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Bronchiolitis in children is associated with significant rates of morbidity and

mortality. Many studies have been performed using samples from hospitalized

bronchiolitis patients, but little is known about the immunological responses

from infants suffering from mild/moderate bronchiolitis that do not require

hospitalization. We have studied a collection of nasal lavage fluid (NLF)

samples from outpatient bronchiolitis children as a novel strategy to unravel

local humoral and cellular responses, which are not fully characterized. The

children were age-stratified in three groups, two of them (GI under 2-months,

GII between 2-4 months) presenting a first episode of bronchiolitis, and GIII

(between 4 months and 2 years) with recurrent respiratory infections. Here we

show that elevated levels of pro-inflammatory cytokines (IL1b, IL6, TNFa, IL18,
IL23), regulatory cytokines (IL10, IL17A) and IFNg were found in the three

bronchiolitis cohorts. However, little or no change was observed for IL33 and

MCP1, at difference to previous results from bronchiolitis hospitalized patients.

Furthermore, our results show a tendency to IL1b, IL6, IL18 and TNFa increased

levels in childrenwithmild pattern of symptom severity and in those inwhich non

RSV respiratory virus were detected compared to RSV+ samples. By contrast, no

such differences were found based on gender distribution. Bronchiolitis NLFs

contained more IgM, IgG1, IgG3 IgG4 and IgA than NLF from their age-matched

healthy controls. NLF from bronchiolitis children predominantly contained

neutrophils, and also low frequency of monocytes and few CD4+ and CD8+ T

cells. NLF from infants older than 4-months contained more intermediate

monocytes and B cell subsets, including naïve and memory cells. BCR

repertoire analysis of NLF samples showed a biased VH1 usage in IgM
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repertoires, with low levels of somatic hypermutation. Strikingly, algorithmic

studies of the mutation profiles, denoted antigenic selection on IgA-NLF

repertoires. Our results support the use of NLF samples to analyze immune

responses and may have therapeutic implications.
KEYWORDS

nasal lavage fluid (NLF), cytokines, immunoglobulins, B lymphocytes, monocytes,
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Introduction

Bronchiolitis is a common respiratory pathology with

significant rates of morbidity and mortality that predominantly

affects children. The clinical manifestations of this condition

involve acute inflammation of the upper and lower respiratory

airways, which requires treatment to overcome the breathing

difficulties that arise and to clear the lung mucus (1).

Respiratory syncytial virus (RSV) infection of the lower

respiratory tract is the leading cause of bronchiolitis worldwide,

although metapneumovirus (MPV), influenza (FLU), adenovirus

(ADENO), rhinovirus (RHN), bocavirus and parainfluenza virus

(PFLU-1) may also be involved in this pathology (2–4).

Mucosal secretion of antibodies, cytokines and antimicrobial

proteins shapes the effective barrier of epidermal surfaces and

protects the respiratory tree against airborne pathogens and

foreign proteins. Pathological RSV-dependent lung

inflammation is the result of a complex cascade of events in the

respiratory tract, involving the activation and recruitment of

epithelial and immunocompetent cells, together with the

secretion of pro-inflammatory cytokines and chemokines (5, 6).

In conjunction, these events result in epithelial and ciliary

destruction, increased mucus secretion, bronchial obstruction

and air trapping (1, 5, 7). After RSV infection, a massive

infiltration of neutrophils (Nfs) has been detected in

bronchoalveolar lavage (BAL) samples from pediatric patients

(6, 8). These Nfs can limit virus replication when activated and

spread by releasing soluble mediators, and that regulate the

immune response by interacting with CD8+ T cells, NK

dendritic cells and B cells (9–11). However, activation/

degranulation of Nfs can also damage the immature lung

parenchyma during infanthood and may promote the onset of

asthma (8). Severe RSV infection also produces effective monocyte

mobilization, reducing the classical and non-classical monocytes

in the peripheral blood and also impairing IFNg and IL12 release

(12, 13). T regulatory cells (Tregs) are also involved in the immune

response of RSV-infected infants, their numbers decreasing in

peripheral blood (14). Furthermore, mucosal invariant T cells

(MAIT), NK, NKT and Tgd cells have been involved in the
02
production of different cytokines under infection pathologies

(15–17). In the case of hospitalized infants under 3 mo of age,

severe bronchiolitis is frequently correlated with the presence of

IL10-secreting B cells (Bregs) in nasopharyngeal aspirates,

dampening Th1 cytokine production (18).

Most of these studies were performed on samples from

hospitalized children. NLF samples may constitute an efficient

tool to study the immunological responses to respiratory

infections, as a non-invasive approach to trace in situ the

immunological features in outpatient children up to 2-years-old,

where access to blood samples is always difficult. Here we studied

NLF from non-hospitalized age-stratified children suffering a

mild/moderate bronchiolitis to assess the cellular and molecular

dynamics of their immune responses where there is few available

information. A comprehensive characterization of the cytokine

profile, antibody content, cell composition and the B lymphocyte

immunoglobulin heavy chain (IgH) repertoires of these NLF

samples, revealed a pronounced pro-inflammatory cytokine

profile in children with bronchiolitis. In addition, there was a

significant enrichment of immunocompetent CD45+ cells,

including both myeloid and lymphoid cells. Whereas Nfs,
inflammatory monocytes and CD4+ and CD8+ T cells were

always present in bronchiolitis NLF, B cell recruitment was

delayed, with overall evidence of an immature humoral

response and with B cell subsets present in children older than

2 mo. This integrated characterization of the humoral and cellular

responses in a non-invasive biofluid obtained from newborns and

infants, showed significant age-dependent maturational changes

in the nasal immune system.
Material and methods

Sample collection

NLF samples were obtained from infants on their first visit to

the pediatrician (between November-March 2018-2019) after an

episode of acute onset expiratory dyspnea, wheezing, respiratory

distress and poor feeding for 24-72 hours, suspicious of viral
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respiratory illness that did not require hospitalization. The

inclusion criteria were infants with their first respiratory

infection and without any prior medical treatment, with

clinical symptoms stratified as Group I (infants under 2-mo-

old) or Group II (infants between 2- and 4-mo-old), the peak

incidence for bronchiolitis being detected in those groups (19).

We also included infants from 5- to 24-mo-old with recurrent

respiratory infections in a third group (Group III) treated with

glucocorticoid and leukotrien blockers. The modified Tal score

was used to assess bronchiolitis severity (20). The infant

pathological status was also stratified on the basis of the score

as mild (score 0 to 5) and moderate (score >5-8). The exclusion

criteria for this study were a diagnosis of any other infection,

medical treatment or an incomplete program of vaccination.

