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The protective role of Natural Killer (NK) cell tumour immunosurveillance has

long been recognised in colorectal cancer (CRC). However, as most patients

show limited intra-tumoral NK cell infiltration, improving our ability to identify

those with high NK cell activity might aid in dissecting the molecular features

which underlie NK cell sensitivity. Here, a novel CRC-specific NK cell gene

signature that infers NK cell load in primary tissue samples was derived and

validated in multiple patient CRC cohorts. In contrast with other NK cell gene

signatures that have several overlapping genes across different immune cell

types, our NK cell signature has been extensively refined to be specific for CRC-

infiltrating NK cells. The specificity of the signature is substantiated in tumour-

infiltrating NK cells from primary CRC tumours at the single cell level, and the

signature includes genes representative of NK cells of different maturation

states, activation status and anatomical origin. Our signature also accurately

discriminates murine NK cells, demonstrating the applicability of this geneset

when mining datasets generated from preclinical studies. Differential gene

expression analysis revealed tumour-intrinsic features associated with NK cell

inclusion versus exclusion in CRC patients, with those tumours with predicted

high NK activity showing strong evidence of enhanced chemotactic and

cytotoxic transcriptional programs. Furthermore, survival modelling indicated

that NK signature expression is associated with improved survival outcomes in

CRC patients. Thus, scoring CRC samples with this refined NK cell signature

might aid in identifying patients with high NK cell activity who could be prime

candidates for NK cell directed immunotherapies.
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Introduction

Despite improvements in the surgical and medical

management late-stage colorectal cancer (CRC), 5-year survival

rates for patients with late-stage colorectal cancer (CRC) remain

extremely poor and innovative treatment strategies are needed.

Although T-cell directed immunotherapies are strikingly effective

in several solid cancer types, durable responses are limited to

colorectal tumours exhibiting defective mismatch repair processes

(dMMR), thus benefiting approximately 5% of all CRC patients

(1). Downregulation of major histocompatibility complex class I

(MHC-I), whose expression is a pre-requisite for T-cell-mediated

immune killing, has been reported as a major cause of secondary

resistance to checkpoint blockade therapy (2, 3). Thus, there is an

urgent need to explore alternate immunotherapeutic strategies

which harness other antigen-independent cell types.

In recent years, natural killer (NK) cells have emerged as a

promising candidate for immunotherapeutic development.

Adoptive transfer of primary NK cells suppresses T-cell

mediated graft-versus-host disease and exacerbates graft-

versus-tumour responses (4, 5). Similarly, a myriad of

alloreactive NK cell lines - primarily NK92, but also NKL,

KHYG01 and YTS – have demonstrated safety and efficacy in

HLA-mismatched recipients in early-stage clinical trials

(reviewed in (6)). This suggests that NK cell therapeutics may

be harnessed in an “off-the-shelf” manner in the future,

circumventing the difficulty associated with the ex vivo

expansion of antigen-specific T-cell clones. Likewise, chimeric

antigen receptor (CAR) NK cells have shown promising results

in xenograft models (7, 8), and monoclonal antibodies which

neutralise NK cell inhibitory receptors such as the KIR family (9,

10) and NKG2A (11) have entered early-stage clinical trials.

NK cell activity is inversely correlated with cancer incidence

(12) and there is a wealth of evidence supporting the role of NK

cells in controlling both spontaneous and experimental

metastasis (13, 14). In CRC, NK cell infiltration has been

identified as a positive prognostic marker in both primary (15,

16) and metastatic (16, 17) disease. NK cells differ from

conventional lymphocytes in that they function in an MHC-I

unrestricted manner in accordance with the “missing-self”

hypothesis (18, 19). In this manner, NK cell-directed

immunotherapies may overcome the restricted benefit of

antigen-specific T-cell responses in tumours with high

mutational diversity. Moreover, harnessing NK cell

cytotoxicity is a promising opportunity in the treatment of

immunologically “cold” tumours such as CRC that undergo

loss of MHC-I expression. Indeed, recent studies have reported

that 40% of patient-derived CRC organoids exhibit MHC-I loss

which could not be rescued by IFN stimulation (20), concordant

with clinical reports of MHC-I loss in approximately 60% of MSI

CRCs (21). Yet, clinical enthusiasm has been tempered due to

the scant NK load reported in most CRC tumors, despite high
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levels of chemokines and cytokines (22). Thus, novel means of

determining which patients show high NK cell infiltration and

activity and might therefore benefit from NK cell directed

immunotherapies is needed.

Transcriptomic signatures are sets of genes whose

coordinated expression has a verified association with specific

biological parameters – such as cell type and phenotypic state –

or clinical measures, including disease subtype, survival outcome

or therapeutic response. Deconvoluting the relative abundance

of immune cell subsets using transcriptomic signatures offers

many benefits over the comparatively low-throughput methods

of immunophenotyping which are currently available. In CRC

alone, a multitude of prognostic signatures have been reported

(23, 24) alongside several signatures which predict response to 5-

FU based chemotherapies in Stage II-III disease (25–27).

Additionally, RNAseq data from a cohort of 40 CRC patients

with metastatic or relapsed disease was used to derive a 27-gene

signature able to discriminate responders and non-responders to

the FOLFOX6 chemotherapy regimen with accuracy of 92.5%,

demonstrating the powerful role which signature analysis may

play in personalising patient care (28).

