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Longitudinal serum proteomics
analyses identify unique and
overlapping host response
pathways in Lyme disease and
West Nile virus infection
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Tara K. Sigdel1, Kinga K. Smolen3,5, Zainab Wurie2,3,
Ofer Levy3,5,6, Shannon E. Ronca7,8, Kristy O. Murray7,8,
Juliane M. Liberto1, Priyanka Rashmi1, Maggie Kerwin1,
Ruth R. Montgomery4, Linda K. Bockenstedt4, Hanno Steen2,3*

and Minnie M. Sarwal1*

1Division of Transplant Surgery, Department of Surgery, University of California, San Francisco,
CA, United States, 2Department of Pathology, Boston Children’s Hospital - Harvard Medical School,
Boston, MA, United States, 3Precision Vaccines Program, Boston Children’s Hospital, Boston,
MA, United States, 4Department of Internal Medicine, Yale School of Medicine, New Haven, CT,
United States, 5Division of Infectious Diseases, Boston Children’s Hospital – Harvard Medical
School, Boston, MA, United States, 6Broad Institute of Massachusetts Institute of Technology &
Harvard, Cambridge, MA, United States, 7Division of Tropical Medicine, Department of Pediatrics,
Baylor College of Medicine, Houston, TX, United States, 8William T. Shearer Center for Human
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Advancement in proteomics methods for interrogating biological samples has

helped identify disease biomarkers for early diagnostics and unravel underlying

molecular mechanisms of disease. Herein, we examined the serum proteomes

of 23 study participants presenting with one of two common arthropod-borne

infections: Lyme disease (LD), an extracellular bacterial infection or West Nile

virus infection (WNV), an intracellular viral infection. The LC/MS based serum

proteomes of samples collected at the time of diagnosis and during

convalescence were assessed using a depletion-based high-throughput

shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-

based low-throughput platform (MStern). The LC/MS integrated analyses

identified host proteome responses in the acute and recovery phases shared

by LD and WNV infections, as well as differentially abundant proteins that were

unique to each infection. Notably, we also detected proteins that distinguished

localized from disseminated LD and asymptomatic from symptomatic WNV

infection. The proteins detected in both diseases with the dHSP pipeline

identified unique and overlapping proteins detected with the non-depleting

MStern platform, supporting the utility of both detection methods. Machine

learning confirmed the use of the serum proteome to distinguish the infection

from healthy control sera but could not develop discriminatory models

between LD and WNV at current sample numbers. Our study is the first to

compare the serum proteomes in two arthropod-borne infections and
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highlights the similarities in host responses even though the pathogens and the

vectors themselves are different.
KEYWORDS

West Nile virus, serum proteomics, acute-phase response, immune system, localized
and disseminated stage, asymptomatic infection, Lyme disease, longitudinal analysis
Introduction

Blood is an easily accessible source to assess health and

monitor for disease including infection. Characterizing the

serum proteome can provide an assessment of immunological

and molecular changes in response to varied antigenic

exposures. Unbiased, discovery-based serum proteomics

enables detection and quantification of several hundred

proteins without the need for a priori knowledge of biology.

We have utilized mass spectrometry (MS)-based proteomic

techniques to improve our understanding of host responses to

complex disease states in infection and in allotransplantation (1–

5). In this study, we applied MS-based strategies to profile the

human serum proteome longitudinally in response to two

arthropod-transmitted pathogens: the Ixodes tick transmitted

spirochete Borreliella burgdorferi that causes Lyme disease (LD)

(6) and the mosquito-transmitted flavivirus West Nile virus

(WNV). Both pathogens enter the human host when the

arthropod vector acquires its bloodmeal through the skin bite

site. The clinical presentations of these infections represent a

spectrum of disease severity ranging from asymptomatic/mild

isolated organ system involvement to severe systemic disease (7–

9). The immune responses that underlie these different

expressions of disease are incompletely understood. Here we

define longitudinal changes in the serum proteomes and

associated biological pathways in patients with LD and WNV

infections and compare these results to blood sampling from

healthy controls, using a depletion-based high-throughput

shotgun proteomics (dHSP) pipeline. In parallel, a sample-

sparing microtiter plate-based proteomics method, named

MStern blotting, was also used to examine changes in selected

serum proteins in LD and WNV infections over time (5, 10, 11),

with a view to understanding the clinical utility of using this

platform for rapid, low-cost, low-throughput sample testing.