Control samples were obtained from infants with no respiratory

conditions on routine visits to their pediatrician. The clinical

data for each group studied are summarized in Table 1.

The NLF were obtained as described previously (21). Briefly,

infants were seated upright with the head bent down. A syringe

loaded with 2 mL of saline solution (at room temperature) was

used to irrigate one nasal cavity, and 1 mL of this solution was

collected on the opposite nasal fossa. The manipulation is rapid,

easy to perform and well tolerated by the children. The NLF were
Frontiers in Immunology 03
kept at 4°C for less than 24 hr before processing. They were

centrifuged at 110 g for 5 min at 4°C (Eppendorf MiniSpin,

Merck Darmstadt, Germany) to separate the cellular content

from the supernatant as described (21). The supernatants were

aliquoted and frozen at -80 °C, whereas the cells were separated

in two aliquots, one as pellet to perform next generation

sequencing (NGS) analyses and the other as cell suspension

analyzed immediately by flow cytometry. Control blood samples

were obtained from adult donors. Peripheral blood mononuclear

cells (PBMCs) were isolated by centrifugation through Ficoll-

Paque™ gradient (GE Healthcare, Connecticut, EEU). NLF and

PBMC cell suspensions were washed and counted with the

trypan blue dye.
Virus detection in NLF

RSV was initially determined in NLF by the pediatricians

using a rapid RSV test (Quidel®, San Diego, CA, USA). This test

detects viral fusion protein, with a sensitivity of 83% for NLF

samples. In addition, viral nucleic acids were extracted from 200

µL of the NLF supernatants using NUCLISENS® EASYMAG®

(bioMérieux, Lyon, France) according to the manufacturer´s
frontiersin.org
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TABLE 1 Clinical data.

Bronchiolitis Controls p

GI GII GIII GI GII GIII

n 16 18 19 12 16 18

Age (days)
Median ± SEM

32.3 ± 7 99 ± 8.3 332 ± 49 37.1 ± 7 100 ± 7.5 512 ± 38 ns

Gender M/F 10/6 11/7 12/7 7/5 8/8 10/8 ns

Weight at birth (Kg)
Median ± SEM (IQR)

3.21 ± 0.09
(2.9-3.6)

3.40 ± 0.09
(2.6-3.8)

3.32 ± 0.12
(3-3.7)

3.35 ± 0.14
(3.0-3.6)

3.22 ± 0.12
(2.7-3.5)

3.3 ± 0.11
(3.1-3.5)

ns

Weeks of gestation
Median ± SEM (IQR)

39.06 ± 0.27
(38.2-40)

39.42 ± 0.30
(38.6-40)

39.38 ± 0.32
(38-40.2)

39 ± 0.27
(38-40)

39.33 ± 0.28
(38-40)

39.7 ± 0.3
(38-41)

ns

Feeding1 7/9 10/8 13/6 10/2 11/5 14/4 0.0322

Days of symptoms
Mean ± SEM

3.47 ± 0.54 2.67 ± 0.31 2.20 ± 0.30 NA NA NA 0.0418

Modified Tal score
Mild/Moderate (%)

11/5
(69%)

16/2
(88%)

12/7
(63%)

NA NA NA ns4

Viral content in supernatant

Virus+
(%)

9
(56%)

7
(38%)

13
(68%)

0
(0%)

1
(6.2%)

5
(27%)

ns4

0.0001

RSV 7 4 5 0 0 0 NA

MPV 0 0 0 0 0 0 NA

FLU 1 0 2 0 0 0 NA

ADENO 0 1 0 0 0 1 NA

RHINO 0 0 4 0 1 4 NA

Coinfections 16 27,8 27,9 0 0 0 NA
Symptoms: pulmonary distress, runny nose, cough, wheezing. All patients have followed the vaccination program and their neonatal health is normal (no chronic pulmonary pathology, no
cystic fibrosis, no bronchopulmonary dysplasia, no congenital lung malformations, no cardiopathies). Data were analyzed using non-parametric Kruskal-Wallis, Mann-Whitney fo
intragroup analysis and Chi-square for categorical comparisons. ns, represents comparisons between age-matched cohorts.
1Feeding (maternal/partial maternal with artificial). 2Chi-square GI Bronchiolitis/Control. 3Non-parametric Kruskal-Wallis between Bronchiolitis GI and GIII.4 Chi-square between
Bronchiolitis groups.5Chi-square between Bronchiolitis/Control. Coinfections:6FLU, RHINO; 7RSV, MPV;8ADENO, RHINO; 9RSV, ADENO.
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instructions. PCR multiplex for 21 types and subtypes of

respiratory viruses were performed using the CLART1® Fast

PnenumoVir platform (Genomica, Madrid, Spain) including

RSV, MPV, FLU, ADENO and RHN. The positive correlation

between the rapid RSV testing and laboratory RSV-PCR

detection was over 95% (data not shown).
Cytometric bead array (CBA)
determination of cytokine and IgG
subclasses in NLF

A 13-multiplex cytometric CBA (IL1b, IFNa2, IFNg, TNFa,
MCP1/CCL2, IL6, IL8/CXCL8, IL10, IL12p70, IL17A, IL18, IL23

and IL33: Biolegend, CA, USA), and human IgG isotype bead

array (IgG1, IgG2, IgG3 and IgG4: Biolegend) were used to

quantify the cytokines and IgG isotypes in NLF samples. The

determinations were performed in duplicate according to the

manufacturer´s instructions. Samples were run on a CANTO I

(BD Biosciences, San José, CA, USA) cytometer and the

calibration curves were above r2 0.97.
Immunoglobulin (Ig) determination
by ELISA

IgM, IgGs and IgA were measured in the NLF supernatants

by ELISA. Briefly, 96-well plates (Nunc, Rochester NJ, USA)

were coated with unlabeled goat-anti human Igs (10 µg/ml:

Southern Biotechnology Birmingham AL, USA) and they were

then blocked with Phosphate buffered saline (PBS,

BioWhittaker, Lonza Group Basilea Switzerland) + 0.5%

gelatin. The supernatants were thawed and serial dilutions in

the same buffer were added to the wells in duplicate. The plates

were then incubated with biotinylated goat anti-human-IgM,

-IgG or -IgA (Southern Biotechnology), and subsequently with

streptavidin-peroxidase (Southern Biotechnology). The ELISA

plates were revealed with 0.5M O-phenylenediamine (Sigma-

Aldrich St. Louis MI, USA) and the reaction was stopped with

3N SO4H2. OD values were obtained at 450 nm and standard

curves were generated using purified myeloma proteins for

human IgM, IgA (Southern Biotechnology) and IgG1 (a

generous gift from Dr E. Fernández, Hospital La Princesa,

Madrid). The Ig concentrations were calculated using the

GraphPad Prism 5.0 software.
Flow cytometry and antibodies

Single cell suspensions were prepared in staining buffer (SB,

PBS supplemented with 2.5% heat inactivated Fetal Calf’s Serum,

Gibco, Waltham, MA, USA). The cells were stained with the

following monoclonal antibodies: APC/Cy7-labeled anti-CD45
Frontiers in Immunology 04
(clone HI30) and anti-CD27 (clone LG.3A10); PE/Cy7 anti-CD4

