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fibrosis and its correlation with
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Background: The role of inflammation in the formation of idiopathic

pulmonary fibrosis (IPF) has gained a lot of attention recently. However, the

involvement of genes related to inflammation and immune exchange

environment status in the prognosis of IPF remains to be further clarified.

The objective of this research is to establish a new model for the prediction of

the overall survival (OS) rate of inflammation-related IPF.

Methods: Gene Expression Omnibus (GEO) was employed to obtain the three

expression microarrays of IPF, including two from alveolar lavage fluid cells and

one from peripheral blood mononuclear cells. To construct the risk assessment

model of inflammation-linked genes, least absolute shrinkage and selection

operator (lasso), univariate cox andmultivariate stepwise regression, and random

forest method were used. The proportion of immune cell infiltration was

evaluated by single sample Gene Set Enrichment Analysis (ssGSEA) algorithm.

Results: The value of genes linked with inflammation in the prognosis of IPF

was analyzed, and a four-genes risk model was constructed, including tpbg,

Myc, ffar2, and CCL2. It was highlighted by Kaplan Meier (K-M) survival analysis

that patients with high-risk scores had worse overall survival time in all training

and validation sets, and univariate and multivariate analysis highlighted that it

has the potential to act as an independent risk indicator for poor prognosis.

ROC analysis showed that the prediction efficiency of 1-, 3-, and 5-year OS

time in the training set reached 0.784, 0.835, and 0.921, respectively. Immune

infiltration analysis showed that Myeloid-Derived Suppressor Cells (MDSC),

macrophages, regulatory T cells, cd4+ t cells, neutrophils, and dendritic cells

were more infiltrated in the high-risk group than in the low-risk group.
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Conclusion: Inflammation-related genes can be well used to evaluate the IPF

prognosis and impart a new idea for the treatment and follow-up management

of IPF patients.
KEYWORDS

idiopathic pulmonary fibrosis, inflammation, immune microenvironment,
prognosis, ssGSEA
Introduction

Idiopathic pulmonary fibrosis (IPF) is one of the most

frequent malignant diseases associated with interstitial

pneumonia (1). IPF is chronic, progressive, and often occurs

in men after the age of 50, but its specific pathogenesis remains

to be studied further (2, 3). IPF is mainly caused by chronic

inflammatory stimulation and pulmonary interstitial fibrosis

proliferation, which often causes dyspnea in patients, and in

severe cases, induces respiratory failure, leading to death (4).

After the onset of IPF, its progress is relatively rapid, the

prognosis is poor, and the average median survival time is < 4

years (5). Due to the deterioration of the environment and the

increase in the aging population, the incidence rate of IPF also

shows an increasing trend every year (6, 7). IPF has high

heterogeneity, and there are great differences in the rate of

disease progression between different patients (2). At present,

although pirfenidone and nidanib have been approved for the

clinical treatment of IPF, their clinical efficacy is still not ideal,

and clinical studies show that they are unable to reduce mortality

(8–10). Research shows that monitoring the disease process of

IPF patients in order to implement precise and individualized

management and supportive care helps improve the survival

time and quality of life of IPF patients (11). However, effective

prognostic indicators for IPF are still needed.

Transcriptomics has been paid increasing attention by

researchers in the study of disease occurrence and

development (12, 13). Presently with the advancement made

in the field of genomics, a bulk of accessible genomic and clinical

data is available, providing greater convenience and possibilities

for the study of the occurrence of diseases. Recently, the

biological processes and potential biomarkers related to the

occurrence of diseases have been reported by many researchers

through public databases (14, 15). However, the role of the genes

related to inflammation in the prognosis of IPF needs to be

studied in further detail. Compared with lung biopsy,

bronchoalveolar lavage fluid (BALF) has better patient

compliance and wider application prospects in the diagnosis of

lung diseases (16, 17). In individuals with IPF in BALF samples,

researchers observed a remarkable increase in the amount of

platelet-derived growth factor (PDGF) (18). PDGF has been
02
proved to be related to pulmonary angiogenesis and pulmonary

hypertension and is significantly involved in the early stage of

pulmonary fiber formation (19). In addition, TGF-b was also

found to be significantly overexpressed in BALF of IPF patients

(20). Studies have shown that TGF-b is expressed in alveolar

epithelial cells and macrophages, and its overexpression can lead

to pulmonary fibrosis in rats (21). These results suggest that

BALF can be used to analyze the occurrence of pulmonary

fibrosis and its development.