Each platform identified unique and overlapping proteins to

better understand host response pathways in the acute and

recovery phases of infection with each pathogen. To our

knowledge, a comparison of the serum proteomes of these two

human infections, occurring from different pathogen types, from

a bacterium for LD and from a virus for WNV, has not

been reported.
02
Method

Cohort design and patient characteristics

Ethics statement
The Lyme disease (LD) and West Nile virus (WNV) cohorts

were obtained with written informed consent under the

guidelines of the Human Investigations Committee of Yale

University School of Medicine (LD) and Baylor College of

Medicine (WNV).

LD patients presenting with acute illness to their physicians

in CT were recruited and enrolled by study staff at Yale School of

Medicine (New Haven, CT) or at Mansfield Family Practice in

Storrs, CT. The 12 participants diagnosed with LD were

stratified into 2 groups: those with a single erythema migrans

(EM) lesion (localized EM; n = 6) and those with clinical signs of

dissemination infection (disseminated LD; n = 6). The

disseminated LD group included neurologic disease, systemic

flu-like illness that was confirmed by seroconversion, carditis

and arthritis. Serum samples were collected at 3 different time

points: 1) early after diagnosis, range 0-9 days (defined as M0),

2) at convalescence, 30 days post diagnosis (defined as M1), and

3) up to 4.5 months post diagnosis, range 3-4.5 months (defined

as M3). Additional details can be found in Table 1. For M0

participants enrolled in the study within 9 days after diagnosis;

7 of the 9 participants had received at least one dose of

antibiotics (doxycycline) prior to the blood draw. The second

time point blood samples (M1; n = 12) were obtained about one

month after the initial diagnosis and in all cases after completion

of the initial course of antibiotic therapy. The last time point

(M3, also defined as “Resolved” in Figure 1, 2; n = 12) was

collected 3 to 4.5 months after completion of antibiotic therapy

and corresponds to a return to pre-infection clinical baseline as

determined by resolved presenting signs and symptoms of

the disease.

For WNV, patients infected with WNV were recruited at

Baylor College of Medicine within seven days of symptomatic

onset with infection confirmed by RT-PCR (12). Viremic

asymptomatic donors were identified by screening at Gulf

Coast Regional Blood Center donation sites (Houston, TX).

Symptomatic and asymptomatic subjects were enrolled within
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~1 week of infection as confirmed by PCR detection of viremia

which becomes undetectable by ~14 days (13). Asymptomatic

donors had no acute illness and took no antibiotics or

nonsteroidal anti-inflammatory drugs at the time of sampling

(14). Medical history was obtained and blood collected at the

time of enrollment and at 3 month and one-year follow-

up visits.
MStern 96-well sample processing/
digestion and cleanup

Sample processing employed anMStern blotting protocol we

have developed as described previously (5, 11). The name

MStern blotting is derived from Western blotting as it uses the

same type of hydrophobic polyvinylidene fluoride (PVDF)

membrane for protein retention. In brief, 1 µL of serum (~50

µg of proteins) was mixed in 100 µL of urea buffer. Following

reduction and alkylation of the cysteine side chains, 10-15 µg of

proteins were loaded on to a 96-well plate with a PVDF

membrane at the bottom (Millipore-Sigma), which had been

previously activated and primed. Trypsinization of the proteins

adsorbed to the membrane was achieved by incubation with the

protease for 2h at 37°C. Resulting tryptic peptides were eluted off

the membrane with 40% acetonitrile (ACN)/0.1% formic acid

(FA). The peptides were subsequently cleaned-up using a 96-

well MACROSPIN C18 plate (TARGA, The NestGroup Inc.).
dHSP sample preparation

Serum samples were depleted for abundant proteins using

HighSelect Top14 Depletion Midi Spin Columns (Thermo

Scientific, Cat #A36371) followed by acetone precipitation.

Precipitated protein was resuspended in 6M urea-tris buffer.

Reduction with DTT followed by alkylation with iodoacetamide

was done at room temperature for 1hr. Resulting protein

samples were digested with trypsin (1:50 trypsin-to-substrate

ratio) overnight at 37 °C and reaction was quenched with

trifluoroacetic acid at a final concentration of 0.1%.
Frontiers in Immunology 03
DIA sample acquisition

For MStern platform, the samples were analyzed on the same

LC/MS system as the data-dependent acquisition (DDA) runs using

identical LC parameters (45 min gradient, 59 min total runtime).