(clone OKT4) and anti-CD43 (clone CD43-10G7); PE anti-

CD16 (clone 3G8); Alexa Fluor 488 anti-CD20 (2H7) and

anti-CD14 (clone HCD14); APC anti-CD8a (clone HIT8a);

Alexa Fluor 700 anti-CD19 (HIB19); PerCP/Cy5.5 anti-CD70

(clone 113-16); Alexa Fluor 647 anti-IgD (clone IA6-2); BV605

anti-CD5 (clone L17F12). All antibodies were from BioLegend

(San Diego, CA, USA) except the anti-CD16 (Immunostep,

Salamanca, Spain). Irrelevant isotype-matched monoclonal

antibodies (BioLegend) were used as controls. Cells were fixed

for 15 min at RT in 2% paraformaldehyde in SB. The cell

viability was determined with the LIVE/DEAD Fixable Violet

Dead Cell Stain Kit violet-510 kit (Invitrogen, Carlsbad CA,

USA). The cells were analyzed in a LRS Fortessa X-20 (BD

Biosciences) cytometer, using the FlowJo v10.7.1 (TreeStar,

Ashland, OR, USA) and DIVA v8.0 (BD Biosciences) software

packages. The gating strategy is described for a representative

NLF sample in Figure S2A. Briefly, after gating out low FSC

channels (dump), doublets (SSC-H/SSC-W and FSC-H/FSC-W)

and dead cells were excluded. The anti-CD45 antibody was used

to identify immune cells.
Cell subpopulations determined by
t-SNE analysis

Raw flow cytometry files were pre-processed in FlowJo

v10.7.1, and live CD20+ B cells were gated and exported as

single FCS files that included compensated parameters. These

processed FCS files were submitted in FlowJo to the R package

plugin DownsampleV3 (to reduce the populations to fixed

number of 1,000 cells from each sample). The reduced

populations were exported again as single FCS files and then

were merged as a unique file for PBMCs (n = 3), NLF samples

from Group II (n = 5) and Group III (n = 5) by using the

concatenate tool of FlowJo. The t-SNE analysis was then

performed with default parameters, including 1,000 iterations

and a perplexity parameter of 30, using IgD and CD27 as

markers. The t-SNE maps were generated from Ad-PBMCs

and NLF samples from Group II and Group III (22) which

were displayed to identify IgD+CD27- naïve B cells, IgD-CD27-

DN B cells (defined as atypical memory B cells) and CD27+

memory B cells (IgD-, IgD+). B1 cells were defined as

CD19+CD27+CD70-/-CD43+ CD5+/- (18, 23) and they

analyzed in a separate panel.
Quantitative PCR and Ig-NGS on
NLF samples

Total RNA was extracted from the NLF cell pellets with the

RNeasy Micro kit (Qiagen, Hilden, Germany), according to the

manufacturer´s instructions. Oligo (dT) primed cDNAs were
frontiersin.org
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then prepared with AMV reverse transcriptase (Promega) at 42 °

C for 1 h, and subjected to RT-qPCR with specific primers

(Table S1). The SsoFast Eva Green® Supermix (Bio-Rad

Hercules, CA, USA) was used for Pax5 and Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) on a CFX96 Real-Time

System (Bio-Rad) performed in duplicates. The Bio-Rad CFX

Manager software was used to obtain the CT of each reaction

(24). Data were normalized to GAPDH mRNA in each sample,

and the results expressed as the 2-DDCT referred to adult PBMC.

To analyze the VDJ-C rearrangements in B cells from the NLF,

the cDNA obtained was PCR amplified with the 1U Supreme

NZYTaq II DNA polymerase (NZYTech, Lisboa, Portugal) in a

PTC-200 DNA Engine cycler (Bio-Rad). Rearranged alleles were

amplified using VH primers covering the IGHV1 to IGHV6

families, and CH-specific primers (Table S1) in separate tubes,

all including multiple identifier sequences (MID) as described

previously (25) using the MiSeq sequencer. Amplicons were

prepared with the Nextera XT Index v2 kit (Illumina Inc, San

Diego, CA, USA), as indicated by the manufacturer, purifying

the PCR amplicons with epMotion 5075 (Eppendorf) using

Agencourt AmPure XP magnetic beads (Eppendorf). The

amplicons were quantified by Quantifluor One dsDNA System

in a Quantus Fluorimeter (Promega) and the samples were

pooled in equal quantities for sequencing with the MiSeq

Reagent kit v2 (Illumina).
Bioinformatics

Libraries were obtained by 500 bp paired-end sequencing on

the MiSeq platform (Illumina). The forward and reverse reads

were pre-processed with VDJPipe (26, 27) (merging sequences

by filtering to minimum average quality score of 35, maximum

homopolymer of 20 and collapsing in files with total fasta

sequences) (26, 27) using the VDJ-server Release 1.1.2 (https://

vdjserver.org/). Successfully paired sequences were sent to

IMGT/HighV-Quest version 3.4.17 (28) for annotation of the

CDR3 and full-length VDJ regions. The IMGT output files were

analyzed in ARGalaxy (29). Only complete productive

sequences, without ambiguous bases, or sequences present at

least twice, were included in the analysis as a single sequence. As

few productive sequences were obtained in some samples, only

those containing more than 15 different sequences were used to

assess the individual IgH repertoires. The SHM & CSR pipeline

was used to analyze the SHM patterns, as well as antigen

selection (including BASELINe (30)) and clonality. Starting

from the IMGT output obtained, CDR3 graphics were

obtained using the R package ggplot2.Alakazam (27). Lineage

trees were created based on a minimal substitution model, with

the multiple alignments achieved with MUSCLE (31), curated

with Gblocks (32) and tree inference achieved with PhyML 3

(33). The tree Netwick display was obtained using iTool v.4 (34).
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Statistical analyses

The data are presented as the means ± SEM or the median ±

Q1 and Q3 interquartile range (IQR). All statistical analyses

were performed using GraphPad Prism 8.0 software after testing

the normality of the data distributions with the Kolmogorov-

Smirnov and D`Agostino-Pearson tests. The data were

compared using Mann-Whitney test for non-parametric data

and for parametric data using two-tailed unpaired Student`s t-

tests with Welch´s correction and ANOVA for multiple

comparisons. Categorical data comparisons were performed

using Chi-square test. Two-tailed Pearson and Spearman

corre la t ion coefficients were ca lcu la ted with 95%

confidence interval.
Results

Experimental design, clinical parameters
and determination of respiratory viruses
in NLF samples

NLF samples were obtained from outpatient children

diagnosed with bronchiolitis (n = 53), and from a control

group of children in the same age ranges (n = 46, Table 1).