In their simultaneous assessment of multiple markers,

transcriptome-wide approaches circumvent the limitations of

single-marker or low-throughput phenotypic assessments. This

may also allow for previously unidentified markers or

associations to be identified which may provide important

insights into immune cell biology. However, a major

consideration when employing such computational approaches

is the suitability of the reference profiles, as the gene signatures

derived from sorted cell types in healthy individuals may not

accurately reflect those of the potentially dysregulated cells in a

diseased individual. This is particularly pertinent in the case of

NK cells, as activated NK cells have unique transcriptional

profiles as compared with resting NKs from healthy volunteers

(29). Additionally, as signatures often rely on highly expressed

genes and thus often incorporate genes that are not that specific

of a given cell type, the accuracy of cell type detemination may be

compromised. Although prognostic NK cell gene signatures

exist for highly immunogenic tumour types such as melanoma

(30) and renal cell carcinoma (31), it is currently unclear how

appropriate these are for use in tumours such as CRC which

traditionally show a poor immune cell infiltration. Other works

which have looked at the transcriptomic profiles of lymphocytes

in CRC have focussed on defining residency versus exhaustion

states (32). where the genesets used to define CD4+ and CD8+

T-cells had several genes overlapping with the NK cell geneset.

Here, we present a novel NK cell transcriptomic signature

which can be used to infer NK cell abundance from bulk RNA

sequencing data of primary CRC samples. Candidate NK cell-

related genes were pooled from previously published works and

in-house differential expression (DE) analyses and sequentially

filtered to ensure their fidelity as NK cell markers with minimal
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off-target expression in tumour, stromal and other immune cell

types. Single-cell RNAseq (scRNAseq) data from primary CRC

samples were then used to validate each signature gene in tumour-

infiltrating NK cells. We then show that high NK cell score is

associated with upregulation of cytolytic and chemotactic

transcriptional processes, and survival analysis revealed that

patients with higher evidence of NK cell activity demonstrate

significantly longer recurrence and disease-free intervals.

Collectively, the NK cell signature allows for the identification

of CRC patients with high NK cell activity, which may aid in

defining the molecular characteristics associated with strong

response to NK cell targeting immunotherapies.
Methods

Preparation of publicly available
RNAseq data

Datasets used in the present study are listed in Table S4. Raw

counts files from publicly available datasets were downloaded

rom Gene Expression Omnibus (GEO) using the NCBI portal

(http://www.ncbi.nlm.nih.gov/geo/). CCLE data was

downloaded as a PharmacoSet (PSet) through the

PharmacoGx R/Bioconductor package (version 1.6.1). For in-

house data, 3’ RNA-seq reads were aligned using HISAT2

against human genome GRCh37 (release 75) and the

featureCounts tool from the RSubread package was used to

quantify the number of reads for each gene per sample. The

filterByExpr function from the edgeR package (v 3.28.1) was

used to filter lowly expressed genes and calculated count- or

transcript-per-million (CPM/TPM) values. The MyGeneset

application of the ImmGen online databrower (http://www.

immgen.org/Databrowser19/DatabrowserPage.html) was used

for analysis of GSE15907.

The GSE107011 dataset is composed of 29 FACS-isolated cell

types from the blood of healthy individuals. For this project, The

NK cell, basophils, and neutrophil samples were annotated as per

the authors’ annotation file. However, to circumvent the known

issues associated with multiple comparisons, and to facilitate

comparisons with data sets offering less cellular subtype

resolution, the various maturation and functional states for

other cell types were merged to form larger groups: naïve,

switched, non-switched and exhausted B-cell samples were

merged and annotated as “B-cells” (nsamples = 16); naïve, central

memory, effector memory and terminal effector CD8+ T-cell

samples were merged and annotated as “CD8+ T-cells

(nsamples = 16); classical, intermediate and non-classical

monocytes were merged and annotated as “monocytes” (nsamples

= 12); myeloid and plasmacytoic dendritic cell samples were

merged and annotated as “dendritic cells” (nsamples = 8). Plasma
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and progenitor cells were excluded from downstream analyses.

Given the transcriptional overlap betweenNK- andT-cells, T- cell

subsets (namely CD8+, CD4+,MAIT cells, Tfh, TH1, TH17, Th2,

Treg, gd+ and gd -) were interrogated both individually and as

part of a larger, merged group annotated as “pan-T-cells”.

Resultingly, 17 discrete immune cell subtypes from this dataset

were interrogated. For GSE60424, only blood samples from

healthy individuals were included.
Differential expression analysis, gene set
testing and survival modelling

The singscore (v1.6.0) R package was used for Single-sample

gene set enrichment analysis against variousmolecular signatures.

