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Ectonucleotidases modulate inflammatory responses by balancing extracellular

ATP and adenosine (ADO) and might be involved in COVID-19

immunopathogenesis. Here, we explored the contribution of extracellular

nucleotide metabolism to COVID-19 severity in mild and severe cases of the

disease. We verified that the gene expression of ectonucleotidases is reduced in

the whole blood of patients with COVID-19 and is negatively correlated to levels

of CRP, an inflammatory marker of disease severity. In line with these findings,

COVID-19 patients present higher ATP levels in plasma and reduced levels of

ADO when compared to healthy controls. Cell type-specific analysis revealed

higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8

+ expressing CD73 are reduced in this same group. The frequency of B cells

CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells

from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP

and ADO. Furthermore, impaired expression of ADO receptors and a
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compromised activation of its signaling pathway is observed in COVID-19

patients. The presence of ADO in vitro, however, suppressed inflammatory

responses triggered in patients’ cells. In summary, our findings support the

idea that alterations in the metabolism of extracellular purines contribute to

immune dysregulation during COVID-19, possibly favoring disease severity, and

suggest that ADO may be a therapeutic approach for the disease.
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Introduction

Coronavirus Disease 2019 (COVID-19) is an inflammatory

disease caused by the infection with the SARS coronavirus 2

(SARS-CoV-2). Clinical manifestations of the disease can range

from no symptoms or mild upper airway symptoms to severe

lower airway symptoms that can evolve to acute respiratory

distress syndrome and death (1, 2). Despite the preferential

tropism to the lungs, SARS-CoV-2 can be detected in several

organs, triggering exacerbated inflammatory responses not only

in the target tissues but also systemically, which seems to be

responsible for multi-organ failure (3, 4).

Adenosine triphosphate (ATP) is a nucleotide that is present

in high concentrations in the cytosol and can be released into the

extracellular space upon cellular activation or death (5–7).

Extracellular ATP (eATP) can act as a “danger” signal,

p romot ing immune ce l l a c t i v a t ion and e l i c i t ing

proinflammatory responses (6, 8). Alternatively, eATP can be

converted into adenosine (ADO) by ectonucleoside triphosphate

diphosphohydrolases (ENTPDases) , ecto-nucleotide

pyrophosphatases/phosphodiesterases (ENPPs), ecto-5'-

nucleotidases, and alkaline phosphatases expressed in the

membrane of several immune cells (9–11). Among them, the

ectonucleotidase CD39 (ENTPD1) dephosphorylates ATP and

ADP to AMP, which is subsequently converted to ADO by

CD73 (NT5E) (11). While eATP has proinflammatory

properties, ADO can promote immunosuppression via

inhibition of T cell proliferation and function and induction of

anti-inflammatory cytokines (12, 13).

Alterations in the expression and frequency of CD39 and CD73

in leukocytes have already been reported during viral infections and

seem to contribute to the inflammatory immunopathology of those

diseases (14–16). In addition, it has been reported that viral

infection and the viral load itself might influence the purinergic

signaling in different viral infections (17, 18). In COVID-19

patients, specifically, there is evidence that the expression of

ectoenzymes is modified in T cell lymphocytes and monocytes

(19–22). However, whether alterations in this pathway might
02
contribute to the exacerbated inflammatory response associated

with COVID-19 is still unclear.

Here we suggest that purinergic signaling might contribute

to disease severity during SARS-CoV-2 acute infection. We

present evidence to support that the decreased expression of

ectonucleotidases in COVID-19 patients’ blood compromises

the hydrolysis of ATP in ADO and, together with the reduction

in ADO receptors, might favor systemic inflammation.

Consistently, ADO partially attenuates inflammatory responses

in patients’ cells activated in vitro, suggesting that ADO can be

considered as a potential therapeutic intervention for

COVID-19.
Materials and methods

Human subjects

A total of 88 patients with COVID-19 hospitalized at Hospital

das Clıńicas da Faculdade de Medicina da Universidade de São

Paulo (HC-FMUSP) from May 2020 to August 2021 were

enrolled in this study. The participants were not vaccinated

against COVID-19 and diagnosis was confirmed by reverse-

transcriptase polymerase chain reaction (RT-PCR). Patients

were divided according to WHO criteria into (1) mild cases, in

which no oxygen therapy or oxygen by mask/nasal prong was

required, and (2) severe cases, which were submitted to non-

invasive ventilation or invasive mechanical ventilation support by

the time of sample collection (23). Mild and severe COVID-19

patients had underlying medical conditions including

hypertension, diabetes, and obesity, consistent with previously

published studies (24, 25). Supplementary Table 1 summarizes

clinical, laboratory, and treatment records from patients. We

observed a ∼45.5% mortality rate among patients with severe

COVID-19 and ∼9% among those with mild forms of the disease

(Supplementary Figure 1). We also collected samples from 29 age-

and gender-matched healthy unvaccinated controls and with no

COVID-19 associated symptoms.
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Sample processing