The samples were divided into three groups: GI newborns under

2-month-old, GII infants between 2-4-month-old and GIII

infants between 4-24-month-old (Figure 1). The bronchiolitis

symptoms included pulmonary distress, runny nose, cough and

wheezing, and the severitycorresponded to mild or moderate

pathology (20). Feeding regime of GI cohorts was different

among controls (more breastfeed) and bronchiolitis, and also

the GIII bronchiolitis infants, with recurrent respiratory

infections, were associated with a shorter time of symptom

onset. No differences were found among bronchiolitis groups

in gender distribution (overall 62% males, range from 61% to

69% in GII and GIII) or in other clinical parameters, such as

weight at birth, duration of gestation or vaccination protocols

(Table 1, and not shown).

The cytokine and Ig content was ascertained in NLF

supernatants from patients and controls, as well as the

respiratory viruses. The immune cell content of the NLF was

identified with the CD45 pan-hematopoietic marker, to

distinguish hematopoietic cells, and the different immune cell

populations were further characterized by flow cytometry. Cell

pellets were used to prepare RNA to analyze the IgH repertoire

by NGS.

The virus content results showed that 29 (54,7%) NLF from

patients contained respiratory viruses, as assessed by qPCR

analysis (corresponding to 56%, 38% and 68% in GI, GII and

GIII respectively) and also 6 control samples (13%, Table 1). In

agreement with previous studies, RSV was the most frequently
frontiersin.org

https://vdjserver.org/
https://vdjserver.org/
https://doi.org/10.3389/fimmu.2022.1011607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cortegano et al. 10.3389/fimmu.2022.1011607
detected virus in the patient groups, being found at a similar

frequency as in other studies on outpatient samples (35), and

MPV, FLU, RHINO and ADENO were also detected in some

samples. By contrast, RSV, MPV and FLU were absent in all

control samples analyzed.
Increased pro-inflammatory
cytokines in NLF samples in mild
bronchiolitis pathology

Increased pro-inflammatory cytokines have been reported in

response to RSV infection in the respiratory tract of both

humans and mice (5, 7). Thus, we analyzed the cytokine

profile of the NLF samples using cytometric bead arrays

(CBAs). Pro-inflammatory cytokines IL1b, IL6, TNFa, IL18
and IL23 were increased in the bronchiolitis samples relative

to their respective control cohort (Figure 2A). Interestingly, no

significant differences in IL33 were detected (Figure 2A). There

was also an augmentation in the anti-inflammatory cytokine

IL10 and the regulatory IL17A (Figure 2B), and in IFNg when
compared with their age-matched controls. Little or no change

among groups was seen for IFNa2, MCP1 or IL12p70

(Figure 2C, Figure S1A and data not shown), IL8 was very

high in all samples, preventing comparisons with those from

controls. In summary, bronchiolitis NLF displayed a

pronounced pro-inflammatory cytokine profile, and the
Frontiers in Immunology 06
presence of the regulatory cytokines IL10 and IL17A, in the

context of a predominant pro-inflammatory response suggests

they participate in the local control of immunopathological

injury (36, 37). Children with mild pattern of symptom

severity displayed significant elevated levels of IL6 and TNFa
(Figure 2D), highlighting the clinical relevance of these cytokines

in these patients. When the cytokine content in NLFs were

compared relative to the presence of RSV, other virus, or without

detectable virus, RSV+ samples contained lower levels of IL1b,
IL18 and IFNa2, as well as a tendency for IL6 and IL33

(Figure 2D and Figure S1A). In addition, no differences on

cytokine production were observed among samples based on

gender (not shown).
Ig levels are higher in NLF samples from
mild/moderate bronchiolitis infants

When IgS were measured in the NLF supernatants, IgM, IgA

and IgG were detected in all the NLF samples analyzed from

both patients and controls (Figure 3A), with higher levels in all

three bronchiolitis groups than in their age-matched controls.

Furthermore, increased IgG1, IgG3 and IgG4 isotypes

(Figure 3B) were found in patient samples in comparison with

their age-controls, and remained unchanged in the case of IgG2.

IgA levels were higher in NLF samples from children in which

no viruses were detected (Figure 3C). By contrast, no differences
FIGURE 1

Scheme summarizing the study design. NLF samples were obtained from the indicated groups. Supernatants were used for RT-PCR, CBA and
ELISA analysis to determine the viral content, cytokine profile and antibody composition, respectively. The cells recovered from NLF from
bronchiolitis patients were used for immunoprofiling by using flow cytometry and for BCR IgH repertoire analyses after RNA extraction, cDNA
preparation, amplification, barcoding and NGS sequencing.
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in IgM and IgG levels were found when assessed on the basis of

symptom severity or of virus detection. In summary, NLF

samples exhibited higher secretion of IgM, IgGs (but not

IgG2) and IgA in all groups studied compared with their

respective controls, and in the case of IgA, increased levels

were found when not bearing detectable viruses.
Nfs predominate in the NLF from
bronchiolitis infants

We analyzed the CD45+ cell content of the NLF in

combination with a larger panel of mAbs. The gating strategy

for flow cytometry studies was optimized for NLF samples

(Figure S2A). Less than 103 cells/sample, predominantly
Frontiers in Immunology 07
CD45-, were detected in the NLF from control infants