In this study, the mRNA expression microarray datasets of

BALF and PBMC were obtained from Gene Expression

Omnibus (GEO) database. This study investigates the

involvement of genes linked with inflammation in the

prognosis of IPF, screens and develops a risk model for

the prognosis evaluation of IPF with the help of a variety of

machine learning methods, and verifies its robustness. This

research gives a new insight to understand the role that

inflammation plays in the prognosis of IPF and develops a risk

model of genes related to inflammation that can be employed for

the prediction of the overall survival.
Methods and materials

Acquisition and processing of
microarray data

The expression microarray data of bronchoalveolar lavage

(BAL) cells (GSE70866), were obtained from the GEO database.

Among them, there were 20 individuals from the control group

and 112 individuals with IPF patients. A total of 132 mRNA

microarray data were obtained from Agilent-028004 SurePrint

G3 Human GE 8x60K Microarray, GPL14550 platform. The

microarray data of 64 IPF patients was obtained through

Agilent-039494 SurePrint G3 Human GE v2 8x60K

Microarray, GPL17077 detection platform. In addition, the

gene expression microarray data of peripheral blood

mononuclear cell (PBMC), GSE28042, was also obtained from

the GEO database. This dataset contains 75 patients with IPF,

and their microarray information detection was done by

Agilent-014850 Whole Human Genome Microarray 4x44K
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G4112F platform. The clinical data and OS follow-up

information of all patients with IPF were also obtained from

the GEO database. The “SVA” function of the “limma” package

was used to correct the background, standardize and remove the

batch effect of three groups of original data sets. Among them,

132 patients from the GSE70866 dataset GPL14550 were used as

the discovery set, 64 IPF patients from the GPL17077 platform,

and 75 IPF patients from the GSE28042 queue were used as the

independent validation set.
Acquisition and analysis of inflammation-
related genes

The molecular signatures database (MSigDB, http://www.

GSEa-msigdb.org/GSEa/index.jsp) was employed to obtain the

inflammatory response-related gene set. To determine the

differentially expressed inflammation-linked genes the “limma”

package was utilized, and p < 0.05 and False Discovery Rate

(FDR) < 0.05 were considered as cut-off values. The gene

ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were used to enrich the differentially

expressed genes (DEGs) using the “clusterProfiler” package.
Stratification of IPF patients

The identification of genes linked with the prognosis of IPF

was made by Univariate Cox regression. The least absolute

shrinkage and selection operator (Lasso) regression is often

used to determine characteristic variables, which can well

retain valuable variables and avoid overfitting. In this study,

Lasso regression was employed for the identification of

characteristic genes related to OS. Stochastic forest analysis is

an analytical method that uses a decision tree to evaluate the

importance of variables. The random forest was utilized to rank

the involvement of genes in OS, and then the intersection of the

genes identified by the two methods was taken. Finally, the gene

set independently related to OS was identified through

multivariate stepwise Cox regression, and a risk stratification

model was constructed.
Immune correlation analysis

Through the single sample Gene Set Enrichment Analysis

(ssGSEA) algorithm of the “GSVA” R package, the level of

immune cell infiltration was evaluated in the discovery set and

validation set, respectively, in accordance with the gene

expression array. CIBERSORT algorithm (https://cibersortx.

stanford.edu/) was also used to evaluate the immune

cell infiltration.
Frontiers in Immunology 03
Bioinformatics analysis and
statistical analysis