Blood samples were collected into EDTA tubes and

centrifuged at 300 x g for 5 min. Plasma was stored at -80°C

for subsequent analysis. The remaining cellular fraction was

either stored in RNA Later Solution (Sigma-Aldrich) or

processed for leukocyte isolation.
Gene expression by real-time PCR

Relative gene expression levels of the ectonucleotidases

ENPP1, ENPP2, ENPP3, ENTPD1 (CD39), ENTPD5, and

NT5E (CD73), as well as the adenosine receptors ADORA1R,

ADORA2aR, ADORA2bR, and ADORA3R, were obtained by

real-time PCR. Whole blood mRNA was obtained using the

RiboPure RNA Purification kit (Thermo Fisher Scientific) and

reverse transcribed with the iScript kit (Biorad). For real-time

PCR reaction, cDNA was incubated with SYBR Green (Applied

Biosystem) and the primers for all target genes, using GAPDH as

an internal control. Primers sequences are listed in

Supplementary Table 2. DNA amplification was carried out in

a 7500 Real-time PCR system (Applied Biosystems), and data

analysis was performed with the 7500 Software v2.0.6 (Applied

Biosystems) according to the delta-CT method (26).
Plasmatic quantification of nucleotides

ATP and ADO levels in plasma were determined by high-

performance liquid chromatography (HPLC), as previously

described (27). Briefly, plasma samples were denatured with 0.6

M perchloric acid by centrifugation at 4°C, 16,000 x g for 20 min.

After, 4 M KOH was used to neutralize the supernatants, and

samples were submitted to second centrifugation. The supernatants

were collected and stored at -80°C. Purine levels in the plasma were

determined using a reverse-phase HPLC (Shimadzu) using a C18

column (Ultra C18, 25 cm, 4.6 mm, 5 mm, Restek). The elution was

carried out using a linear gradient from 100% solvent A (60 mM

KH2PO4 and 5 mM of tetrabutylammonium chloride, pH 6.0) to

100% solvent B (solvent A + 30% methanol). The amounts of

purines were measured by absorption at 254 nm and the retention

times of standards were used as parameters for identification

and quantification.
Immunophenotyping

The expression of CD39 and CD73 in leukocytes was

determined by flow cytometry. Samples were incubated with

Fc block solution and stained with the following antibodies: anti-

CD39 APC (BD-Bioscences), anti-CD73 BB515 (BD-
Frontiers in Immunology 03
Bioscences), anti-CD3 BV605 (BD-Bioscences), anti-CD14

PerCP (BD-Biosciences) anti-CD19 PE (Beckman Coulter),

anti-CD4 V450 (BD-Biosciences) and anti-CD8 V500 (BD-

Biosciences). LIVE/DEAD dye (Invitrogen) was used to

distinguish dead cells. Samples were fixed with 4%

paraformaldehyde and erythrocytes were removed using the

FACS Lysing solution (BD Biosciences). Fluorescent cell data

acquisition was done using the LSR Fortessa equipment (BD

Biosciences) and analyzed with FlowJo software (BD Life

Sciences). Fluorescence controls (FMO - Fluorescence Minus

One) were realized for all the fluorochromes in the panel.

In cases in which the expression of ADO receptors was

evaluated, blood samples depleted of erythrocytes were fixed

with 4% paraformaldehyde and permeabilized with Triton-X

100. Cells were stained with primary rabbit polyclonal antibodies

against A1R, A2AR, A2BR, and A3R (1:500) (Abcam) for 2h at

room temperature, followed by incubation with secondary

antibody Alexa Fluor 488 goat anti-rabbit (1:1000) (Thermo

Fisher). Cells were acquired in an Attune cytometer (Life

Technologies) and analyzed with the FlowJo software.

Granulocytes and Lymphocytes were differentiated based on

the forward/side scatter profile.
Single-cell data collection and
nucleotidases expression analysis

Kazmierski et al. (28) recently performed single cells RNA-

Seq experiments investigating the global transcriptional profile

of PBMCs from HDs exposed in vitro to SARS-CoV-2 for 24h

(data accessible at NCBI Gene Expression Omnibus [GEO]

accession GSE197665 (28)). We retrieved the data sets to

characterize the ectonucleotidase mRNA signature. Analysis of

the single-cell RNA data was performed using R Studio v3.6 (R

Core Team, 2017) and the Seurat v3.1.4 package (29) and

differentially expressed genes were analyzed using the 10x

Genomics Loupe Browser (v. 5.0.1).
Measurement of soluble CD73

The concentration of soluble CD73 in plasma was

determined by the human CD73 ELISA kit (NT5E) (Abcam)

according to the manufacturer’s instructions. The minimum

detection limit was 156 pg/ml.
Isolation of B cell and the extracellular
metabolism of ATP

CD19+ B cells were isolated from blood samples by magnetic

separation. Briefly, peripheral blood mononuclear cells were

obtained from freshly heparinized blood by density gradient
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centrifugation. The CD19+ B cells were separated by negative

selection using the EasySep Direct HLA B Cell Isolation kit

(Stemcell Technologies). The purity of the separated cells

determined by flow cytometry exceeded 92%.