The m/z range 375−1200, covering 95% of the identified peptide,

was divided into 15 variable windows based on density, and the

following parameters were used for the subsequent DIA analysis:

resolution 35000 @m/z 200, AGC target 3e6, maximum IT 120ms,

fixed first mass m/z 200, NCE 27. The DIA scans preceded an MS1

Full scan with identical parameters yielding a total cycle time of 2.4s.
dHSP data acquisition

Provided samples were acidified with formic acid (final

concentration of 2%) to bring the pH < 4 and clean up with C18

Monospin columns. Dried samples were reconstituted in 20 µl

reconstitution buffer (2% acetonitrile with 0.1% Formic acid) and

2µl (1µg) of it was injected on the instrument. Mass spectrometry

experiment was performed using Q Exactive HF-X Hybrid

Quadrupole - Orbitrap mass spectrometer (Thermo Scientific,

San Jose, CA) with liquid chromatography using a Nanoacquity

UPLC (Waters Corporation, Milford, MA). For a typical LCMS

experiment, a flow rate of 300 nL/min is used, where mobile phase

A was 0.2% formic acid in water and mobile phase B was 0.2%

formic acid in acetonitrile. Peptides were directly injected onto

50cm µPAC (PharmaFluidics) analytical column with a fused silica

tip emitter using a gradient (2-38% B, followed by a high-B wash) of

120min. The mass spectrometer was operated in a data dependent

fashion using HCD fragmentation for MS/MS spectra generation.

The RAW data were analyzed using Byonic v3.7.13 (Protein

Metrics, Cupertino, CA) to identify peptides and infer proteins. A

concatenated FASTA file containing the Uniprot Homo sapiens

sequences from which likely contaminants and impurities were

removed before analysis. Proteolysis with Trypsin was assumed to

be semi-specific allowing for N-ragged cleavage with up to two

missed cleavage sites. The precursor ion tolerance was set to 12

ppm. The fragment ion tolerance was set to 0.4 Da. Cysteine

modified with propionamide was set as a fixed modification in

the search. Variable modifications included oxidation on
TABLE 1 Patient demographics (LD and WNV).

Clinical cohort demographics

Lyme (Localized EM) Lyme (Disseminated) WNV (Asymp) WNV (Symp) Healthy Controls

Number of Subjects 6 6 4 7 6

Male 3 (50%) 3 (50%) 4 (100%) 5 (71%) 3 (50%)

Female 3 (50%) 3 (50%) 0 (0%) 2 (29%) 3 (50%)

Mean Age (yr) (SD) 58.2 ± 17 57.5 ± 22.5 67.8 ± 7.4 52.9 ± 14.0 49.5 ± 24.3
At the M0 time point clinical data was available for 5/6 localized EM and 4/6 disseminated LD subjects.
Statistical analysis for age was performed using a two-tailed t-test; and for gender using Chi-square test.
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methionine, histidine and tryptophan, dioxidation on methionine

and tryptophan, deamidation on asparagine, and acetylation on

protein N-terminus. Proteins were held to a false discovery rate of

1% using standard reverse-decoy technique (15).
Spectral library generation and DIA
data analysis

We use a previously published in house generated spectral

library (5). All DIA data were directly analyzed in Spectronaut

v12.0.20491.18 (Biognosys, Switzerland). Standard search

settings were employed, which included enabling dynamic

peak detection, automatic precision nonlinear iRT calibration,

interference correction, and cross run normalization (total peak

area). All results were filtered by a q-value of 0.01

(corresponding to an FDR of 1% on the precursor and protein

levels). Otherwise default settings were used.
MStern statistics and data analysis

The protein abundance/samples matrix was exported into

Perseus (16) where a log2 transformation followed by imputing

the missing values for each column from a normal distribution

(width = 0.3; down shift = 1.8). For better visualization, the

results were exported into GraphPad Prism software v8.

