumor on the right shoulder

and one CD38-negative control tumor on the left shoulder. In

vivo near-infrared fluorescence imaging with nanobody

JK36AF680 was performed in mice pretreated for 24 hours with

either isotonic saline (positive control), daratumumab, or JK36-

hcAb (negative or specificity control) (Figure 4).

The results demonstrate specific binding of nanobody

JK36AF680 to CD38-positive tumors in both saline-pretreated
A B

C

FIGURE 3

Specific binding of nanobody JK36AF680 to daratumumab-pretreated myeloma cells in vitro and ex vivo. (A) FACS analyses of CD38+ CA-46,
Daudi, LP-1, U266, RPMI-8226, and YAC-1 CD38+ cells. Cells were saturated with daratumumab before detection of CD38 with the CD38-
specific diagnostic antibody HIT2PerCP/Cy5.5 (left) or the CD38-specific nanobody JK36AF680 (right). Cells saturated with JK36-hcAb served as
negative controls since previous experiments had shown complete blocking of both JK36AF680 and HIT2PerCP/Cy5.5 binding after incubation with
JK36-hcAb. Untreated cells were used as positive controls and indicate CD38 expression of the cell line. (B) Bone marrow aspirates of human
multiple myeloma patients were pre-incubated without (open rectangles, positive control) or with saturating doses of daratumumab (black
circles) or JK36-hcAb (open triangles, negative control). CD38 was then labeled using JK36AF680 and cells were analyzed by flow cytometry for
comparison of epitope blocking by daratumumab and JK36-hcAb. Signal intensities were compared using one-way ANOVA with Tukey’s
multiple comparisons test (****= p<0.0001, ***=p<0.001). Depicted are means ± SD. Results are representative of nine independent
experiments. (C) Fluorescence microscopy analyses of YAC-1 CD38+ cells. Cells were incubated with PBS/BSA (left panel), daratumumab
(middle panel), or JK36-hcAb (right panel) before the addition of JK36AF680. DAPI was used to stain nuclei. Results are representative of three
independent experiments.
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and daratumumab-pretreated mice as early as two hours after

injection. Pretreatment of mice with JK36-hcAb resulted in a

strong reduction in imaging signals from CD38-positive tumors,

confirming specific binding of JK36AF680 to CD38 in vivo.

At early time points after injection of JK36AF680, strong signals

were also observed in the kidneys in all animals, reflecting passage

of nanobody JK36 through the renal filtration barrier.

Additionally, CD38-negative tumors showed signal intensities

slightly above background signals at early time points, likely

reflecting perfusion of tumors with blood containing unbound

JK36AF680. The unspecific signal from CD38-negative tumors and

kidneys decreased over time, while signal intensities remained

high in the CD38-positive tumors for six hours, confirming

specific binding of JK36AF680 only to tumors expressing CD38.

ROI analyses confirmed a rapidly increasing signal in CD38-

positive tumors and little if any signal in CD38-negative tumors and

background tissue (Figure 5A). At all time points, there was no
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statistically significant difference in signal intensities of CD38-

positive tumors between saline-pretreated and daratumumab-

pretreated mice. Pretreatment with JK36-hcAb resulted in a

significant decrease in CD38-positive tumor signal intensities.

Calculation of tumor-to-background ratios (T/B-ratio)