R software was employed for the complete data analysis of

this study. The “ggplot2” package was used to perform chart

drawing. “Survival” and “Surviviner” packages were used to

draw Kaplan Meier (K-M) curves, and for the evaluation of

the statistical significance of survival time distribution, the log-

rank test was employed. The univariate and multivariate analysis

was performed using the “survival” package. Wilcox test was

employed to evaluate the variation between non-normal

distribution variables, and the value of p < 0.05 was deemed

statistically significant. The receiver operating characteristic

(ROC) curve was drawn employing the ‘survivalROC’ package,

and the area under the curve (AUC) was also calculated using

the package. The “RMS” package was employed to draw the

calibration of nomograms. Pearson correlation analysis was

performed to evaluate the relationship between immune cell

proportion and risk score.
Results

Differential analysis of inflammation-
related genes

In the alveolar lavage fluid of 20 healthy controls and 112

individuals with IPF, a total number of 90 differentially

expressing inflammation-related genes were identified, and

their expression in the two groups is shown in the heat map

(Figure 1A). Subsequently, Gene Ontology (GO) enrichment

analysis revealed that the Biological Process (BP) to which these

90 differential genes were mainly enriched in response to

lipopolysaccharide, leucocyte migration, and positive

regulation of cytokine production. The enriched Cellular

Component (CC) was the granular secretory membrane, the

external side of the plasma membrane, and the endocytic vesicle

membrane. The Molecular Function (MF) enriched were mainly

cytokine activity, cytokine receptor activity, and receptor-ligand

activity (Figure 1B). These DEGs were mainly linked to the

PI3K-Akt signaling pathway, Cytokine-cytokine receptor

interaction, neuroactive ligand-receptor interaction, TNF

signaling, and other pathways, as shown by KEGG enrichment

analysis. (Figure 1C).
Construction of inflammation-related
gene model

Initially, the identification of 46 genes associated with the

poor prognosis of individuals with IPF from 90 DEGs was

carried out by univariate Cox regression, including 10 negative
frontiersin.org
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correlations and 36 positive correlations (Figure 2A).

Subsequently, 18 of the most characteristic inflammation-

related genes were identified from 46 prognosis-related genes

by Lasso regression (Figure 2B). Afterward, the prognostic genes

were sorted, and the top 10 genes of relative importance were

identified based on the random forest algorithm (Figure 2C). In

order to identify more robust prognostic markers, the

intersection of genes was taken from Lasso regression and

random forest screening, and 8 genes were obtained in total

(Figure 2D). Further, a 4-gene model related to inflammation

was constructed through multivariate stepwise Cox regression

(Figure 2E). Its risk score (RS) =-1.096* expression of TPBG +

1.199* expression of MYC + 0.457* expression of FFAR2 +

0.405* expression of CCL2.
Prognostic importance of the four-gene
risk model

A prognostic classifier was constructed in the discovery set

based on this four-gene risk model. As per the median value of

its RS, the discovery set was sorted into a low-risk group and a

high-risk group. The K-M curve revealed that the individuals in

the high-risk group had a worse OS time as compared to the low-

risk patients’ group (hazard ratio (HR) = 3.48, p <0.001,

Figure 3A). Remarkable high scores were shown by patients in
Frontiers in Immunology 04
the high-risk group, and higher mortality was also seen in this

group (Figure 3B). PCA analysis revealed that there was a

notable distribution variation in the low-risk group and the

high-risk group (Figure 3C). Then, ROC analysis was utilized to

evaluate the prediction efficiency of the risk model. It was shown

by the results that 1-year, 3-year, and 5-year survival AUC values

predicted by the model were 0.784, 0.835, and 0.921,

respectively, showing a strong predictive ability (Figure 3D).

Univariate and multivariate Cox analysis revealed that our risk

model worked as an independent risk factor for the poor

prognosis of individuals with IPF (Figure 3E). The

concordance index showed that our model is much better than

the prediction efficiency of age and gender, which has been

maintained above 0.7 (Figure 3F). To illustrate the superiority of

the 4-gene model, we compared it with the other 4 genes that

were common to LASSO and RF but not included in the model.