The area under the ROC curve (AUROC) calculation for the

biomarker panels was done using IBM’s SPSS software. To

minimize between subject variation, we used the last time

point (M3) as “Resolved” as patients at this time point have

resolved their acute infection (17, 18). Given the pilot nature of

this study and limited number of samples, no multiple testing

corrections were applied. The DEPs were exported into STRING

protein-protein interaction network to assess their functional

relationships (19). We used the short time-series expression

miner (STEM) tool to visualize protein profiles and dynamics

among the 3 time points of localized LD and disseminated LD

separately (20). The averaged protein intensities were calculated

for each time point and then the data were normalized such that

the time point M0 was set to 0. Data completeness (Figure S1D).

The resulting complete matrix was comprised of 295 protein

entries. Eighty-seven percent (n = 259) of the detected protein

groups were present in at least half of the samples, and 63%

(n = 185) of the detected protein groups were found in all

samples. Overall, only 13% of the protein quantitation values

across all samples were missing, which is consistent with

published DIA-based proteomics studies (21–24).

For verification of LD results with Zhou et al. (7), we

compared M0 and M3 samples, defined as Lyme and

“Resolved”, respectively (Figure 2). The M3 time point was

considered the most appropriate comparison in our cohort

because it is closest to the individual’s immune baseline and
Frontiers in Immunology 04
these patients reported resolution of LD signs and symptoms

(17, 18).
dHSP preprocessing

Data preprocessing was conducted with Python (3.8.8),

Pandas (1.2.0), Numpy (1.19.5), and Re (2.2.1). The dHSP

pipeline identified a total of 2086 (LD) and 2091 (WNV)

proteins in sera with a platform identification capability of

4389 total proteins. The data was set at an 20% limit for

missing data. Any aberrated or missing values were imputed

by the minimum value observed in a similar cohort member.

Furthermore, all raw abundance data was log(2) normalized

prior to any further analysis. All exploratory data analysis and

descriptive statistical plots were generated by using Seaborn

(0.11.1). Original patient labeling was obscured and reclassified

programmatically by using the regex package in Python.
dHSP differential expression analysis

Differential Expression Analysis was conducted by linear

models by using R (4.0.4), limma (3.46.0) and ggplot2 (3.3.5).

Comparisons were created to discern a WNV or LD signature by

comparing differences between initial acute disease timepoint

and healthy control readouts. Statistical significance was

accepted with a FDR less than or equal to 0.05. Corresponding

results were illustrated as heatmaps using pheatmap (1.0.12)
dHSP descriptive statistics and
temporal analysis

Proteins with the greatest log fold change between initial

acute infection and recovery through linear models (limma

3.46.0) were observed for temporal perturbations. Moreover,

descriptive statistics were captured by using the Python packages

matplotlib (3.3.4), numpy (1.19.5), pandas (1.2.0), scipy (1.7.2),

and seaborn (0.11.1). Comparisons for disease signature were

defined by observing difference between the initial acute disease

timepoint and the final recovery timepoint. Furthermore, t-tests

were run for pairwise comparisons between M0 & M1, M1 &

Mfinal, and M0 & Mfinal.
dHSP random forest

To further analyze distinct differences between patient Viral

and Bacterial infection status data science and machine learning

methods were utilized. A random forest machine learning model

(Python 3.8.8, Sklearn: 0.24.1) was utilized to classify patients

who are WNV+ or LD+. Moreover, WNV+ and LD+ timepoints
frontiersin.org
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were then label encoded for classification to compare against a

healthy control cohort. The data was then normalized by

standard scaling and mean and standard deviation were

computed by fit transformation (Sklearn: 0.24.1). Data was

then split to preserve 30% data for testing. A param grid of

learning_rate, min_child_weight, gamma, subsample,

n_estimators, colsample_bytree, and max_depth was

automated by using a randomized search cv. The random

search was composed of 50 iterations, scoring based on

roc_auc, 4 jobs and a cross validation composed of stratified k

fold search of 10 splits. Prediction Accuracy, CV score and AUC

were used as metrics to observe the accuracy and validity of the

model. Moreover, top contributing features were extracted from

machine learning model and evaluated by feature

importance score.
Pathway analysis of shared proteomic
readouts between platforms

The set of unique and common proteins between each mass

spectrometry platform was run through STRING DB (functional

protein association networks) to determine the GO Biological

Processes, Molecular Functions, and proteomic interactions.
Results

Study design

Serum samples, extracted from peripheral blood samples

obtained by venipuncture, from subjects with LD (n=12) or

WNV infection (n=11) were collected at initial diagnosis and at

two timepoints after diagnosis: for LD at 1- and 4-6 months

convalescence and forWNV at 3- and 12- months convalescence

(Figure 3). Characteristics of the subjects are described in

Table 1. LD subjects included patients with localized (n=6) or

disseminated disease (n=6); WNV subjects included

symptomatic inpatients with clinically worse symptomatology

(n=7) and asymptomatic viremic, outpatient subjects (n=4).