B cells were resuspended in phenol red-free RPMI 1640

medium (Gibco) plus 10% fetal bovine serum (FBS) (Sigma-

Aldrich) at a concentration of 2.5x105 cells/mL, and 100 µl were

plated into a 96-well plate (Jet Bio-Fil). After 18h incubation, the

cells were transferred to 1.5ml tubes and resuspended in the

incubation buffer containing KCl 5 mM, CaCl2 1.5 mM, EDTA

0.1 mM, glucose 10 mM, sucrose 225 mM, Tris HCl 45 mM, and

MgCl2 10 mM, pH 8. ATP (500 µM) (Sigma-Aldrich) was added

and cells were incubated for 15, 30, and 60 min. at 37°C and 5%

CO2. The reaction was stopped on ice, and cells were centrifuged

at 600 x g for 5 min at 4°C. Supernatants were collected and

incubated with 10% methanol on ice for 30 min, followed by

final refrigerated centrifugation at 25000 x g for 30 min. Samples

were stored at -80°C until being analyzed by HPLC as

already described.
Isolation of mononuclear cells

For cell culture experiments, mononuclear cells (MNCs)

were obtained by diluting 1mL of buffy coat from EDTA tubes

into 11mL of PBS. Samples were layered over a buffered 60%

solution of Percoll PLUS reagent (GE Healthcare) and

centrifuged at 800 × g for 30 min. Cells at the interphase were

collected and counted for the next assays.
PKA activity assay

MNCs were resuspended in supplemented medium at a

concentration of 1x106 cells/mL and were plated into a 48-well

plate. After 18h incubation, either ATP or ADO (100µM)

(Sigma-Aldrich) were added to the cultures for 30min. Total

cellular proteins were extracted and 30ng were used to access the

protein kinase A (PKA) activity using the PKA Kinase Activity

Assay kit (Abcam) according to the manufacturer’s instructions.

The absorbance was measured at 450 nm with a microplate

reader ELx800 (BioTek).
ADO immunomodulation assay

The immunomodulatory capacity of ADO was verified in

vitro. In brief, 2x105 cells/mL MNCs were cultured in RPMI

1640 medium plus 10% human serum-supplemented or not with

ADO (100 µM) for 2h. Cells were further activated using the

TLR7/TLR8 agonist CL097 (5 µg/mL) (In vivogen), used as a

viral mimetic, for additional 22h. After stimulation, the

supernatants from the cultures were stored at -80°C.
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Cytokines measurement

Commercial ELISA kits were used to measure IL-6, TNF-a,
and IL-10 (R&D Systems) production in culture supernatants,

according to the manufacturer’s protocols. The absorbance was

measured at 450 nm with a microplate reader ELx800 (BioTek).
Statistical analysis

Comparisons between patients and healthy controls were

performed with the One-way ANOVA test or Mann-Whitney U

test, while for comparisons between paired baseline and stimulated

conditions within the same group the Wilcoxon signed-rank test

was applied. The Spearman test was used for the correlation

analysis. The level of significance considered was p≤0.05.
Results

Impaired expression of nucleotidases is
associated with inflammatory responses
in COVID-19

Although CD39 and CD73 are widely studied in immune cells,

several nucleotidases are involved in the extracellular metabolism of

purines and hydrolysis of ATP into ADO. Herein, we detected the

gene expression of ENPP1, ENPP2, ENPP3, ENTPD1 (CD39),

ENTPD5, and NT5E (CD73) in the whole blood of COVID-19

patients. As shown in Figure 1A, there is a significant reduction in

the expression of ENPP1, ENPP2, ENPP3, and NT5E in the blood of

patients with severe COVID-19 when compared to HDs and a lower

expression of ENPP2 and ENPP3 when compared to mild

hospitalized cases. Interestingly, the impaired gene expression of

these enzymes is negatively correlated to plasmatic levels of C-

reactive protein (Figure 1B) and the neutrophil-to-lymphocyte ratio

(Supplementary Figure 2), two inflammatory markers of the disease

(30, 31), which is in agreement with the idea that the reduced

expression of ectonucleotidases is at least in part accountable for the

inflammatory status of COVID-19. In accordance with this data,

there is a higher concentration of plasmatic ATP in patients with

COVID-19 when compared to HDs, independent of disease severity

(Figure 1C). At the same time, COVID-19 patients had lower plasma

levels of ADO, indicating that the purinergic degradation pathway

and ADO production could be compromised in the disease.
Altered frequencies of CD39+ and
CD73+T and B lymphocytes compromise
the hydrolysis of extracellular ATP
in COVID-19