Depending on the direction of gene sets, we used different settings

of simpleScore function as specified in the documentation. NK-

high and NK-low groupings were defined as the top and bottom

10% of samples, respectively, when ranked by NK scores. DE

analysis between NK-high and NK-low samples was performed

using the voom-limma (v 3.42.2) pipeline (Law et al., 2014). After

running eBayes, we considered genes with absolute log2FC > 1

(for ovexpression) or log2FC <−1 (for repression) and adjusted p-

value < 0.05 as DEGs. The goana function from the limma

package was used to perform gene ontology (GO) analysis and

camera gene set testing was performed using MSigDB signatures

retrieved from the WEHI bioinformatics portal (http://bioinf.

wehi.edu.au/software/MSigDB/). Survival modelling was

performed using the survminer (v0.4.8) and survival (v3.2-7)

packages using the clinical annotation files provided from the

sources listed in Table S4.
Data wrangling and visualization

All computational analyses were performed using R (version

3.6.1). For data wrangling and visualization, base R functions were

using alongside several core packages from the tidyverse (v 1.3.0)

R package. tidyr (v 1.1.2) and dplyr (v 1.0.2) were used for reading

andmanipulating the data, as well as ggplot2 (v 3.2.1) and cowplot

(v 1.0.0) for data visualization. Heatmaps were generated using

the complexHeatmap (v 2.2.0) or pheatmap (v 1.0.12) R packages.
Statistical analysis

All statistical analyses were performed using R. Data is

expressed as mean ± standard deviation (SD) unless otherwise

indicated. The minimum threshold for rejecting the null

hypothesis was p<0.05. For results where statistics are shown,

significance is denoted as: * = p<0.05; ** = p< 0.01; *** = p<0.001.
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Code availability

The code used throughout this study is available on Github

(https://github.com/cshembrey/NK_Signature_CRC).
Results

Collation of candidate NK cell
signature genes

To identify a CRC-specific gene expression signature

associated with NK cell abundance, we implemented a novel

pipeline that involved curation and sequential refinement of

putative NK cell genes against immune, tumour and stromal

cells in multiple bulk and single cell RNAseq datasets (workflow

outlined in Figure S1). Firstly, 605 unique genes were collated

from eight partially overlapping sources (Figure 1). Four

previously curated NK cell signatures were compiled:

“CIBERSORT Active” (ngenes = 56) and “CIBERSORT Resting”

(ngenes = 56) refer to the gene sets corresponding to activated

and resting NK cells, respectively, as reported in the LM22

signature matrix used for the CIBERSORTx algorithm (33); The

“Cursons Extended NK cell Geneset” gene set (ngenes = 112

genes) was derived from the supplementary data table of a

melanoma-specific NK cell signature previously reported by

Cursons and colleagues (30); The “Wang NK cell marker”

gene set (ngenes = 13; 34) is composed of markers used to

guide the immunophenotyping of different cell subsets in bulk

RNAseq data from CRC cell lines and primary samples, and the

“receptors” gene set (ngenes = 43) was compiled by mining the

literature for various receptor subsets (eg. activating, inhibitory,
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chemokine or cytokine receptors) with documented expression

on NK cells.

Subsequently, three novel gene sets were derived from the

results of differential expression (DE) analysis, where putative

genes enriched in NK cells were identified by pairwise

comparison of NK cells and at least one other immune cell

type. DE analysis of the GSE60424 bulk RNAseq dataset (35),

composed of six immune FACS-isolated cell types (NK cells, B-

cells, CD4+ T-cells, CD8+ T-cells, monocytes and neutrophils),

identified 280 DEGs (“GSE60424 DEGs”). Similarly, DE analysis

of GSE107011 (36), an RNA-seq dataset composed of 29 FACS-

isolated immune cell types, yielded 427 DEGs (“GSE107011

DEGs”). Finally, to enhance our resolution when discriminating

between NK and T-cells, a subsequent “pan-T DEGs” (ngenes =

23; from GSE107011) was constructed from the DE genes when

only NK versus T-cell comparisons were considered; here, the

selected genes were those upregulated in NK cells relative to all

T-cell subsets (eg. upregulated in NKs relative to CD8+ and CD4

+ and MAIT etc.), irrespective of their expression level in other

innate immune cell types.

Following compilation, 605 unique candidate NK genes were

identified. To examine the representation of traditional NK cell

markers versus potentially novel NK cell-related genes, the

interconnectedness of this gene set was compared across the

eight sources (Figure 1). Most genes identified (451/608; 74%)

were uniquely found from our DE analyses. Surprisingly, there

were zero genes which were conserved across all eight sources

and only two genes, KLRD1 and KIR3DL2, were conserved

across 7/8 sources. We hypothesize that the lack of consensus

between these datasets may reflect the multiple discrepancies

between studies in terms of criteria chosen for candidate gene

selection and filtering, combined with variations in the NK

subtypes present in each dataset.
FIGURE 1

Collation of putative NK cell signature genes. UpSet plot of gene intersects from eight partially overlapping sources (listed at right). Gene set
(blue bars) and intersection (red bars) sizes are indicated. Inset: Venn diagram of DEGs identified from pairwise comparisons of NK cells versus
other immune cell types in GSE60424 and GSE107011. Only the “Union DEGs” (ngenes = 194) were retained as candidate signature genes.
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To further refine the comparatively large GSE60424 and

GSE107011 DEG sets, a “Union DEGs” gene set was created

(Figure 1; inset). For inclusion in this merged gene set, a given

candidate gene needed to be differentially upregulated in NK

cells relative to all other immune cell types in one or both data

sets (eg. upregulated in NK cells versus T-cells and B-cells and

neutrophils) differing from the previous DEG analyses where the

gene in question need only be upregulated in NK cells on a

pairwise basis (eg. upregulated in NK cells versus T-cells, but not

necessarily B-cells nor neutrophils). Of the 525 unique DEGs

identified across GSE60424 and GSE107011, 194 genes fit this

criterion. After reintegration of these “Union DEGs” with the

genes derived from other sources, 295 candidate genes remained.