The K-M curve revealed significant survival differences between

high-risk and low-risk groups (HR=3.3, P<0.001) (Figure S1A).

The ROC analysis indicated that the risk model also has certain

prediction ability in predicting 1- and 3- years, with an AUC of

0.700 and 0.756 (Figure S1B). This shows that the model

constructed based on the multivariate Cox stepwise regression

method is significantly superior to the model selected by random

variables. In addition, we also compared our model with LASSO-

based model and RF-based model. ROC analysis showed that the

4-gene signature exhibited a higher power of risk prediction than
A

B C

FIGURE 1

Expression and enrichment analysis of inflammation-linked genes in IPF. (A) Heat map of the expression of genes linked with inflammation in
the discovery set. (B) GO enrichment analysis of DEGs. (C) KEGG analysis of DEGs.
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the 7-gene model based on LASSO regression (Figures S2A, B).

Although, ROC analysis showed that the 10-gene signature (RF-

based model) exhibited a higher power of risk prediction than

the 4-gene model (Figures S2C, D). However, the number of

genes in the 4-gene model is much less than the number of 10-

gene model. In addition, we also performed multivariate Cox

stepwise regression on these 10 genes, and finally the 4-gene

model still had the lowest Akaike information criterion (AIC).
Verification of risk model

The 64 patients from the GSE70866 dataset GPL17077

platform were used as the validation set. K-M analysis revealed

that the RS showed a certain correlation with the OS time, and

the low RS predicted a better prognosis (Figure 4A). The

distribution of RSs shows that the group with high risk has

higher scores and higher mortality (Figure 4B). PCA analysis
Frontiers in Immunology 05
highlighted that the groups with high and low risk exhibited

remarkably different clustering trends (Figure 4C). ROC

analysis revealed that good prediction efficiency in the

validation set was shown by the model, and its respective

AUC values in 1, 3, and 4 years were 0.786, 0.713, and 0.793

(Figure 4D). Univariate and multivariate Cox analysis also

highlighted that this risk model still worked as an independent

risk factor for the poor prognosis of individuals with IPF in the

validation set (Figure 4E). C-index also showed the strong

prediction ability of the model (Figure 4F). Considering that

most of the BALF were immune cells, the predictive value of

this model was verified further in the RNA-seq of PBMC of 75

IPF patients from the GSE28042 cohort. It was revealed by the

K-M curve that the group with high risk in the GSE28042

cohort still showed a poor OS time (Figure 5A). The

distribution of RSs and the correlation between RSs and

survival data showed that high-risk groups had higher RSs

and higher mortality (Figure 5B). As per the risk model and
A B

D EC

FIGURE 2

Identifying prognostic biomarkers. (A) Univariate Cox regression identifying genes associated with IPF prognosis. (B) Lasso regression further
identifying prognosis-related genes. (C) Random Forest identifying the top 10 genes that are relatively important in prognosis. (D) Wayne
diagram identifying the common genes selected by the two methods. (E) Multivariate stepwise Cox regression finally determined the prognosis-
related genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1010345
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2022.1010345
genome expression, PCA proved that the distribution in the

group with low risk and group with high risk highlighted

notable cluster variations (Figure 5C). It was also shown by

ROC analysis that in the external validation set, the risk model

showed good prediction efficiency, with respective AUC of

0.662, 0.732, and 0.723 in 1, 2, and 3 years (Figure 5D).