(Figure 4A), as described elsewhere (21). By contrast, most of

the samples (38 out of 39 analyzed) from the bronchiolitis

patients contained CD45+ cells, with a significant enrichment

in the GIII NLF (Figure 4A). Bronchiolitis NLF contained

substantia l numbers of myeloid cel ls , most ly Nfs
(CD14lowCD16++, Figures 4B, C), as described in BAL samples

from children infected with RSV (6). There were not changes in

Nf numbers among the groups, all of them presenting high IL8,

which is the main chemokine to attract Nfs (38). By contrast,

Nfs increased their complexity (SSC) from GI to GIII as

indicative of their maturation, whereas monocytes did not

(Figure 4B and Figure S2C). Since pro-neutrophil factors, such

as IL17 and IL6 are elevated in NLF samples, we evaluated their

relationship with Nf counts in the NLFs (Figure S1B). A
A B

D

C

FIGURE 2

Bronchiolitis NLF samples contain elevated levels of cytokines. Cytometric bead array (CBA) determination of a panel of cytokines in the NLF
supernatants from controls and bronchiolitis patients: GI (controls n = 12, bronchiolitis n = 16), GII (controls n = 16, bronchiolitis n = 18), and
GIII (controls n = 18 bronchiolitis n =19). The scatter dot plots represent the individual values, and the mean ± SEM is depicted for each group.
Statistical analyses were performed using non-parametric Mann-Whitney sum rank test or the unpaired t-test with Welch´s correction. (A)
Quantification of the pro-inflammatory cytokines IL1b, IL6, TNFa, IL18, IL23 and IL33. (B) Determination of IL10 and IL17A, and (C) IFNg and
IFNa2. (D) Analysis of IL1b, IL6, TNFa, IL18 and IL10 in samples according to the severity of bronchiolitis (based on the Tal modified score), mild
(n = 37) or moderate (n = 16) and the presence/absence of respiratory viruses: absence of virus, (Vir-, n = 24), presence of RSV (RSV+, 15 RSV
alone and 3 coinfections, n = 18), presence of other virus (OtherV+, n = 11, including 9 single infections and 2 coinfections without RSV).
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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correlation for IL6 and not for IL17A, and the number of Nfs
was found, which may reflect a role for IL6 in the recruitment

and activationof Nfs, as shown previously (39).

Also, monocytes were higher in infected NLF samples from

GIII, and interestingly the chemotactic factor MCP1 correlated

with the numbers of monocytes (Figure S1B). Based on their

CD14 and CD16 expression, in combination with other

receptors, human and mouse monocytes are defined as

classical (cMon: CD14++CD16-), intermediate monocytes

(inMon: CD14++CD16+) and non-classical monocytes (ncMon:

CD14lowCD16+), with specific inflammatory and regulatory

profiles (40–42). In our analyses, as only considering CD16

and CD14 it was not possible to separate accurately ncMon from
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Nfs in the NLF samples, and therefore, we focused on cMon and

inMon. Frequencies of cMon were similar in the three

bronchiolitis cohorts. However, inMon frequencies were

higher in NLF from GIII children compared to that from GI

and GII, and this led to a shift in the cMon towards inMon

profile in the GIII NLF compared to GI+GII. (Figure 4D).

Finally, the NLF Nf and Mon content did not differ

significantly in relation to disease severity (Figure S2D). All

these data led us to conclude that the NLF from bronchiolitis

affected infants in perinatal life contains mainly Nfs. Also, Mon

were present in NFLs, in which there is a differentiation

trajectory towards the inMon phenotype as the infected

children age and/or suffer repetitive infections.
A

B

C

FIGURE 3

Bronchiolitis NLF samples contain elevated levels of Immunoglobulins. IgS were quantified in NLF supernatants from controls and bronchiolitis
patients. The scatter dot plots represent individual values, and the mean ± SEM is depicted for each group. Statistical analyses were performed
using non-parametric Mann-Whitney sum rank test. (A) IgM, IgA and IgG were determined by ELISA GI (controls n = 12, bronchiolitis n = 14), GII
(controls n = 15, bronchiolitis n = 12), and GIII (controls n = 15 bronchiolitis n =14). (B) Cytometric bead array determination (CBA) for IgG1,
IgG2, IgG3 and IgG4. GI (controls n = 10, bronchiolitis n = 11), GII (controls n = 14, bronchiolitis n = 9), and GIII (controls n = 14 bronchiolitis
n = 10). (C) Ig isotype quantification based on mild (n = 29) and moderate (n = 11) bronchiolitis severity, and on the presence/absence of
respiratory viruses (absence of viruses, n = 17; presence of viruses, n = 19). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Age-dependent heterogeneous T and B
lymphocyte content of NLF

A population of CD45+CD14-CD16- cells with low SSC/FSC,

corresponding to lymphoid cells, was also identified in the NLF

(Figure 4B). Although the lymphoid compartment is minor

compared to the myeloid component, an enrichment of

lymphocytes was detected in GIII NLF samples (Figure 4C).

As expected (43, 44), we detected both CD4+ and CD8+ T cells in

the bronchiolitis NLF (Figures 5A–C), with overall more CD4+

than CD8+ cells (n = 33, Figure 5B). When analyzed according to

age, percentages of CD4+ cells were lower in GIII samples
Frontiers in Immunology 09
relative to GI and GII samples and the frequency of CD8+

cells was higher in GIII. (Figure 5C).

Few CD20+ B cells were found in GI NLF, whereas their

number augmented in the NLF from GII and GIII infants

(Figures 5D, E). The presence of B cells in these NLF samples

was confirmed by Pax5 transcription factor detection, the levels

of which correlated with the number of B cells (Figures 5F, G).

The B cell composition of the NLF was analyzed (22), revealing

the presence of different B cell populations in NLF samples

(Figure 6). CD19+CD20+ cells negative for IgD and CD27 (DN

cells) and IgD+ naïve B cells predominate. These DN B cells have

been reported as atypical memory or tissue-based memory cells,
A
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D

C

FIGURE 4

Presence of myeloid cells in NLF from bronchiolitis patients. Flow cytometry was performed on NLF bronchiolitis and control samples (n = 39
and n = 46, respectively) stained with anti-CD45, anti-CD16 and anti-CD14 MonAbs. Quantification of the myeloid cell subpopulations was
performed for each group analyzed and is shown in the figure as relative (% of CD45+ cells). Each dot represents an individual NLF sample, also
showing the mean ± SEM. (A) Left, representative dot plots showing the FSC-A and SSC-A in a patient sample (up) and a control (down) NLF
sample after excluding the cell dump channels, doublets and dead cells (see Figure S2A). Middle, representative histograms of the CD45 staining
to identify hematopoietic cells: Shown inside are the relative number (%, mean ± SEM, n =39) of CD45+ cells in bronchiolitis NLF. Control
samples contained less than 103 CD45- cells and therefore they are not shown in the following panels. Bronchiolitis samples contained 2 x 106

± 0.6 live cells (GI), 2.73 x 106 ± 0.7 live cells (GII) and 11.4 x 106 ± 2.6 live cells (GIII). Right, the plot shows the quantification of CD45+ cells in
the NLF from GI (n = 15), GII (n = 11) and GIII (n = 13). (B) Upper left, representative dot-plot of gated CD45+ cells analyzed with anti-CD14 and
anti-CD16 to discriminate neutrophils (Nf), classical monocytes (cMon, CD14++CD16-), intermediate monocytes (inMon, CD14++CD16+) and
lymphocytes (Lymph). Upper right, representative overlaid contour plot of gated CD45+ cells depicting the SSC-A and FSC-A analysis for
neutrophils (Nf, black), monocytes (Mon, brown) and Lymphocytes (Lymph, blue). Bottom, determination of the SSC-A of electronically gated
Nf and Mon in NLF samples. (C) Relative numbers (to CD45+ cells)of Nf, Mon and Lymph in each group as in panel (B). (D) Frequency of cMon
and inMon among CD45+ monocytes, and the cMon/inMon ratio (the latter as GI+II and GIII, n = 26 and n = 13, respectively). Comparisons
were performed using non-parametric Mann-Whitney sum rank test. *p < 0.05; **p < 0.01.
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that may follow an extrafollicular differentiation pathway (22).