As the expression of ectonucleotidases varies among

leukocytic populations (32–34), we further analyzed the
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presence of CD39 and CD73 in specific cell types by flow

cytometry. It has already been reported that under healthy

conditions CD39 is largely expressed on B cells and

monocytes, followed by CD4+ T cells and, less significantly, by

CD8+ T and NK cells (35). Despite the considerable expression

of CD39 in monocytes, we did not observe significant changes in

the frequency of CD14+CD39+ cells in SARS-CoV-2 infected

individuals (Supplementary Figure 3). However, there is an

increase in the frequency of CD4+CD39+ and CD8+CD39+ T

cells with greater expression of CD39 in patients with severe

COVID-19 (Figures 2A, B), indicating the prevalence of

activated T cells or even regulatory T cells in infected subjects.

On the other hand, CD73 expression is reduced in both, CD4+

and CD8+ T cells, in COVID-19 patients (Figures 2A, B),

corroborating with previous studies (20). Indeed, while T cell

activation leads to upregulation of CD39, it also results in the loss

of CD73 from the cell membrane which can remain enzymatically

active as a soluble protein. To access if the reduced expression of

CD73 in lymphocytes of COVID-19 patients is due to its shedding

from the cellular membrane, we quantified soluble CD73 (sCD73)
Frontiers in Immunology 05
in plasma. As can be seen in Figure 2D, there are no differences in

the plasma levels of sCD73 between HDs and COVID-19 patients.

While mostly human CD4+ and CD8+ T cells can either

express CD39 or CD73, B lymphocytes are usually double-

positive for these enzymes and, therefore, play a significant role

in the generation of ADO from ATP (36). Interestingly, there is a

reduction in the expression of CD39 and CD73 in B cells from

COVID-19 patients and the CD19+CD39+CD73+ population is

diminished in patients regardless of the disease status (Figure 2C).

We further asked if the modified expression of nucleotidases

in leukocytes would be a direct effect of viral exposure.

Therefore, we reanalyzed single-cell RNA-sequencing data

from PBMCs of healthy donors exposed in vitro to SARS-

CoV-2, as described by Kazmierski et al. (28). Overall, no

significant modulation in the expression of ENPP1, ENPP2,

ENPP3, ENTPD1, and NT5E was found in B cells, CD4+ T

cells, and CD8+ T cells when they were incubated with SARS-

CoV-2 for 24h (Figure 2E). Although limited to isolated PBMCs,

these data indicate that the altered expression of

ectonucleotidases observed in COVID-19 patients is more
B

C

A

FIGURE 1

Altered expression of nucleotidases and purinergic composition in the blood of COVID-19 patients. (A) Gene expression of nucleotidases
ENPP1, ENPP2, ENPP3, ENTPD5, ENTPD1 (CD39) and NT5E (CD73) in whole blood of healthy donors (n=8) and COVID-19 patients (Mild
hospitalized, n=10; Severe, n=10). (B) Negative correlation between the expression of nucleotidases and blood levels of C-reactive protein (CRP)
in COVID-19 patients. (C) Plasma levels of ATP and ADO in healthy donors (n=14) and COVID-19 patients (Mild hospitalized, n=23; Severe,
n=21). Data are shown as the median. One-way ANOVA test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Spearman’s correlation test was
used to determine the correlation coefficient (r) and the significance (p<0.05). Blue dots indicate healthy donors (HD) whereas orange and red
dots indicate hospitalized patients with mild and severe (Sev) COVID-19, respectively.
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likely to be induced by the immune response triggered by SARS-

CoV-2 than the virus itself.

Considering that B cells play a crucial role in controlling

purinergic-dependent immune responses due to the high expression

ofCD39andCD73, thereductionofCD19+CD39+CD73+cells could

directly impactADOavailability.Toverify if thesephenotypicchanges

would compromise the consumptionofATP,ADP, andAMP,B cells

were isolated from severely ill patients with COVID-19 andHDs and

incubatedwithATP(500µM) for variousperiods.As expected,B cells

from subjects infected with SARS-CoV-2 converted less ATP into

ADP and produced less ADOwhen compared with those fromHDs

(Figure 3), indicating an impaired capacity of hydrolyzing ATP in B

cells from patients with severe COVID-19.
ADO signaling is compromised in
COVID-19 patients

ADO signals via receptors A1R, A2AR, A2BR, and A3R, and it

has been reported that alterations in the expression of these

receptors may directly influence the inflammatory response in

some pathologies (37, 38). Therefore, we have also investigated

the expression of ADO receptors in whole blood samples from
Frontiers in Immunology 06
COVID-19 patients. Our data indicate a significant reduction of

ADORA2A gene expression in the whole blood of patients critically

ill with COVID-19 (Figure 4A). Cell-type flow cytometry analysis

additionally suggests that all four ADO receptors are less expressed

in both, granulocytes and lymphocytes of COVID-19 patients in a

severity-dependent manner (Figure 4B).