Univariate and multivariate Cox regression analysis showed

that for the poor prognosis of IPF in the external validation set,

the risk model still worked as an independent risk factor

(Figure 5E). Similarly, C-index analysis also indicated that

the risk model performed well in predicting the OS time of

1, 2, and 3 years (Figure 5F). Further, we analyzed the

prognostic significance of this risk model in different ages

and gender. The results revealed that the high RS was still

linked with poor OS time in people younger than 65 years old

or older (Figures 6A, B). Similarly, a higher RS in both men

and women predicts a poor prognosis (Figures 6C, D). These
Frontiers in Immunology 06
results indicate that our risk model has strong predictive

power in the prognosis evaluation of IPF patients.
Comprehensive analysis of immune
cell infiltration

As we know, BAL is rich in immune cells, so the ssGSEA

algorithm was used for the evaluation of the variations in the

distribution of immune cells in low- and high-risk groups. As

expected, the results in the discovery set showed higher

infiltration of macrophage, neutrophil, regulatory T cell, and

NK cell infiltration in the high-risk group (Figure 7A). Further,

the distribution of immune cells in the validation cohort from

PBMC was also analyzed, and the results were also consistent

with the discovery set (Figure 7B). The group with high risk had

more macrophages, neutrophils, regulatory T, and NK cells
frontiersin.org
A B

D E F

C

FIGURE 3

Prognostic value of risk model in the training cohort. (A) K-M method was used to draw the survival curve according to risk score, and for
comparison, a log-rank test was employed. (B) The distribution of risk score and survival status between high and low-risk groups. (C) To
evaluate the differentiation between groups with high and low risk, PCA was utilized. (D) Through ROC analysis, the predictive effect of the risk
model in the training queue was evaluated. (E) Univariate and multivariate Cox analysis. (F) C-index analysis was used to evaluate the prediction
ability of the model.
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among others. The similar results were confirmed by Pearson

correlation analysis (Figures S3A, B). In addition, CIBERSORT

algorithm also showed that the risk score was positively

correlated with Neutrophils, T cells gamma, T cells memory

activated, and T cells CD8 (Figure S3C, D). These results suggest

that there is higher infiltration of inflammatory cells in the group

with high risk, and the stimulation of these inflammatory cells

are possibly linked with the poor prognosis of IPF.
Construction of nomogram

In order to promote the application of this risk model in

clinical practice and facilitate the operability of clinical workers,

a four-gene nomogram was constructed (Figure 8A). The

nomogram can be used to assess the 1-, 3-, and 5-year OS

rates of individuals with IPF. In addition, to find out the

nomogram’s effectiveness, a calibration chart was drawn, and
Frontiers in Immunology 07
the results revealed that the nomogram had a very good

prediction performance, which was almost close to the ideal

model in the prediction of 1 and 3 years (Figure 8B).
Discussion

Although the specific pathogenesis of IPF is still controversial,

it has been reported by many studies that chronic inflammatory

stimulation is crucially involved in the development and

progression of IPF (22, 23). At present, researchers generally

believe that chronic inflammation caused by lung epithelial cell

injury is repeatedly stimulating, resulting in excessive wound

repair and tissue cell remodeling, and fibrosis (24, 25).

Fibroblasts can induce the secretion of interleukin-33, IL-13, IL-

6, IL-1, PDGF, fibroblast growth factor, and TGF-B, and promote

their differentiation into myofibroblasts (5, 26). In addition, the

disturbance of the homeostasis of various immune cells is also
A B

D E F

C

FIGURE 4

The effectiveness of the risk model was verified in the validation set. (A) K-M method was used to draw the survival curve according to risk
score, and for the comparison, the log-rank test was employed. (B) The distribution of risk score and survival status between high and low-risk
groups. (C) To evaluate the differentiation between groups with high and low risk, PCA was utilized. (D) Through ROC analysis, the predictive
role of the risk model in the validation queue was evaluated. (E) Univariate and multivariate Cox analysis. (F) C-index analysis was used to
evaluate the prediction ability of the model.
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considered to be an important reason for the formation of lung

fibers (27). Macrophages are considered to be the main culprit of

balance disorder in the process of wound healing (28, 29).