Only small fractions of CD27+ memory B cells and also very few

CD27+CD70-CD43+CD5+/- B1 cells (Figures 6C, D) were found,

these latter at similar numbers than those described for

peripheral blood mononuclear cells (PBMC) from children

under 2-years-old (45, 46) and adults (47).

From all these data we conclude that in the NLF of

bronchiolitis children there is an age-dependent variation in

the lymphoid compartment, containing CD4+ and CD8+ T cells

from neonatal life, and distinct B cell subsets in infants older

than 2 mo of age.
IgH repertoires with low mutation
rates in NLF

RT-PCR amplification of isotype-specific IgH was performed

on cell pellets obtained from GII/GIII NLF, yielding IgM

amplification in 69% of the samples analyzed, and in 38% each

of IgG or IgA amplifications (data not shown). The IgH repertoire

was analyzed in these samples (Figure 7 and see Table S2) and not
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in these from NLF samples healthy donors, because they did not

contain CD45+ cells. Productive IgM-repertoires from NLF-

samples showed a higher usage of the VH1 family with respect

to IgA-repertoires, that had higher number of VH3 sequences

(Figure 7A and Figure S3).

The CDR3 length of the NLF repertoires of IgM, IgG and

IgA was similar (Figure S3D). Despite there was low sequence

diversity among the individual repertoires (Figure 7B), those

corresponding to IgM-sequences were higher, as confirmed by

the Shannon entropy index (Figure S3E). In terms of VH

mutations and R/S ratios (Figures 7C, D), IgM-repertoires

displayed lower mutations in VH regions and in AID targeted

hotspot RGYW motifs than IgA-repertoires (Figure 7E). In this

sense, antigen driven-selection, determined using the BASELINe

algorithm, showed that IgA sequences from NLF underwent

positive antigenic selection (Figure 7F, Figure S3F). Finally, a

clonal analysis tree performed in one sample (NLF62, Table S2)

for VH3-23.JH4, one of the most abundant clones in human

samples (25), showed intraclonal Ig switching (Figure 7G).

In summary, these results show the preferential usage of VH1

in IgM and IgG sequences of NLF bronchiolitis infants, with little
A
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FIGURE 5

Age-dependent increase of T and B lymphocytes in NLF samples from bronchiolitis patients. Flow cytometry was performed on NLF
bronchiolitis samples (n = 38) stained with anti-CD4, anti-CD8, anti-CD19 and anti-CD20 MonAbs. Quantifications were done on the lymphoid
gate described in Figure 4. Frequency of subpopulations relative to CD45+ cells in this gate are shown. (A) Representative contour plots from
GI-GIII NLF samples displaying the staining with anti-CD8 and anti-CD4 by flow cytometry. The dotted rectangles inside the plots indicate CD4+

and CD8+ T lymphocytes, and the numbers are the %, mean ± SEM of CD4+ and CD8+ cells. (B) Frequency of CD4+ and CD8+ cells in all NLF
samples analyzed. (C) Frequency of CD4+ and CD8+ cells in NLF samples from GI (n = 15), GII (n = 10) and GIII (n = 13) children. (D)
Representative contour plots displaying the staining with anti-CD20 and anti-CD19 to identify CD19+CD20+ B lymphocytes by flow cytometry.
Relative numbers of B cells (%, mean ± SEM) are indicated inside the plots. (E) Frequency of B cell numbers in NLF samples from GI (n = 12), GII
(n = 11) and GIII (n = 13). (F) Relative expression of PAX5 determined by RT-qPCR in NLF samples from GI (n = 9), GII (n = 8), GIII (n = 12). The
amount of Pax5 transcripts was calculated as the 2−DDCT relative to that of GAPDH and relative to adult PBMC values, performed in duplicates.
(G) Linear regression of Pax5 2−DDCT data and the number of CD20+ cells in NLF samples. In the graphs from panels (B, C and E–G) each dot
represents an individual sample and the mean ± SEM is also shown. Comparisons among groups were done using non-parametric Mann-
Whitney sum rank test. *p < 0.05; **p < 0.01; ****p < 0.0001.
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diversity and mild selection strength, except for IgA sequences.

Furthermore, intraclonal switching can be detected, suggesting

specific selection processes in mucosal territories from early stages

of infancy in the context of respiratory infections.
Discussion

This study presents an age-stratified analysis of nasal

mucosal immunity in bronchiolitis infants, having collected

NLF from children suffering their first infection and older

infants who have experienced repetitive respiratory infections.

Perinatal life and early infancy is a period of enhanced

susceptibility to pathogens due to the immaturity of immune

responses (48). The neonatal environment favors the down
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regulation of Th1 cytokine responses, with regulatory

cytokines such as IL10 and IL17 following a developmental

trajectory (49). These regulatory cytokines promote a Th2-

profi le and they are released by different cel lular

compartments, including subsets of myeloid and lymphoid

cells (50, 51). In our study there was an important increase in

pro-inflammatory cytokines (IL1b, IL6, TNFa, IL18, IL23) upon
infection in all the groups analyzed in comparison with age-

related control samples, as also seen for the immunoregulatory

cytokines IL10 and IL17A, and for Th1 IFNg NLF (Figure 8A).

IL17 plays a pivotal role in neutrophil responses (52, 53).