Samples from healthy controls (HC, n=6, 3 male, 3 female)

were assessed at a single time point. Aliquots of samples were

processed using established protocols using the depletion-based

high-throughput shotgun proteomics (dHSP) pipeline (4, 25)

and the non-depleting MStern blotting-based proteomics

platform (10) (Figure 3).
Longitudinal proteomic profiles of
responses in LD

The dHSP pipeline identified a total of 2086 proteins in sera

of subjects with LD with a platform identification capability of
Frontiers in Immunology 05
4389 total proteins (26). After data processing, removing

proteins with 20% missing data across all samples and

including proteins with known biological function, 192 unique

proteins were utilized for further analysis. The MStern platform

identified a total of 295 proteins on the platform, of which 140

were also detected with dHSP (Figure 3B). Gene ontology and

molecular function pathways common between the two

platforms are shown in Tables 2A, B.

Using the dHSP platform, we first identified those

significantly different in abundance in LD sera at the time of

infection in comparison to healthy controls (Figure 1A). Of the

46 differentially expressed proteins (DEPs) identified, many were

involved in inflammation (complement and immunoglobulin

molecules) and in innate immune regulation and tissue repair,

including serum amyloid P, apolipoproteins, gelsolin and

serpins. All but four of these proteins were also detected using

the MStern platform (data not shown). Analysis of samples from

subjects with localized infection identified 56 DEPs in

comparison to healthy controls (Figure 1B). All other DEPs

identified in the combined disease groups constituted a subset of

those found in the localized infection group (Figure 1A). The

additional 11 proteins found in the localized group were

predominantly complement components and inflammatory

markers (Figure 1B). In contrast, only 21 DEPs were identified

in the disseminated LD samples as differentially expressed across

all time points analyzed (Figure 1C), and were also observed as

differentially expressed in localized infection. The lower number

of DEPs in the disseminated LD samples in comparison to the

localized LD samples may be due to the greater variability in

subject presentations and evolution of responses over time in

this subject group.

To better understand serum proteome changes in the

localized and disseminated LD subjects, we compared

proteomes longitudinally across these groups. We identified a

small number of proteins whose expression changed

significantly (Localized – C9: p=0.0161, AMBP: p=0.0127;

Disseminated – CD44: p=4.19E-06, CFD: p=0.023) over time

(Figure 2). The expression of most of these proteins exhibited a

downward trend, approaching levels found in healthy controls

over time. The exception was CFD, the rate-limiting enzyme

required for the formation of C3 convertase and critical for

complement activation via the alternative pathway.

At the time of initial presentation, the dHSP platform analysis

identified 8 DEPs that distinguished between the localized and

disseminated LD groups with significance assessed by p value.

These proteins were all higher in the localized samples (C8G,

KLKB1, AHSG, GSN, TTR, AFM, SerpinA7, and SerpinF2) and

functionally are known to modulate the inflammatory response

and innate immune pathways.

We next individually examined the data from the MStern

platform characteristic of localized vs disseminated LD (Figure

S1A) and reported DEPs and differentially expressed

immunoglobulin domains (DEIgs). We identified C9 protein
frontiersin.org
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as decreasing in abundance in the localized group from the M0