Macrophages can also further promote the process of fibrosis by

secreting related cytokines (26). However, the underlying

mechanism of inflammation in the formation of pulmonary

fibrosis still needs further exploration. In this study, we

evaluated the expression of inflammation-linked genes in

patients with IPF through the microarray expression chip of

BALF and explored the link between their expression and the

prognosis of patients. GO and KEGG enrichment analysis showed

that these DEGs were also involved in a variety of viral infection

related pathways, including viral protein interaction with cytokine

and cytokine receptor, Human cytomegalovirus infection, and

Epstein-Barr virus infection. This is also consistent with recent

studies showing that the presence of viral infections is a significant

risk factor for IPF pathogenesis (30, 31). In addition, a new four-

gene riskmodel was designed based onmultiple machine learning.

The robustness of the model was verified in two independent

validation queues.
Frontiers in Immunology 08
Inflammation and immune microenvironment changes are

the basis of IPF. Regulatory T cells are crucial in maintaining the

stability of the immune microenvironment (32). Studies showed

that regulatory T cells (Tregs) were significantly enriched in the

lungs of IPF mice, and they were also found to be significantly

activated in the peripheral blood of individuals with IPF, which

was positively correlated with the progress of the disease (33).

Tregs can also promote the progress of IPF by inducing the

activation of Th2 and Th17 cells (34). Studies have shown that

Th2 and Th17 cells can promote the disease process of pulmonary

fibrosis, and their increase is associated with a positive correlation

with the severity of the disease (35, 36). The researchers’

knowledge regarding the role that macrophages have in the

development of IPF is also constantly refreshed. Recently,

results from single-cell RNA sequencing have identified many

new macrophage subpopulations, and their different

subpopulations are specifically expressed in different stages of

IPF development (37). Myeloid-derived suppressor cells (MDSCs)

are also an important part of regulating the immune

microenvironment. Studies have shown that MDSCs are found
A B

D E F

C

FIGURE 5

The effectiveness of the risk model was verified in the validation set. (A) K-M method was used to draw the survival curve based on risk score,
and for comparison, a log-rank test was employed. (B) The distribution of RS and survival status between high and low-risk groups. (C) To
evaluate the differentiation between groups with high and low-risk, PCA was utilized. (D) Through ROC analysis, the predictive role of the risk
model in the validation cohort was evaluated. (E) Univariate and multivariate Cox analysis. (F) for the evaluation of the prediction ability of the
model, C-index analysis was employed.
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to increase significantly in the lungs, and peripheral blood of IPF

patients and are positively correlated with poor lung function

(38, 39). These findings are compatible with the findings of this

investigation, according to several studies. The results of ssGSEA

analysis in this study showed that in the group with high risk,

there was enhanced infiltration of MDSC, macrophages, and

regulatory T cells, which also predicted a worse OS time. In

addition, we also found that in the high-risk group, there was

higher infiltration of CD4, T cells, NK cells, dendritic cells, and

neutrophils, which may further increase the inflammatory

response and aggravate the disease process. A new perspective

may be provided by our results for further understanding the

characteristics of immune cell infiltration in IPF.

A number of studies have described the prognostic value of

gene signature in IPF. Recently, Casanova NG et al. proposed a

21-gene prognostic model to predict the overall survival for IPF

patients (40). Li X et al. developed a 9-gene prognostic signature

based on hypoxia-immune-related genes (41). In this study, four

inflammation-related genes, trophoblast glycoprotein (tpBG),

Myc, free fatty acid receptor 2 (ffar2), and CCL2, were
Frontiers in Immunology 09
identified as important prognostic markers. It is worth