However, no significant correlation has been found between

IL17A and the number of Nfs in bronchiolitis NLF samples, at

difference to the positive correlation found for IL6, which has

been reported to have a dual role (pro-inflammatory and anti-
A
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FIGURE 6

B cell phenotype in NLF from bronchiolitis affected infants. Cell suspensions were stained with the following MonAbs: anti-CD20, anti-CD19,
anti-CD27, anti-IgD, anti-CD70, anti-CD43 and anti-CD5. Shown are contour plots of the indicated staining performed by using concatenated
files from adult PBMC (n = 3) and from NLF samples (n = 5). (A) Contour plots of the CD27 and IgD staining on gated CD20+ B cells. The
quadrants discriminate the B cell populations of naïve(IgD+CD27- Bn), DN (IgD-CD27-) and memory (CD27+ Bm, IgD- and IgD+). (B) Frequency
of each B cell subset relative (%) to the total CD20+ cells on individual NLF and PBMC samples. The data are presented as scatter dot plots with
the means ± SEM shown; GI (n = 7), GII (n = 7), GIII (n = 10), adult PBMC (n = 3). For comparison, the frequency obtained for adult PBMCs (Sanz
et al., filled triangle) and that of PBMCs from 1-24 mo-old children (Berroń-Ruiz et al., empty triangle) are shown. (C) Contour plots representing
CD5 versus FSC-A on gated CD19+CD27+CD70-CD43+ B1 cells. (D) Frequency of CD5- and CD5+ B1 cell subsets as the % of the total CD19+

cells. Filled square shows the frequency obtained on adult PBMCs (Rodriguez-Zhurbenko et al.). Data are represented as in (B); GI (n = 6), GII
(n = 7), GIII (n = 11), PBMC (n = 3). Data were compared using non-parametric Mann-Whitney sum rank test. *p < 0.05; **p < 0.01; ***p < 0.001.
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inflammatory) (54, 55). In NLF from infants hospitalized with

RSV bronchiolitis, elevated IL33, among other Th2 cytokines

and low levels of IFNg, was detected in the acute phase of the

disease (19, 56–58), predisposing them to allergic inflammation

and favoring eosinophilia. In contrast, our data showed no

increased levels of IL33 in mild/moderate infants.

Interestingly, some cytokines, including IL6 and TNFa (but

not IL33), were significantly enriched in patients with a mild

pathology. It is possible that these cytokines reflect the

engagement of an early innate immune response able to

effectively resolve the pathology and thus leading to a mild

symptomatology. In this sense, it has been proposed that

elevated levels of IL6, IFNg and IL10 among others, protect

against hypoxia in bronchiolitis (59). One of the limitations of

the present study is that we have focused on outpatient samples,
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and therefore there is a lack of hospitalized patients with a severe

pathology. We believe that the first antigenic encounters in the

respiratory mucosa might have an impact on future respiratory

infections in these cohorts, perhaps with a different profile than

in hospitalized children with severe pathology. In this sense, it

will be interesting to determine whether the children with mild/

moderate bronchiolitis are more/less prone to the development

of asthma, in comparison with children with severe

bronchiolitis. Also, it will be interesting to study NLF adult

samples to address the adult NALT immune responses to

respiratory viruses. Another limitation of this study relays on

the low presence of RSV in the NLF bronchiolitis samples. RSV

has tropism to higher and lower airways yielding mild symptoms

in the upper tract as opposed to severe in lower respiratory tract.

The low detection of virus that we found in NLF could be related
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FIGURE 7

BCR repertoire analysis in NLF. The NLF repertoires of VDJ- IgM (n = 9), -IgG (n = 4) and IgA (n = 4) rearrangements were determined after RT-
PCR-specific amplifications and sequencing by NGS. The obtained sequences were processed, cleaned and analyzed as indicated in Materials
and Methods (“Bioinformatics” section). (A) VH usage frequency on sequences from each individual repertoire of NLF samples. Shown are the
means ± SEM. See Table S2 for sequence numbers. (B) The diversity of the repertoires was calculated as the ratio between unique sequences
and functional sequences. Each dot represents the value for the repertoire of all sequences obtained in the same sample, and overlaid are box-
and-whisker plots showing the median, the first quartile to the third quartile and the minimum and maximum values. (C) VH mutations in IgS
repertoires. Data are represented as in (B). (D) The ratio of replacement (R) and silent (S) mutations located in the CDRs and FWRs is shown as
mean ± SEM. (E) Frequency of SHM hotspots in the AID motifs WRCY and RGYW. Data are shown as mean ± SEM. (F) Antigen selection strength
(quantified using the BASELINe algorithm). Data are represented as in (B). (G) Clonal tree obtained for the VH3-23-JH4 family clone identifying
IgM (n = 198), IgG (n = 113) and IgA (n = 46) sequences, from a single NLF sample. The analysis was performed based on a minimal substitution
model using MUSCLE software, with alignment curation using Gblocks and tree interference with PhyML. Data were compared using an
unpaired two tailed Student´s t-test. *p < 0.05; **p < 0.01.
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to the fact that we have collected these upper respiratory samples

in the first 24-48hr of infection, making it difficult to detect the

virus in the onset of mild/moderate pathology. On the other side,

NLF from most of bronchiolitis diagnosed patients had CD45+

cells, but none was found in the healthy control samples,

regardless the presence in these samples of other viruses

different from RSV, MPV, or FLU. This finding led us to

propose tracing CD45+ in NLF samples as an indicator of

NALT-immune responses associated with bronchiolitis

pathology. However, it is possible that age dependent cellular

composition changes may contribute to our results, since the

lack of CD45+ cells in the age-matched controls avoided

comparisons with them.

Nasopharynx-associated lymphoid tissue (NALT) is

related with the induction of mucosal immune responses

(60), and the activation of NALT that occurs in mice after

birth is regulated by the presence of environmental antigens
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and mitogens (61). The data presented here demonstrate the

age-dependent recruitment of distinct effector immune cells

(innate and adaptive cell populations) in NLF from infants

affected by bronchiolitis, indicative of NALT activation as a

consequence of respiratory infection (Figure 8B). We detected

a pronounced Nf accumulation in all bronchiolitis NLF

samples , as described for BAL samples (62). This

accumulation has been related to the antiviral action of Nfs,
involving the release of antimicrobial peptides, elastase,

myeloperoxidase and increased phagocytosis (8). Immature

granulocytes lacking pro-inflammatory proteins in their

granules are abundant in neonates (63), which are more

vulnerable to infection. Interestingly, Nf complexity in the

NLF from children increased with age in the context of

respiratory infections, as described (64). Also, cMon were

present in all the samples analyzed, although there were

more inMon in the NLF from GIII infants, a fact that might
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FIGURE 8

Scheme of the proposed age-dependent nasopharynx-associated lymphoid tissue (NALT) responses in children with mild/moderate
bronchiolitis pathology. The cytokine, immunoglobulin and cellular content in NLF samples varies with the age of the children affected with
bronchiolitis. (A) Pro-inflammatory and regulatory cytokines are present in all NLF bronchiolitis samples at higher levels than in these from
controls. (B) Heterogeneous combinations of CD45+ innate and adaptive cell types are detected in NLF from patients and not in controls.
Neutrophils (Nfs) are predominant in all NLF samples groups, which also contain classical and intermediate monocytes (cMon and inMon) and
lymphocytes, these two latter increasing in children older than 2 months (GII/GIII), in which activated Nfs (actNfs) with increased complexity
and cMon and inMon, T cells (CD4+ and CD8+) and CD19+ cells were found. (C) IgM, IgGs and IgA levels are present at higher amounts than in
age-matched controls. In addition, IgG levels highly augment in GIII infants. (D) Local B cell repertoires were determined by analyzing the
presence of VH rearrangements in NLF samples, which displayed IgA- sequences with low mutations but antigen selection in GII/GIII infants.
Created with BioRender.
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reflect the regulatory mechanisms implemented to overcome

the repetitive infections that define this group of children.