Although DE analysis identifies genes which are

preferentially expressed by NK cells as compared with other

cell types, the expression of individual DEGs by NK cells may still

be very low. This is problematic when aiming to identify NK cell

signals from tumour sequencing data, particularly given that NK

cells represent a small proportion of the total cell number. Thus,

we further refined out geneset by retaining only those candidates

with higher median in NK cells relative to other immune cell

subsets in GSE107011 (Figure 2A; Figure S2A; purple boxes) and

GSE60424 (Figure S2B; purple boxes). Sets of passing genes for

each dataset were derived by taking the intersect of the specific

genes (ngenes = 49) from GSE107011 (Figure 2A) and GSE60424

(Figure S2B). Of these, 10 genes (ADGRB2, B4GALT6, LDB2,

LIM2, LINC01451, LRRC43, PCDH1, PRSS57, RAMP1 and

RNF165) were identified in both data sets.

Interestingly, this analysis highlighted that many of the

“classical” NK cell markers that are in multiple sources

(Figure 2A; yellow/green rings) are also expressed at very high

levels in “unconventional” T-cell subsets such as MAIT, gd+ and

gd- T-cells. As illustrated by GSE60424 (Figure S2B), where T-

cells are exclusively grouped as CD8+ or CD4+, many FACS-

based studies do not include these relatively niche T-cell subsets,

possibly leading to the identification of putative NK cell-specific

genes which are in fact highly expressed by unconventional T-

cell subsets.

The two sorted NK cell-containing data sets interrogated

thus far (GSE60424 and GSE107011) were derived from the

peripheral blood of healthy individuals; this approach has

limitations, as the gene expression profiles of such cells may

not necessarily reflect those of tissue-infiltrating NK cells nor

NK cells in the context of cancer. To address this concern, we

performed an independent DE analysis (see methods for details)

on an NK-cell containing scRNAseq data set (GSE146771 (37),

composed of SMART-Seq2 and 10X subseries) generated from a

cohort of CRC patients (nsamples = 20; from 18 unique patients)

with Stage II-III disease of varying pathological grade, MSI

status, and extent of nodal involvement. This analysis

identified several additional NK cell marker genes, and allowed

us to cross-validate the 49 genes derived from bulk RNA-seq
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analysis (mentioned above) at the single cell level. Following

these analysis steps, 82 candidate genes were prioritised.
Signature gene specificity filtration
against tumour and stromal cells

As the NK cell signature is designed to resolve the NK cell

fraction from bulk RNAseq data of tumour tissue, it is imperative

that the genes in the signature should not be expressed by the

tumour cells themselves. To determine whether any of the 82

identified genes were expressed by tumour cells, additional

specificity thresholding was performed against two sources of

CRC cells (Figure 2B). As bulk RNAseq from CRC tumour tissue

would be expected to contain immune cell fractions, two cohorts

of CRC cell lines were used in this analysis: The Cancer Cell Line

Encyclopedia (38) (nsamples = 57) and GSE90830 [nsamples = 44

(39)]. These datasets revealed that 12 genes had relatively higher

expression in CRC cells compared with NK cells (Figure 2B; blue

boxes), and they were therefore excluded from further analyses.

Despite the immune- and tumour-specific filtration steps

previously performed, the possibility of contaminant expression

of our candidate genes by other non-NK cell types such as

including fibroblasts, stromal cells and non-transformed

epithelial cells has not been accounted for. To address this, the

relative expression of our candidate genes was interrogated in

the leukocyte (CD45+), stromal cell (CD31+) and epithelial cell

(EpCAM+) fractions isolated from the tumours of 6 patients

with CRC (GSE39397 (39); as well as against cultured, normal

colon mucosa-derived fibroblasts (CCD-Co-18). Failing genes

(ngenes = 14) were defined as those with significantly higher

expression relative to leukocytes in a non-leukocyte subset

(Figure S3; red headers, summarised in Figure 2C).
Interrogating expression of signature
genes in tumour-infiltrating NK cells

Having validated the specificity of our candidate genes at the

immune, tumour and stromal cell level in bulk RNAseq, we

returned to GSE146771 to confirm this specificity in scRNAseq

data. By interrogating the gene expression distribution across

Uniform Manifold Approximation and Projection (UMAP)

plots (Figure 3), the specificity of each gene for particular NK

cell subsets was elucidated. For example, in the SMART-Seq

dataset three NK cell subgroups could be discerned based upon

marker expression, providing greater cellular resolution: CD16+,

a marker expressed on virtually all CD56dim NK cells; GZMK+, a

cytotoxicity marker frequently associated with the CD56bright

subpopulation; and CD103+, a marker of tissue residency.

Certain “NK cell specific” genes such as SH2D1B and

KIR2DL3 showed equivalent expression in each of the three
frontiersin.org
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NK subsets, whereas other genes were subtype selective. For

example, LINGO2, PRSS57 and RNF165 were preferentially

expressed by the CD16+ subgroup, whereas WIPF3 expression

was high across both the CD103+ and GZMK+ subgroups but

sparse in the CD16+ population.