Upon ADO binding, A2AR and A2BR couple with the GaS
protein and lead to an increase of intracellular cAMP and PKA

activity (12, 39). To explore if this signaling pathway is affected

during acute COVID-19, we accessed PKA activation inMNCs from

patients and HDs. Our findings indicate that MNCs from COVID-

19 patients have, indeed, reduced PKA activity rates under ATP or

ADO stimulation when compared to HDs cells (Figure 4C).

Together, these results indicate that not only the generation of

ADO from ATP is compromised during COVID-19 but the ADO

signaling pathway as well.
Inhibition of inflammatory responses
by ADO

In order to investigate whether lower availability of ADO

could contribute to the pro-inflammatory profile of COVID-19,
B

C D

A E

FIGURE 2

Altered frequency of CD39+ and CD73+ leucocytes in the blood of COVID-19 patients. Frequency and expression of CD39 and CD73 in (A)
CD4+ T cells, (B) CD8+ T cells and (C) CD19+ cells from healthy donors (n=14) and COVID-19 patients (Mild hospitalized, n=14-21; Severe,
n=12-24) based on the percentage of positive cells and the median of fluorescence (MFI) values. (D) Concentration of plasmatic CD73 from
healthy donors (n=13) and COVID-19 patients (Mild hospitalized, n=25; Severe, n=24). (E) Heatmap of average gene expression values for
ENPP1, ENPP2, ENPP3, ENTPD1, and NT5E in B cells, CD4+ T cells, and CD8+ T cells exposed or not to SARS-CoV-2. One-way ANOVA test:
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Blue dots indicate healthy donors (HD) whereas orange and red dots indicate hospitalized
patients with mild and severe (Sev) COVID-19, respectively.
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MNCs from patients with severe COVID-19 and HDs were

cultured with a TLR7/TLR8 agonist (CL097, imidazoquinoline-

derived compound) under the presence or absence of ADO. This

agonist was chosen as an attempt to mimic innate immune

responses triggered during SARS-CoV-2 recognition by MNCs

(40). The immunomodulatory effect of ADO was measured by

the production of cytokines in the culture supernatants. As

shown in Figure 5A, incubation with the TLR7/TLR8 agonist

induces the production of TNF-a and IL-6 in cells from HDs

and COVID-19 patients. Interestingly, in the presence of ADO,

this inflammatory response is partially controlled, suggesting a

potential anti-inflammatory effect of ADO. Consistent with

these findings, we noticed that ADO itself triggers the

production of the anti-inflammatory cytokine IL-10 in MNCs

from COVID-19 patients and HDs (Figure 5B), indicating a

possible mechanism by which ADO suppresses the production

of inflammatory molecules. Taken together, these data suggest

that although the ADO signaling pathway is compromised in

COVID-19, this nucleotide can still trigger the production of IL-

10 and partially suppress inflammatory responses.
Discussion

ATP dephosphorylation into ADO mediated by

ectonucleotidases is a key regulatory mechanism of immune

responses, promoting the shift from ATP-driven inflammation to

immunosuppression induced by ADO (41). Given the pronounced

inflammatory characteristics of severe COVID-19 and the role of

purinergic signaling in immunosuppression, alterations in the

metabolism of extracellular nucleotides could contribute to the

immunopathogenesis of the disease. Herein, we demonstrate that

impaired expression of nucleotidases and lower ADO concentration

in the blood is associated with a worse prognosis of COVID-19,

while in vitro administration of exogenous ADO helps to prevent

inflammatory responses in the leukocytes of patients.

Expression profiles of ectonucleotidases can be modified

under pathological conditions. Higher expression of CD39 in
Frontiers in Immunology 07
lymphocytes, for example, has been reported in solid tumors and

chronic viral infection by HIV and HCV, and more recently

during acute infection by SARS-CoV-2 (21, 42, 43). Induction of

CD39 expression occurs upon cellular activation and is regulated

by hypoxia, oxidative stress, and inflammatory cytokines such as

IL-6 and TNF-a (41, 44–46), which are frequently increased in

COVID-19 patients (47–50). Although higher expression of

CD39 in T cells from COVID-19 patients might indicate a

possible mechanism to counterbalance the inflammatory

responses via consumption of ATP, its expression in B cells,

the major leukocyte population that expresses CD39,

is diminished.