confirmed a rapidly increasing T/B-ratio of CD38-positive

tumors after injection of JK36AF680 in both saline-pretreated

and daratumumab-pretreated mice (Figure 5B). The T/B-ratio of

CD38-positive tumors reached a maximum of 3.12 ± 1.43 after

six hours in saline pretreated animals, compared to 2.54 ± 1.04 in

daratumumab-pretreated animals (p=0.5049). Also, there was

no statistically significant difference in T/B-ratios of CD38-

positive tumors between saline-pretreated and daratumumab-

pretreated mice at all other time points. CD38-negative tumors

revealed significantly lower T/B-ratios when compared to CD38-

positive tumors in all three treatment groups, again confirming

specific binding of nanobody JK36AF680 to human CD38.
FIGURE 4

Specific in vivo imaging of subcutaneous CD38+ tumors using nanobody JK36AF680 in saline-, daratumumab-, and JK36-hcAb-pretreated mice.
All mice were analyzed six days after subcutaneous injection of CD38-positive YAC-1 cells on the right shoulder (+) and CD38-negative YAC-1
cells on the left shoulder (-). Prior to imaging, mice were pretreated for 24 hours with either isotonic saline (n=10, positive control, top row),
daratumumab (n=10, middle row), or JK36-hcAb (n=10, specificity control, bottom row). Near-infrared fluorescence in vivo imaging was
performed before (0h) and at the indicated time points after the injection of 50 µg of nanobody JK36AF680. Signal intensities of all injected mice
and imaging time points are all equally leveled to allow direct and fair visual comparison.
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Ex vivo analyses of cells from
explanted tumors
Ex vivo near-infrared fluorescence imaging of dissected

individual organs six hours post-injection confirmed specific

uptake of JK36AF680 in CD38-positive tumors in both saline-

pretreated and daratumumab-pretreated mice (Figure 6A).

JK36-hcAb-pretreated animals showed no specific uptake of

JK36AF680. Signals in most other tissues, including CD38-

negative tumors, returned to background levels, with low

fluorescent signals still detectable in the kidneys. While the

liver itself showed only background fluorescence, fluorescent

signals in the gallbladder likely reflect biliary excretion

of fluorochromes.
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Ex vivo flow cytometric analyses of CD38-positive tumors

was performed six hours post-injection to quantify the relative

amount of in vivo injected and still tumor-bound JK36AF680

(Figure 6B). Flow cytometry of tumor cells suspensions showed

specific labeling of CD38-positive cells with JK36AF680 in both

saline-pretreated and daratumumab-pretreated mice and no

specific labeling of CD38-negative tumor cells. The ex vivo

observed flow cytometric fluorescence signal obtained by in

vivo injection of JK36AF680 was low in saline-pretreated and

daratumumab-pretreated groups, while there was no binding of

JK36AF680 to JK36-hcAb pretreated cells.

Additional ex vivo staining using JK36AF680 resulted in

strong labeling of CD38-positive cells obtained from saline-

pretreated mice. In contrast, additional ex vivo staining with

JK36AF680 of daratumumab-pretreated and JK36-hcAb-
A

B

FIGURE 5

Average radiant efficiencies and tumor-to-background ratios of CD38-positive and CD38-negative tumors in vivo. Mice were pretreated for 24
hours with either isotonic saline (n=10, positive control, open rectangles), daratumumab (n=10, black circles), or JK36-hcAb (n=10, specificity
control, open triangles). Near-infrared fluorescence in vivo imaging was performed before and at the indicated time points after injection of
nanobody JK36AF680. (A) Average radiant efficiencies were determined from circular regions of interest (ROIs) drawn around CD38-positive and
CD38-negative tumors. Signal intensities were corrected for background signal. (B) Tumor-to-background ratios were obtained by dividing
tumor signals by background signals obtained from ROIs drawn around normal tissue (hind leg). At all time points, there was no statistically
significant difference in signal intensities and T/B-ratios of CD38-positive tumors between saline-pretreated and daratumumab-pretreated mice,
as indicated by overlapping 95%-confidence intervals.
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pretreated mice resulted in weaker staining, possibly reflecting

downregulation of CD38 due to therapeutic effects of

daratumumab and JK36-hcAb in vivo during the 24 hours of

pretreatment and six hours imaging period.
Discussion

Our study demonstrates that a nanobody recognizing a

distinct, non-overlapping epitope of CD38 allows the detection

of myeloma cells pretreated with daratumumab. Nanobody

JK36AF680 specifically detected CD38-expressing tumor cells in

vitro, ex vivo, and in vivo irrespective of daratumumab

treatment status.

JK36AF680 therefore represents a promising tool to overcome

current clinical challenges in the assessment of treatment

response in daratumumab-pretreated multiple myeloma

patients (6, 10, 11). The possibility to detect and monitor

CD38-expressing myeloma cells in daratumumab-pretreated

patients is of increasing importance considering the

increasingly broader indications for daratumumab treatment

(39, 40).

Previous studies demonstrated the feasibility of fluorophore-

or radionuclide-labeled daratumumab for in vivo imaging

purposes of CD38-expressing myeloma cells (19, 20, 41).