This approach also allowed us to identify genes which,

although differentially upregulated in NK cells, showed

moderate basal expression across multiple cell types (Figures
Frontiers in Immunology 06
S4, S5; “High DEGs”; pale blue headers) as well as genes whose

expression was no longer specific to NK cells once evaluated at

the single-cell level (Figures S4, S5; “Non-specific”; red headers).

For example, many candidate genes - including PLAC8,

SLC15A4, SLFN13 and ST8SIA6 – have high expression in NK

cells although they are promiscuously expressed by multiple cell

types, with particularly high expression in the myeloid subset,

warranting their exclusion from the final gene list.
A

C

B

FIGURE 2

NK cell specificity filtration against immune and CRC-supportive cell types. (A) Biplots depicting median expression for each candidate gene (rings;
coloured by sum of sources) in NK cells from GSE107011 (logTPM) versus other immune cell types. The intersect of passing genes for each pairwise
comparison (purple boxes) were retained as candidate genes. (B) Biplots depicting median expression for each candidate gene (rings; coloured by sum
of sources) in NK cells from GSE107011 (logTPM) versus CCLE CRC cell lines (left column; logRPKM) and GSE90830 (CRC cell lines; right column;
logRPKM). The union of failing genes for each pairwise comparison (blue boxes; ngenes = 12) were flagged for removal from the candidate geneset.
(C) Lineplot of candidate gene expression in the stromal cell (CD31+; gold), fibroblast (FAP+; green) and epithelial cell (EpCAM+; light blue)
compartments of six primary CRC samples (GSE39396), normalised to leukocyte (CD45+; purple) expression. Genes with normalised expression >1
were flagged for removal. CCLE, Cancer Cell Line Encyclopedia; CoT, CRC primary tumour; LT, CRC liver metastasis.
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Validating the subtype specificity of the
curated NK cell signature

Having refined the NK cell signature using CRC-infiltrating

NK cells, we next interrogated whether the signature exhibited

any biases towards NK cells from particular subsets or sources.

GSE133383 (40) contains transcriptomic data for both the

immature CD56bright and mature CD56dim subsets of NK cells

isolated from the blood, lymphoid organs (spleen, lymph nodes

and bone marrow) and lungs of four healthy donors. As is the

case with most transcriptional analyses of NK cells, when

interrogated in GSE133383 our signature genes cluster

according to NK cell maturation state rather than tissue source

(Figure 4A). Whilst a substantial number of genes which appear

to have relatively uniform expression across both the CD56

bright and dim subsets (Figure 4A), multiple subtype-enriched

markers have also been retained. Enriched markers for the

populous CD56dim class include the KIR family members,

GZMB (40–42) and the chemokine receptors CXCR1 and

CXCR2 (43). Two recently identified markers of terminally

mature NK cells, HAVCR2 and CX3CR1 (44) show

preferential expression in the CD56dim subset as expected.

Analogously, enriched markers for the CD56bright subset

include CD56 (NCAM1) itself, XCL1 (44) and KLRC1 (45),
Frontiers in Immunology 07
whose inclusion indicate that the signature has sufficient

resolution to detect this relatively minor population.

Collectively, this demonstrates that our signature captures

both general and subset-enriched NK cell markers, suggesting

that it is representative of all types of NK cell.

Many of the genes which are lowly-expressed in GSE133383

(Figure 4A; LIM2, SPTSSB, LGALS9B, PRSS57, ADGRG3, and,

to a lesser extent, DRAXIN), which lacks intestinal NK cells

samples, are highly expressed in particular subsets of CRC-

infiltrating NK cells (Figures 4A, B), possibly reflecting a role for

these genes as CRC-specific NK cell markers induced by the

tumour microenvironment. It is noteworthy that the peripheral

blood CD56bright subset – the most abundant NK cell subset in

humans - do not cluster together, supporting the idea that this

signature is more CRC-specific than previously reported NK cell

signatures derived from blood-based analyses.

Next, as it is expected that genes which are considered robust

markers of a given cell type should have coordinated expression

patterns, the correlation between the individual genes in the

signature was assessed. Correlation analysis demonstrated that

the signature genes cluster into two major blocks where

expression is highly cross-correlated, representing the genes

selective for CD56dim or CD56bright NK cells (Figure 4B;

orange and purple annotations at left). Subtype selectivity for
A

B

FIGURE 3

Candidate gene expression in CRC-infiltrating immune cells. UMAP plots of dissociated primary CRC samples from (A) GSE146771 (SMART-Seq2
scRNAseq; nsamples = 10) and (B) GSE146771 (10X scRNAseq; nsamples = 10) coloured by cell type (at left) and candidate gene expression.
Maximum expression (LogTPM) is indicated in parentheses above each plot.
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each gene was defined based on its relative expression in each of

these subsets (Figure 4C and Figure S6). That the two major

blocks are anti-correlated may reflect the progressive loss of the

CD56bright markers as NK cells mature and reinforces the idea

that our signature allows for pan-NK cell rather than subset-

specific detection. Situated between the two major clusters are a

subset of genes (including GNLY, TXK and PTGDR) which

appear to have equivalent expression in CD56bright and CD56dim

cells (Figure 4B; green annotations), likely corresponding to a

“transitional”NK cell phenotype reported by several groups (42–

44, 46).