Secretion of IL6 and IL10 by differentiated macrophages has

been described in immunosuppressive tumor-associated

-macrophages, rheumatoid arthritis, asthma and regulating

epithelial integrity in the small intestine (65). Thus, it may be

feasible that differentiated macrophages present in the GIII

group have an immunoregulatory role in the respiratory

mucosa where there are higher numbers of monocytes.

Adaptive immune responses mediated by T cells were

evident in the newborn samples (GI) and they were

maintained over time. Depletion of CD4+ T cells in neonatal

RSV infected mice minimally affected the humoral responses

(66) and TFH and antibody responses are low in early life in

mouse models of RSV (67), indicating that neonatal antibody

responses against RSV are mainly T cell independent (66).

Several studies of the specific-adaptive immune response

against RSV were performed using a formalin-inactivated RSV

(FI-RSV) vaccine, which failed in human trials because of the

exacerbation of the disease after subsequent natural infection

(68). FI-RSV immunized mice elicited a mixed Th1 and Th2

CD4+ cytokine response (69) and FI-RSV vaccination of mice

accelerated the formation of primary lymphoid nodes, with

delayed B cell responses especially for the Ab isotype switch

(70). Interestingly, a proportion of the CD45+ lymphoid cells

were not T or B cells, and thus they might correspond to other

cell types, including NK cells Tgd CD4-CD8- cells, and innate

lymphoid cells (ILCs). In this sense, ILC2 cells (CD45+lin-

ST2+c-kit+Sca-1+) have been reported in nasal aspirates from

children and in the lungs of RSV infected neonatal mice with

severe RSV-immunopathogenesis, in association with higher

levels of IL33 (50, 71).

B cells were detected in NLF from 2 mo of age (GII and GIII)

but not so readily before that age. A detailed analysis of the B cell

compartment in the NLF samples highlighted a diverse

composition, including unswitched and switched naïve cells

accompanied by minor numbers of other B cell populations

(Figure 8B). These results agree with the major naïve B cell

subset, together with an early presence of memory and plasma

cells, in peripheral blood from infants under 24 month-old (45,

46). Thus, the detection of B lymphocytes in NLF from 2-mo-old

infants may reflect a local immature adaptive humoral response

independent of the canonical germinal center responses

configured after 1 year of age (72, 73).

The finding that control children without a respiratory

pathology have detectable amounts of IgS in their NLF (this

study and (74, 75) is aligned with the notion that in a

homeostatic state, mucosal barriers have a protective layer of

soluble factors, including IgS produced by local cells, as

described for the lamina propria (76, 77). We found a large

increase in levels of IgM, IgGs (but not in the case of IgG2) and

IgA upon infection in NLF from all the groups analyzed in
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comparison with their age-related controls (Figure 8C).

Interestingly, IgA levels in NLF samples containing viruses

were lower than in those without them. It may be possible that

this effect is due to IgA binding to the respiratory viruses. Also,

there was higher IgG and IgA antibody content in NLF from

bronchiolitis children relative to their age-control cohorts. Since

IgG2 has low placental transport (78), this may explain the low

levels of IgG2 found in NLF. Indeed, neonates rely heavily on

passive maternal Ab transfer for protection against infections

(79), and maternal IgGs downregulate B cell maturation (80).

We cannot rule out the contribution of maternal IgGs and IgA

on the ELISA quantitation in NLF samples. However, the fact

that the same preparations contained B cells with detectable IgG-

and IgA-BCR repertoires, points to an active participation of the

neonatal humoral response in the IgG and IgA antibody NLF

content, prompting us to analyze their NLF-IgH-repertoire. This

analysis indicated: (i) the presence of productive IgH

rearrangements starting at 2-month old bronchiolitis infants;

(ii) a dominant VH1 usage in the IgM and IgG repertoires and

VH3 in IgA sequences; (iii) more diverse CDRs in IgM-

repertoires than in IgG; (iv) higher VH mutation and selection

strength in IgA-repertoires, and (v) intraclonal switching among

VH family sequences in the NLF. In agreement with our results,

it was described a predominant usage of VH1 (–2, –18, –69),

VH2-70, VH4-04 and VH5-51 in PBMCs from RSV infected

adult patients (81). A bias towards the VH1-46 rearrangement

has also been described in response to rotavirus (82) and VH1-

69 has been preferentially found in response to HIV (83). By

contrast a preferential use of VH3 and VH4, was detected in

neonatal cord blood and healthy Ad-PBMC (18), indicating that

the IgH-repertoires of NLF sequences differ from those of

healthy PBMC-repertoires (84). Switched IgG- and IgA-

adaptive responses at mucosal surfaces require the

contribution of the germinal center, although in some cases

human IgA mucosal responses may develop without T cell help

(85). Our data regarding IgA-repertoires in NLF suggest the

potential of the NALT to develop local selected antigenic

responses in the context of infant respiratory infections before

the advent of canonical germinal center responses (Figure 8D).

Future experiments in this line are needed in order to reinforce

these findings, with an increased number of NALT-repertoires

and their direct comparison with PBMC-repertoires from the

same cohort.

Together, our results represent an integrated humoral,

cellular and BCR-repertoire characterization of the NLF from

infant bronchiolitis patients that is not only relevant to this

pathologic disorder but also, to other respiratory infections

(such as COVID-19, pneumonias or COPD) and to different

age groups. The management of acute bronchiolitis in infants

remains a clinical challenge for pediatricians due to its lack of

response to any current available medication, as well as its high

morbidity. Taken together, our results highlight the importance
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1011607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cortegano et al. 10.3389/fimmu.2022.1011607
of NALT immune responses in newborns and young infants

with bronchiolitis, using NLF as non-invasive biological

samples. We believe that a better understanding of the NALT

immune response may improve the development of potential

therapies that could modify the clinical course of these patients,

who are in full immune maturation throughout the first year

of life.
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