(initial diagnosis) to the M3 (4-6 months after diagnosis)

timepoints (C9; p = 0.011). In addition, MStern identified two

other proteins demonstrating significant differences, C-reactive

protein (CRP: p = 0.0026), and Inter-Alpha-Trypsin Inhibitor

Heavy chain 2 (ITIH2: p = 0.03). A different isoform ITIH3 was

identified on the dHSP platform. These proteins have been

identified as being differentially regulated in LD in a previous

study (7). While the proteins upregulated in localized LD were

identified as mostly involved in the complement system, the

proteins upregulated in disseminated LD at the initial timepoint

(month zero (M0)) were involved in TLR regulation and

hemostasis. Additional analyses at subsequent time points

revealed a decline in numbers of DEPs in both.
Frontiers in Immunology 06
We next used the STEM (short time-series expression

miner) tool to visualize protein clusters and trajectories

longitudinally in each LD subject group over the 3 time points

independently (20) (Figures S1B-D). Three statistically

significant clusters were identified within the protein

trajectories of the disseminated LD samples, which were

subsequently imported into the STRING interaction network

to investigate their functional grouping. We then selected the

same proteins and plotted their trajectories measured for the

localized LD samples (Figures S1B-D). Very different trajectories

of the same sets of proteins were apparent even though in both

groups they resolved to be similar by the last time point. In the

first cluster (Figure S1B), the protein dynamics for the

disseminated LD group decreased from M0 to M1 to remain
A B

C

FIGURE 1

Protein Expression across Lyme Disease Timepoints. Serum samples from LD patients were assessed by the dHSP platform. The limma package
was used to identify differentially expressed proteins in a combined dataset of healthy controls and patients with statistically significant proteins
defined with FDR ¾= 0.05. (A) Normalized heatmap displays the progression of abundant proteins (n=46) in both disseminated and localized
infections at month 0, 1, and 3 (M0, M1, M3) compared to healthy controls. (B) Normalized heatmap displays the progression of abundant
proteins (n = 66) in localized infections at month 0, 1, and 3 (M0, M1, M3). (C) Normalized heatmap displays the progression of abundant
proteins (n = 22) in disseminated infections at month 0, 1, and 3 (M0, M1, M3).
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stable between M1 and M3. Some of these proteins are involved

in the acute phase response (highlighted in red) and the

complement cascade (highlighted in blue) from the STRING

interaction network analysis. In the second cluster (Figure S1C),

the protein trajectories demonstrate a continuous decrease

across the three time points for the disseminated LD. Some of

these proteins are involved in the negative regulation of

proteolysis. Lastly, the third cluster (Figure S1D) showed a

pronounced increase in protein intensity from M0 to M1 and

a stability at M3. Some of these proteins are involved in the

regulation of peptidase activity. It is noteworthy that the median

trajectories for the same protein set show no change for the

localized LD samples. These findings confirm the different

proteome profi les observed between local ized and

disseminated LD from the acute infection to the resolution of

signs and symptoms.
Longitudinal proteomic profiles of
responses in WNV

We profiled circulating proteins in the serum of our WNV

subject cohort in samples collected longitudinally from acute

infection (month 0) through convalescent time points at month

3 and month 12 after study entry. We identified 276 serum

proteins with significant overlap (n=90) between the two

proteomic platforms (Figure 3C). The MStern platform

identified and quantified a total of 265 proteins of which 175

were unique to MStern, and an additional 11 unique proteins

were identified by the dHSP platform alone. The Gene Ontology

and molecular function pathways for proteins that are common

between the two platforms feature elements relevant for

complement activation, and humoral immune response

regulation as well as regulation of peptidases (Tables 3A, B).
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Examining data from the dHSP platform, we compared

serum proteins of WNV subjects that were differentially

abundant at acute infection (month 0) in comparison to

healthy controls and detected elevated levels of 38 significant

WNV proteins (Figure 4A p < 0.05, FDR < 0.05). These proteins

were associated with acute phase responses and inflammatory

processes including the classical complement pathway proteins

(C1QB, C4B, C4BPB, C5, C6, C7, C8A, KLKB1) and anti-

inflammatory protease regulation pathways (Serpins A3, A6,

A7, D1, F1) (27). When comparing proteomes across the time

course, the convalescent samples collected at the 3-month time

point showed sustained elevated levels of key proteins in both

asymptomatic and symptomatic WNV subjects, indicating

ongoing host proteome perturbations (Figure 4A). These

significant changes in abundance of serum proteins and

markers of inflammation highlight prolonged immune

perturbations for at least 3 months after WNV infection.