As a final visualisation measure, the expression of the NK

cell signature in aggregate (ie. profiling expression of the

signature as a whole, rather than the expression of each

individual gene) was performed in an independent human

dataset, GSE22886 (47). This dataset is composed of twelve
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different leukocyte subsets isolated from the PBMCs of healthy

donors and was used to avoid the biases of testing our signature

on the GSE60424 and GSE107011 data from which it was

partially derived. In GSE22886, our NK cell signature was

clearly enriched in the NK cell samples relative to the other

cell types (Figure 5A). Due to the high sequence and

transcriptomic homology between human and murine NK

cells (48), we next interrogated the performance of the human

NK cell signature in GSE15907 (Immgen) (49); a microarray

dataset generated following the ex vivo isolation of multiple

immune lineages from adult B6 mice (Figure 5B). Notably, in the

murine context our NK cell signature clearly discriminates NK

cells from CD8+ T-cells, gd-T-cells and NKT cells, highlighting

the flexibility of this novel NK cell signature to be used in in vivo

studies to detect either endogenous murine or xeno-transplanted

human NK cells.
A

B C

FIGURE 4

Profiling refined gene set expression in NK cell subsets. (A) Heatmap of refined gene set expression in CD56bright (orange) and CD56dim (purple)
NK cells isolated from the blood (red), spleen (yellow), bone marrow (blue), lung (pink) and lymph node (green) of four healthy donors
(GSE133383). (B) Correlation matrix of refined gene set. Genes are annotated (at left) according to whether they show preferential expression in
the CD56dim (orange), CD56bright (purple) or neither (green) NK cell population (C) Boxplot expression of selected genes in CD56dim (orange
boxplots) vs CD56bright (purple boxplots) NK cell populations. Headers are coloured based on whether the gene is preferentially expressed in
CD56dim (orange headers) vs CD56bright (purple headers) NK cells or shows equivalent expression across both subsets (green headers).
Significance was assessed with Student’s T-test; ***p-value < 0.001. ; ****p<0.0001; ns: non-significant.
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Differential gene expression
analysis confirms that cytotoxic
and migratory programs are
associated with high NK score

Having finalised the NK cell signature (Table S1, ngenes = 43),

we next sought to determine which genes were concomitantly

up- or downregulated in the samples whose transcriptomic

profiles showed strong evidence of this signature. To identify

these samples, we used a single-sample, rank-based gene-set

scoring method termed singscore (50) to score samples against

our NK signature. Here, a sample with a high NK score is

interpreted as having high evidence of NK cell activity, whereas a

sample with low NK score exhibits limited NK cell signature

expression. Using samples sourced from two large, publicly

available repositories of primary CRCs, the TCGA colorectal

adenocarcinomas (TCGA-COAD; nsamples = 454), and

GSE39582 (nsamples = 566 (51), we defined the NK-high and

NK-low groupings based on the top 10% and bottom 10% of

scored samples, respectively. We then performed differential

expression analysis to compare the gene expression profiles

(GEPs) of samples with high scores to those with low scores in

each of the two data sets.

A strong positive correlation was observed between the logFC

of genes in TCGA and GSE39582 datasets (Figures 6A, B;

Spearman correlation R = 0.72, p-value < 2.2 x 10-16), suggesting

similar transcriptional programs of NK inclusion/exclusion in both

data sets.
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48 genes were differentially upregulated in NK-high samples

from both datasets (Figure 6B, upper panel, Table S2). Of these,

there was a strong enrichment of genes encoding cytotoxic effectors

which are critical for NK cell killing, including the granule proteins

NKG7 and granulysin (GNLY), as well as multiple members of the

granzyme family including GZMB, GZMA and GZMH.

Additionally, there was an overrepresentation of genes encoding

ligands for chemokines implicated in NK cell trafficking, including

CXCL9, CXCL10 and CCL5 (RANTES). Importantly, these ligands

are expressed by tumour cells rather than the NK cells, suggesting

that the high NK cell density in these tumours is at least partly

driven by a tumour-intrinsic factor.

Conversely, 45 genes conserved between the two data sets

were differentially repressed in the NK-high group (Table S3).

The parallel downregulation of multiple genes which have been

associated with increased metastasis and poor prognosis in CRC

was observed, including Dachshund family transcription factor 1

(DACH1) (52) and the metalloprotease meprin-a (MEP1A) (53)

and CXCL14 (54). Interestingly, recent evidence indicates that

CXCL14 is essential for MHC-I upregulation (55) and as such, it

stands to reason that CRC samples with high NK cell activity

show decreased CXCL14 expression.

To identify biological processes associated with the NK-high

phenotype, gene ontology (GO) enrichment analysis was

conducted. Competitive gene set testing against the whole

transcriptome of NK-high vs NK-low samples confirmed

significant enrichment of the GO term “NK cell mediated

immunity” in the NK-high group (Figure 6C). Moreover, the
A

B

FIGURE 5

NK cell signature efficiently discriminates NK cells from other haematopoietic compartments. Boxplots of NK cell signature expression in sorted
peripheral blood cells from (A) GSE22886 (Log2) independent human PBMC data and (B) GSE15907 (Immgen) murine data. Each boxplot
represents one sample (coloured by cell type, at right) and individual points are single signature genes.
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top 50 most significantly enriched GO terms in the NK-high

group, when clustered by semantic similarity, converged on

umbrella terms including “immune response”, “leukocyte

activation”, “leukocyte cell-cell adhesion” and “cytokine

production” (Figure 6D).