However, targeting the same epitope as daratumumab is only
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effective in daratumumab-naive patients. It would instead be

expedient to use other labeled antibody constructs that target an

epitope of CD38 distinct from that of daratumumab. This would

allow not only to image untreated patients but also

daratumumab-pretreated patients.

Instead of using a conventional monoclonal antibody, we

used nanobody JK36AF680, recognizing a distinct, non-

overlapping epitope of CD38 for demonstrating the feasibility

of specific imaging of daratumumab-pretreated CD38-

expressing tumors. Key advantages of using nanobodies over

conventional antibodies for in vivo diagnostic purposes include

greater ease of production (42) as well as more favorable imaging

kinetics: nanobodies allow for excellent tumor-to-background

ratios as early as 6 hours post-injection and for same-day in vivo

imaging (33, 41), owing to the rapid elimination of excess

unbound nanobodies by renal filtration. Furthermore, the risk

of allergic infusion reactions is reduced when using nanobodies

as opposed to conventional antibodies, owing to their low

immunogenicity (43). This possibly explains the lack of

infusion reactions in patients receiving caplacizumab, the first

FDA-approved nanobody (44).

Additionally, a recent study revealed that our nanobody

JK36 detects myeloma cells from daratumumab-treated patients

with greater sensitivity than a commercially available CD38-

specific multi-epitope reagent (6). Here we show that JK36 also

detects CD38-expressing tumor cells with greater sensitivity
A B

FIGURE 6

Ex vivo analyses of cells from CD38+ and CD38- tumors explanted from mice 6 hours and 24 hours post-injection of JK36AF680. (A) Fluorescence
levels of individual tumors and organs explanted from mice pretreated with isotonic saline, daratumumab, or JK36-hcAb 6 hours after injection of
JK36AF680. (B) Histograms depicting median fluorescence intensities of the AF680 channel in mice after pretreatment with isotonic saline,
daratumumab, or JK36-hcAb, obtained from tumors explanted 24 hours after injection of JK36AF680. Dashed histograms represent native AF680
signals of the CD38- control tumor, grey histograms represent native AF680 signals of the CD38+ tumor, open histograms represent the maximum
AF680 signal obtained after ex vivo staining of CD38+ tumor cells with JK36AF680. Each panel is a representative example of n=10 per treatment
group. Cell debris was initially excluded by setting an appropriate FSC-A threshold before gating on single cells. YAC-1 cells were then identified by
co-expression of CD38 (using nanobody JK2, identifying the remaining free epitope of CD38) and GFP.
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than monoclonal antibody HIT2PerCP/Cy5.5 which is currently

being used in flow cytometric assays (45–47) to assess treatment

response in patients receiving daratumumab.

Isatuximab, the second FDA-approved CD38-specific

monoclonal antibody, binds to a different epitope of CD38

than daratumumab (48). Further studies are warranted to

evaluate the feasibility of nanobody-based imaging of multiple

myeloma under isatuximab therapy, possibly using a different

nanobody than JK36.

An inherent limitation of our study is the use of near-

infrared fluorescent dyes for in vivo imaging. The signal

intensity of fluorochromes such as AlexaFluor680 decreases

with increasing tissue depth, precluding cross-sectional

imaging of human patients (49). This limitation, however,

could be overcome by coupling nanobody JK36 to a

radionuclide such as 68Ga 64Cu or 99Tc, which would allow

imaging by PET or SPECT (17, 19, 50, 51).

Since CD38 is not only expressed on myeloma cells but also

on other cells (52), some level of on-target off-tissue signal is

expected when using CD38-specific nanobodies for in vivo

imaging purposes. This, however, is not a limitation of

nanobody JK36 but rather a ubiquitous phenomenon when

employing antibody-based imaging strategies.

In summary, we have demonstrated that a nanobody

recognizing an epitope on CD38 distinct from that of

daratumumab allows the specific detection of myeloma cells

pretreated with daratumumab in vitro, ex vivo, and in vivo.

Future studies using radiolabeled nanobody JK36 are warranted

to investigate the potential for clinical imaging of daratumumab-

pretreated human multiple myeloma patients.
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