The compromised expression of ENPP1, ENPP2, ENPP3,

andNT5E (CD73) in the peripheral blood of COVID-19 patients

shown here, negatively correlates to plasma levels of the

inflammatory marker CRP and the neutrophil-to-lymphocyte

ratio, supporting the hypothesis of a direct contribution of the

purinergic metabolism to the pathogenesis of the disease. In

accordance with our findings, Ahmadi et al. reported that loss of

CD73 expression in CD8+ T and NKT cells of COVID-19

patients negatively correlates with serum levels of ferritin,

another inflammatory marker of the disease (20). It is

important to mention, though, that gene expression analysis in

whole blood of COVID-19 patients should be interpreted with

caution due to the mono-lymphopenia associated with the

disease (51, 52). In this context, it is hard to distinguish

whether the altered gene express ion results f rom

transcriptional events or whether it is a consequence of the

imbalance proportion of lymphocytes and monocytes that

express such enzymes in the blood of patients. In any case,

reduced expression of nucleotidases in peripheral blood may be

possibly responsible for the lower concentrations of ADO in the

plasma of COVID-19 patients shown here.

Deep and cell-specific analysis evidence that the surface

expression of CD73 is impaired in CD4+ T cells and CD8+ T

cells in patients with COVID-19, corroborating previously

published data (20, 21). In addition, we verified, for the first

time, lower expression of CD73 also in CD19+ B cells. Loss of
B C DA

FIGURE 3

Decreased hydrolysis of ATP by COVID-19 patients’ B cells. Isolated B cells from healthy donors (n=7) and COVID-19 patients (Severe, n=6)
were incubated with 500 mM of ATP for 15, 30, and 60 minutes. Consumption of ATP (A) and production of ADP (B), AMP (C), and ADO (D) was
accessed. Data shown as mean with SD. Two-way ANOVA with Bonferroni’s post-test for multiple comparisons: *p<0.05, **p<0.01, ***p<0.001.
Blue lines indicate healthy donors (HD) whereas red lines indicate patients with severe (Sev) COVID-19.
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BA

FIGURE 5

ADO prevents cellular activation triggered by TLRs and induces anti-inflammatory responses. (A) MNCs from healthy donors (n=8) and COVID-
19 patients (n=11) were incubated with ADO (100 mM) for 2 hours followed by activation with TLR7/8 agonist. Cytokine production in the
supernatant after 24h is shown. (B) MNCs from healthy donors (n=8) and COVID-19 patients (n=7) were incubated with ADO (100 mM) for 24
hours and IL-10 production in the supernatant after 24h was accessed. Data are shown as the median. Wilcoxon signed-rank test: #p<0.05;
##p<0.01, ###p<0.001 (between different treatments). Mann-Whitney U test: *p<0.05 (HD vs. COVID-19). Blue dots indicate healthy donors (HD)
whereas red dots indicate patients with COVID-19.
B C

A

FIGURE 4

Impaired ADO signaling in COVID-19 patients. (A) Gene expression of ADORA1, ADORA2A, ADORA2B, and ADORA3 in whole blood of healthy
donors (n=11) and COVID-19 patients (Mild hospitalized, n=10; Severe, n=13). Data presented as median. One-way ANOVA test: *p<0.05. (B)
Heatmap of A1R, A2AR, A2BR, and A3R MFI values expression in lymphocytes and granulocytes of healthy donors (n=6) and COVID-19 patients
(Mild hospitalized, n=4; Severe, n=8) based on the median of fluorescence (MFI) values. Data presented as mean. One-way ANOVA test:
*p<0.05, **p<0.01. (C) MNCs from healthy donors (n=4) and COVID-19 patients (n=4) were incubated with ATP (100 mM) or ADO (100 mM) for
30 minutes. The PKA activity is shown. Data presented as median. Mann-Whitney U test: *p<0.05 (HD vs. COVID-19). Blue dots indicate healthy
donors (HD) whereas orange and red dots indicate hospitalized patients with mild and severe (Sev) COVID-19, respectively.
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surface CD73 can be explained by alterations at the

transcriptional level or also by the shedding of the enzyme

from the cell membrane upon cellular activation (53).