To visualise the functional synergy of the 45 overlapping

upregulated DEGs (from Figure 6B) which define the NK-high

group, the Search Tool for Retrieval of Interacting Genes/

Proteins (STRING) platform was used to construct a protein-

protein interaction (PPI) network (Figure 6E). Consistent with

DE results, the PPI network was primarily centred around CC-

and CXC-family chemokine ligands (CCL5, CCL4, CCL8,

CXCL9, CXCL10, CXCL11, CXCL13, CXCL18) as well as
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cytolytic effectors (GNLY, GZMH, GZMK, GZMB, GZMK,

NKG7, PRF1). A minor node related to antigen processing

and presentation (HLA-DMA, HLA-DMB, HLA-DPA1, TAP1,

CD74) may point towards a concomitant activation of effector

T-cells in the NK-high group; however, chronic antigen

stimulation is also known to induce lymphocyte exhaustion,

resulting in reduced cytotoxic function (56).

Collectively, these data indicate that the NK-high group is

defined by strong chemotactic signalling and high cytolytic

activity. As these genes are signposts of an immune-active

microenvironment, their upregulation in the NK-high group

suggests that the NK cell signature selects for functionally active

NK cells, rather than merely NK cell presence.
D

A B

E

C

FIGURE 6

NK score is associated with high chemokine and cytolytic activity. (A) Scatterplot of the LogFCs of genes comparing NK-high and NK-low groups in
TCGA and GSE39582 datasets; Genes that were differentially upregulated (red points) or repressed (blue points) in both datasets are highlighted. DEGs
were defined as those with adjusted p-value < 0.05 and absolute LogFC > 1 or LogFC < -1. (B) Venn diagram of upregulated (upper) and down-
regulated (lower) DEGs identified in (A). (C) Barcode plots showing enrichment of genes in the “NK cell mediated immunity” gene set (GO:0002228) in
NK-high samples in both data sets (D) PCA plot of top 50 most significant GO terms in the NK-high group, distributed by semantic similarity of genes
within each term (E) STRING network analysis of protein-protein interactions between the overlapping upregulated DEGs from (A), coloured by
biological process. Thickness of the connecting line indicates the strength of evidence for the predicted interaction. GO, gene ontology.
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High NK score is associated with
improved survival outcomes and other
clinical parameters

Given that NK cell load has been associated with better

patient prognosis in CRC (15, 17), we next performed Kaplan-

Meier survival analysis to determine whether signature

expression was associated with survival probability. Due to

significant survival differences between patients with a primary

or metastatic disease, we focussed only on those patients with

Stage I-III CRC. For all survival analyses, patients were stratified
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by NK score where “NK-High” and “NK-Low” are defined as

samples above and below the median NK score, respectively.

For the TCGA-COAD cohort, the NK-High group had

significantly increased disease-free interval (DFI; defined as the

period from date of diagnosis until a tumour progression event

e.g. locoregional recurrence or distant metastasis) as compared

with the NK-Low group (Figure 7A, log rank p-value = 0.0054,

p-value from multivariate Cox regression model [accounting for

age, stage and MMR status] = 0.02). Similarly, the GSE39582

cohort exhibited a trend towards significantly prolonged

recurrence-free survival (RFS), defined as the period between
D

A B

E

F G H

C

FIGURE 7

NK score is associated with survival outcome and other clinical parameters. Kaplan-Meier survival curves for patients stratified by NK score
(where “NK-High” and “NK-Low” are defined as samples above and below the median NK score, respectively) for Stage I-III CRC patients in the
(A) TCGA-COAD (DFI) and (B) GSE39582 (RFS) cohorts. Survival differences were tested using both log-rank and multivariate Cox proportional
hazards models (adjusted for age, tumour stage and MMR status) with corresponding p-values indicated. (C) Boxplots of association of NK score
with CMS status and (D) mutational load in TCGA-COAD patients. (E) Boxplots of association of NK score with MSI (F) CIMP (G) BRAF and
(H) KRAS status in GSE39582 patients. (Student’s T-test; **p-value < 0.01; ***p-value < 0.001; ****p < 0.0001). DFI, disease-free interval; RFS,
recurrence-free survival, MMR, mismatch repair; CIMP, CpG island methylator phenotype.
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surgical resection and a tumour progression event, at the

univariate level (Figure 7B, log rank p-value = 0.053). There

were no significant differences in overall survival (OS; Figures

S7A, C) nor progression-free interval (PFI; Figure S7B) between

the NK-High and NK-Low groups in either dataset.

We next interrogated the relationship between NK score and

various clinical and molecular parameters such as patient

history, molecular subtype, and driver mutation status (see

additional analyses in Supplementary Data). In both the

GSE29582 (Figure S8A) and TCGA (Figures S9B, C) cohorts,

NK scores were increased in early-stage disease (Stage I-II) as

compared with late-stage disease (Stages III-IV). In the TCGA

data, NK scores were considerably enriched in the immunogenic

CMS1 subtype (Figure 7C) and in those tumours with higher

mutational load (Figure 7D). In GSE29582, high NK score was

significantly increased in those patients with MSI (Figure 7E)

and CpG Island Methylator Phenotype (CIMP+; Figure 7F)

disease. This was corroborated in the TCGA data (Figures

S9A, B), where high NK score was also significantly enriched

in those with MSI-associated clinical parameters such as tumour

hypermutation (Figure S9D) and MLH1 silencing (Figure S9E).