mentioning that the 4-gene signature has fewer genes, but

exhibits greater predictive power. TPBG belongs to

carcinoembryonic antigen and is mainly involved in cell

adhesion (42). It is expressed highly in numerous tumor cells

and is related to the poor prognosis of cancer (43, 44). However,

there are few reports about its role in IPF. In this study, our

results show that TPBG can be used as a good prognostic

indicator of IPF. Reportedly, as a proto-oncogene, MYC has a

crucial role in cell cycle progression, apoptosis, and cell

transformation (45). Research has shown that MYC is up-

regulated in pulmonary fibrosis cells of IPF mice and promote

the growth and differentiation of pulmonary fibrosis cells by

regulating the transcription of miR-9-5p (46). Yin X et al. also

reported that MYC could promote the accumulation of HK2 in

human and mouse lung fibroblasts, thereby increasing the

proliferation and migration of fibroblasts (47). The protein

encoded by FFAR2 is a member of the GP40 family that

mainly play a role in the regulation of inflammatory response

and plasma lipid level (48). Maslowski KM et al. confirmed that
A B

DC

FIGURE 6

Survival analysis of risk model in different subgroups. Survival analysis of risk models in the subgroup of age ≤ 65 (A) and greater than 65
(B). Survival analysis of risk models in female (C) and male (D).
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A
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FIGURE 7

Immune infiltration analysis. (A) In the discovery set, the immune cell infiltration between groups with high and low risk was evaluated based on
the ssGSEA algorithm. (B) In the validation set, the immune cell infiltration between high-risk and low-risk groups was analyzed based on the
ssGSEA algorithm ns, non significance; *p<0.05; **p<0.01; ***p<0.001.
A B

FIGURE 8

Construction and evaluation of nomogram. (A) Nomogram was constructed based on the expression values of four genes to predict the OS rate
at 1, 3, and 5 years. (B) The calibration curve was used to assess the nomogram.
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short chain fatty acids promote the occurrence of the

inflammatory response by binding to FFAR2 (49). The results

of Sencio V et al. showed that FFAR2 was also related to the

secondary infection of pneumococcus after influenza infection

(50). However, we have little knowledge about the role of FFAR2

in IPF. A new direction may be provided by our results for

understanding the occurrence and progress of IPF. There is

increasing evidence that CCL2 is linked with the onset of

pulmonary inflammatory diseases. Several studies have

suggested that the concentration of CCL2 in BALF of

individuals with IPF has increased significantly, and a

significant correlation exists between its expression level and

the increased risk of death (51). In addition, CCL2 can also

combine with related transcription factors to regulate the

proliferation of fibroblasts and promote the differentiation of

fibroblasts. Our results further prove that CCL2 from BALF can

be used as an effective predictor of the poor prognosis of IPF.

While this study has many strengths, it has some limitations

as well. This study analyzed whole of IPF patients, and did not

distinguish between rapidly progressive type and slowly

progressive type. In addition, this remains to be verified by

either further functional studies in vitro or in vivo.
Conclusion

In conclusion, this report reveals the importance of genes

linked with inflammation in the prognosis of individuals with IPF.

A new four-gene riskmodel based on BALF expression profile was

built to predict the progress and prognosis of IPF, which is

conducive to further monitoring and management of IPF patients.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Author contributions

JL, S-QZ, Y-QY, and FP all participated in research design

and drafting the manuscript. JL, S-QZ, Y-QY, FP, H-JS, J-LX,

LT, JW, and F-FJ took part in the data collection process of the
Frontiers in Immunology 11
study and is responsible for the content of the manuscript. All

authors read and approved the final manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1010345/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Prognostic value of risk model. (A) K-M method was used to draw the

survival curve based on risk score, and for comparison, a log-rank test was
employed. (B) Through ROC analysis, the predictive role of the risk model

was evaluated.

SUPPLEMENTARY FIGURE 2

Prognostic value of risk model. (A) K-M method was used to draw the
survival curve based on risk score in LASSO-based model. (B) ROC

analysis was used to evaluate the predictive power of LASSO-based
model. (C) K-M method was used to draw the survival curve based on

risk score in RF-based model. (D) ROC analysis was used to evaluate the
predictive power of RF-based model.

SUPPLEMENTARY FIGURE 3

Correlation analysis of risk score and immune cell. Pearson correlation

analysis between risk score and immune cell infiltration abundance based
on ssGSEA (A) and CIBERSORT (C) methods in discovery set. Pearson

correlation analysis between risk score and immune cell infiltration
abundance based on ssGSEA (B) and CIBERSORT (D) methods in

validation set.
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