Complementary, our single-cell RNA-sequencing data analysis

from PBMCs exposed to SARS-CoV-2 indicate that the

expression of nucleotidases is not likely to be directly affected

by the virus (Figure 2E). However, it has been shown that

incubation with plasma from COVID-19 patients inhibits the

expression of CD73 in lymphocytes from HDs (21), suggesting

the contribution of soluble factors in these alterations besides the

virus itself. Moreover, matrix metalloproteinase (MMP-9),

which is released by neutrophils during acute lung damage

and is elevated in COVID-19 patients’ blood (54, 55), can

cleave CD73 from the cellular membrane generating a soluble

protein (56, 57). In our cohort, however, no differences

regarding soluble CD73 in the plasma of COVID-19 patients

and HDs were observed (Figure 2D). Regardless of the specific

mechanism behind this alteration has not been elucidated in

detail here, loss of CD73 could contribute to the maintenance of

the effector function of T cells by preventing ADO-mediated

immunosuppression (53, 57). In support of our findings,

lymphocyte activation markers such as CD38, CD69, and

CD44 are highly expressed on CD4+ and CD8+ T cells of

COVID-19 patients (58), and CD73 absence in CD8+ T cells

induces granzyme production in these individuals (20).

Different from other lymphocytes, the majority of B cells

express CD39 and CD73, contributing significantly to the

generation of ADO and inhibiting proliferation and cytokine

production in T cells (36). Herein we evidence that B cells from

patients with severe COVID-19, which have lower expression of

CD39 and CD73, show an impaired capacity to hydrolyze ATP.

Similar results were already reported in patients infected with HIV

andHBV, where the compromised generation of ADO is claimed to

favor inflammatory responses and immune activation (15, 16, 59).

Therefore, we have evidences to support the hypothesis that the

marked reduction of CD39+CD73+ B cells, together with the

impaired expression of CD73 in T cells and the lack of other

nucleotidases in the blood, lead to the lower concentrations of

plasmatic ADO in COVID-19 patients and might exacerbate innate

immune activation. In addition, the absence of CD73 and defective

activation of the ADO downstream PKA-mediated

phosphorylation of activation-induced deaminase (AID) impairs

immunoglobulin class switching in human B cells (60, 61).Whether

these alterations compromise humoral responses in COVID-19

patients remains uncertain.

Like us, others have suggested that increased systemic levels

of ATP are likely to be involved in the immunopathogenesis of

COVID-19 (62, 63), possibly as consequence of the altered

expression of nucleotidases. Indeed, the accumulation of ATP

has been shown the trigger inflammatory responses such as the

activation of the inflammasome pathway (64, 65). Interestingly,

there is a higher activation of the NLR family PYRIN domain

containing-3, NLRP3, inflammasome in COVID patients
Frontiers in Immunology 09
(66, 67). In addition, extracellular ATP can contribute to lung

local inflammation by recruiting eosinophils, dendritic cells, and

neutrophils via P2Y2 receptor (68–70), implying that imbalanced

metabolization of this nucleotide could directly contribute to the

immunopathogenesis of COVID-19.

Apart from the defective hydrolysis of ATP, ADO signaling

itself is apparently compromised in COVID-19, where lower

expression of ADO receptors and reduced activity of PKA were

observed. Mechanistically, activation of the cAMP/PKA

pathway via ADO receptors inhibits the production of TNF-a,
IFN-g, and IL-2 and T cell proliferation (71, 72). At the same

time, ADO receptor signaling, more specific A2AR and A2BR, has

been shown to trigger IL-10 production via CREB activation

(73–75). Therefore, the compromised generation of ADO by

leukocytes, especially B cells, associated with impaired signaling

mediated by ADO receptors could exacerbate inflammatory

responses systemically.

Although ADO signaling is compromised in leukocytes of

severe COVID-19 patients, we verified that in vitro treatment can

attenuate the production of TNF-a and IL-6 in CMNs after

activation. Both cytokines are increased in the blood of COVID-

19 patients (76). In fact, it has been reported that ADO reduces NF-

kB activation in T cells and monocytes of COVID-19 patients in

vitro (21), and the administration of an A2aR agonist attenuated the

production of pro-inflammatory cytokines in SARS-CoV-2 mice

infection model (77). Moreover, preliminary data suggest that

inhaled ADO reduces the levels of CRP in the blood while

improving oxygenation rates and reduces hospitalization time in

patients with COVID-19 (78, 79). Here we observed that, at the

dose used, extracellular ADO can partially overcome the impaired

expression of its receptors and imbalanced induction of PKA

activity (Figures 4, 5), attenuating inflammatory responses. It is

important to mention though that co-treatment with other cAMP

inducers, such as the neuropeptide PACAP (80), could result in a

more pronounced immunosuppressant effect. Taken together, these

findings evidence the potential of ADO as a therapeutic strategy to

overcome the exacerbated inflammatory responses in COVID-19.