With respect to CRC driver mutations, NK score was

significantly enriched in those patients with BRAF mutant

(Figure 7G) or KRAS wildtype (Figure 7H) genotypes,

although there was no association with TP53 status (Figure

S8D). There was no association between NK score and tumour

characteristics such as tumour location (Figure S8B; distal versus

proximal colon) and histological subtype (Figure S9F; mucinous

vs non-mucinous). Similarly, no association was found between

NK score and factors related to clinical history including

adjuvant chemotherapy status (Figure S8C), prior CRC

diagnosis (Figure S9G) or evidence of synchronous disease

(Figure S9H). In sum, these results support the clinical utility

of using this newly derived NK cell signature in the context

of CRC.
Discussion

Bioinformatic approaches which allow for the deconvolution

of immune cell subsets from bulk sequencing data have

revolutionised our ability to assess the immune landscape of

individual tumours. Transcriptomic signatures which predict

intra-tumoral NK cell infiltration have been shown to indicate

improved patient survival in various cancers (30, 31). However,

despite accumulating evidence that NK cell load is prognostic in

CRC, there are currently no extensively curated NK cell

signatures explicitly designed for use in the context of CRC.

Here, through extensive computational curation of

established NK cell-related genes with putative markers

discovered through DE analysis of various bulk RNAseq and

scRNAseq datasets, we define a comprehensive NK cell signature

specific for CRC samples. Survival modelling in two large
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cohorts of primary CRC patients indicated that NK signature

expression is associated with prolonged progression- and

recurrence-free intervals, consistent with previous reports on

the beneficial prognostic impact of NK cell infiltration in other

solid cancers (57). That these metrics are associated with tumour

progression (rather than overall survival) may relate to the fact

that NK cells are believed to play a greater role in the

suppression of metastases rather than the prevention of

primary tumours (58, 59).

Although the NK cell signature presented herein is not the

first of its kind, we believe that it is the most specific and the

most extensively curated NK cell signature for the precise

identification of the wide range of NK cell subsets in CRC

samples due to its derivation in the context of this tumour type.

Practical limitations have meant that most NK cell gene

signatures, including that employed in the widely used

CIBERSORT immune cell deconvolution tool, were curated

using NK cells isolated from the peripheral blood. As NK cells

exhibit tissue-specific phenotypes (40, 42, 60), and the tumour

microenvironment is known to rewire NK cell transcriptional

programs (60–62), it is difficult to assess how accurately these

pre-existing NK cell signatures perform when extrapolated for

use in the context of cancer. Moreover, striking differences in the

transcriptomic profiles of circulating NK cells versus tumour-

infiltrating NK cells from the same patients have also been

reported (62), emphasising the importance of using scRNAseq

data from tumour-infiltrating NK cells to faithfully derive a

reference transcriptomic profile for CRC-associated NK cells.

Another issue facing pre-existing NK cell signatures has

been a potential lack of specificity. For example, although a four-

gene signature (composed of NCR1, PRF1, CX3CL1 and

CX3CR1) was shown to accurately distinguish NK-high vs

NK-low subgroups in clear cell renal cell carcinoma (31), these

genes are ubiquitously expressed by many immune cell types.

More broadly, the transcriptional programs of NK cells are

highly overlapping with those of multiple T-cell subsets,

particularly gd-T-cells (63). Numerous studies have

demonstrated that several archetypical NK cell markers

including NKG2A (64), NCRs (65, 66) and various KIRs (67)

are expressed by both traditional ab- and unconventional gd-T-
cells. Our strategy of prioritising genes based on their NK-cell

specificity rather than only those with the highest expression

may therefore increase precision when teasing apart the NK cell

contribution from complex mixtures of other immune cells.

In both the TCGA and GSE39582 cohorts investigated, NK

scores were higher in patients with early-stage disease, aligning

with results of a large, pan-cancer meta-analysis reporting that

NK cell infiltration is lower in advanced-stage tumours (57).

Similarly, high NK score was associated with several clinically

useful molecular parameters such as MSI disease, CIMP positive

status and BRAF mutation which have each been previously

linked with high TIL and NK cell infiltration (68, 69). These

features are all defining characteristics of the highly
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immunogenic CMS1 molecular subtype of CRC (70). Moreover,

DE analysis between the NK high- and low-scoring patients

identified transcriptional and biological processes associated

with high cytotoxic and chemokine activity in samples with

high NK scores. As the signature efficiently discriminates

murine NK cells from other immune cell types, this signature

may also prove useful in prospective in vivo studies.

It remains unclear how optimally transcriptional signatures

validated in a particular cancer will perform in alternate tumour

types. Thus, future work may focus on cross-validating NK cell

signatures in contexts outside their tumour-of-derivation, and/

or on defining a pan-cancer NK cell signature which is less

sensitive to subtype-specific influences. Prospective studies may

also aim to dissect the transcriptional profile of intra-metastatic

NK cells and determine whether, or in what ways, this diverges

from that of primary CRC-infiltrating NK cells.
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