In summary, our findings indicate that alterations in the

purinergic signaling contribute, at least in part, to the immune

activation and worse prognosis in acute COVID-19 and reveal

the therapeutic potential of ADO-mediated responses in this

disease. Whether these alterations persist in recovered patients

or impact the development of post-COVID-19 syndrome

remains to be elucidated.
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Identification of druggable inhibitory immune checkpoints on natural killer cells
in COVID-19. Cell Mol Immunol (2020) 17(9):995–7. doi: 10.1038/s41423-020-
0493-9

20. Ahmadi P, Hartjen P, Kohsar M, Kummer S, Schmiedel S, Bockmann JH,
et al. Defining the CD39/CD73 axis in SARS-CoV-2 infection: The CD73. Cells
(2020) 9(8):1750. doi: 10.3390/cells9081750

21. Dorneles GP, Teixeira PC, da Silva IM, Schipper LL, Santana Filho PC,
Rodrigues Junior LC, et al. Alterations in CD39/CD73 axis of T cells associated
with COVID-19 severity. J Cell Physiol (2022) 237(8):3394–407. doi: 10.1002/
jcp.30805

22. Romão PR, Teixeira PC, Schipper L, da Silva I, Santana Filho P, Júnior LCR,
et al. Viral load is associated with mitochondrial dysfunction and altered monocyte
phenotype in acute severe SARS-CoV-2 infection. Int Immunopharmacol (2022)
108:108697. doi: 10.1016/j.intimp.2022.108697

23. WHO. COVID-19 therapeutic trial synopsis. (Switzerland:World Health
Organization) (2020).

24. Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, et al. Comorbidities and the
risk of severe or fatal outcomes associated with coronavirus disease 2019: A
systematic review and meta-analysis. Int J Infect Dis (2020) 99:47–56.
doi: 10.1016/j.ijid.2020.07.029

25. Liu B, Spokes P, He W, Kaldor J. High risk groups for severe COVID-19 in a
whole of population cohort in Australia. BMC Infect Dis (2021) 21(1):685.
doi: 10.1186/s12879-021-06378-z

26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-delta delta C(T)) method.Methods (2001) 25
(4):402–8. doi: 10.1006/meth.2001.1262

27. Voelter W, Zech K, Arnold P, Ludwig G. Determination of selected
pyrimidines, purines and their metabolites in serum and urine by reversed-phase
ion-pair chromatography. J Chromatogr (1980) 199:345–54. doi: 10.1016/s0021-
9673(01)91386-x

28. Kazmierski J, Friedmann K, Postmus D, Fischer C, Jansen J, Richter A, et al.
Non-productive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate
immunity responses. bioRxiv (2022) 18(8):e10961. doi: 10.1101/2022.02.15.480527

29. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol (2018) 36(5):411–20. doi: 10.1038/nbt.4096

30. Marimuthu AK, Anandhan M, Sundararajan L, Chandrasekaran J,
Ramakrishnan B. Utility of various inflammatory markers in predicting
outcomes of hospitalized patients with COVID-19 pneumonia: A single-center
experience. Lung India (2021) 38(5):448–53. doi: 10.4103/lungindia.
lungindia_935_20

31. Samprathi M, Jayashree M. Biomarkers in COVID-19: An up-To-Date
review. Front Pediatr (2020) 8:607647. doi: 10.3389/fped.2020.607647

32. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes
express CD39 and CD73, which suppress T cells through adenosine production.
J Immunol (2011) 187(2):676–83. doi: 10.4049/jimmunol.1003884

33. Zacca ER, Amezcua Vesely MC, Ferrero PV, Acosta CDV, Ponce NE, Bossio
SN, et al. B cells from patients with rheumatoid arthritis show conserved CD39-
mediated regulatory function and increased CD39 expression after positive
response to therapy. J Mol Biol (2021) 433(1):166687. doi: 10.1016/j.jmb.2020.
10.021

34. de Leve S, Wirsdörfer F, Jendrossek V. Targeting the immunomodulatory
CD73/Adenosine system to improve the therapeutic gain of radiotherapy. Front
Immunol (2019) 10:698. doi: 10.3389/fimmu.2019.00698

35. Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS.
Purinergic signaling in the modulation of redox biology. Redox Biol (2021)
47:102137. doi: 10.1016/j.redox.2021.102137

36. Saze Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL.
Adenosine production by human b cells and b cell-mediated suppression of
activated T cells. Blood (2013) 122(1):9–18. doi: 10.1182/blood-2013-02-482406

37. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in
downregulation of inflammation and protection from tissue damage. Nature
(2001) 414(6866):916–20. doi: 10.1038/414916a

38. Flögel U, Burghoff S, van Lent PL, Temme S, Galbarz L, Ding Z, et al. Selective
activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug
suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med
(2012) 4(146):146ra108. doi: 10.1126/scitranslmed.3003717

39. Németh ZH, Leibovich SJ, Deitch EA, Sperlágh B, Virág L, Vizi ES, et al.
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65. Muñoz-Planillo R, Kuffa P, Martıńez-Colón G, Smith BL, Rajendiran TM,
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