Notably, protein levels at the 12-month convalescent time

point were not significantly different from healthy controls

suggesting a return to baseline levels of circulating proteins

(Figure 4A). Both asymptomatic and symptomatic cases of

WNV showed a decrease over time in protein expression of

alpha-2-glycoprotein 1 (AZGP1) (p-values of 0.0055, 0.0024

respectively), which plays a role in peptide antigen binding

and carboxypeptidase B2 (CPB2) (p-values of 0.01 and 0.003

respectively), which cleaves C terminal residues from

biologically active anaphylatoxins in the circulation (Figure 4B).

To identify proteins which may contribute to the divergence in

the clinical course of WNV infection, we compared differentially

abundant proteins between symptomatic and asymptomatic study

participants. At the acute infection time point (month 0), we

detected a significant elevation for a single protein in

symptomatic compared to asymptomatic subjects: insulin like

growth factor binding protein acid-labile subunit (IGFALS) was

1.8-fold higher (p<0.04, FDR <0.05) in symptomatic subjects.

As in our analysis of LD proteomes, serum samples fromWNV

subjects were assessed using the MStern blotting-based platform

without depletion of the most abundant serum proteins. In

comparison to healthy controls, all WNV subjects showed

elevations in proteins involved in the acute phase response and

inflammatory processes, including Siglec 16 (28), b-2 microglobulin

(B2M), a component of class I major histocompatibility complexes

which is elevated in viral infections (29), and the fibrinogen,

complement, and coagulation pathways (27). Another highly

elevated protein was apolipoprotein A1 (APOA1) which responds

to inflammatory cytokines and is involved in autophagy (30).

The MStern blotting-based pipeline identified 30 proteins

showing significant differential abundance over the time course

and severity of WNV infection. In particular, we detected

differential abundance of multiple apolipoproteins (APOA1,

APOA2, APOA4, APOD, APOE, APOL1, APOM). The most

significant DEPs were elevated at the acute time point in the

most symptomatic patients. These include the vitamin D-being
TABLE 2 Proteomic Pathways in LD.

A

Description False Discovery Rate

Regulation of complement activation 2.68E-41

Regulation of humoral immune response 2.58E-40

Complement activation 2.80E-40

Defense response 1.46E-36

Humoral immune response 1.49E-36

B

Description False Discovery Rate

Peptidase regulator activity 6.49E-25

Endopeptidase inhibitor activity 7.50E-25

Enzyme inhibitor activity 5.72E-21

Serine-type endopeptidase inhibitor activity 3.49E-16

Glycosaminoglycan binding 4.01E-16
Shared biological processes and molecular functions of serum proteins common between
MStern and dHSP platforms analyzed by (A) Gene Ontology (GO) and (B) molecular
function. Pathway analysis conducted through STRING DB.
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protein GC, plasminogen (PLG), an acute phase reactant; and

APOL1. CD14, the soluble form of the monocyte surface marker,

was also elevated in severe patients, and is an indicator of monocyte

activation consistent with other elements of immune activation

(31). These differentially abundant proteins are highly similar to

those identified by the dHSP platform. In particular,

apolipoproteins and SERPINS were identified as differentially

abundant in both platforms. As noted above for the dHSP

pipeline, the MStern blotting-based platform also detected

IGFALS at elevated levels in symptomatic subjects. The consistent

detection of this severity-distinguishing protein by both platforms

underscores the robust differences in levels and suggests an

important role in pathogenesis.
Comparing LD and WNV proteomes

Our dual analyses allowed us to assess the similarities and

differences in proteomic profiles between LD and WNV

infections. When compared to healthy controls, on analyzing

the dHSP data, the proteins that were identified to be differentially

abundant across all time points in the LD and WNV sera

overlapped considerably (Figures 1A, 4A). Of the 46 proteins

identified in LD (Figure 1A), 35 were shared with WNV samples.

Eleven proteins were unique to LD (APOC1, C1r, C4bpa, C9,

F13B, HRG, ITIH1, ITIH3, KNGisoform lmw, LRG1, and

PROS1) and 3 were unique to WNV (ALB, ECM1, and FN1).

When samples at the time of diagnosis were compared, 4 proteins

(APOM, C4BPB, CPN2 and F11) were found to be in higher

abundance in the LD samples compared to WNV.
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We next used a random forest algorithm to determine which

proteins contributed the most to the plasma proteome patterns

of LD and WNV infections by the dHSP platform and also

whether different subsets of the proteins shared in both diseases

contributed most to distinguishing each infection from healthy

controls. The random forest machine learning model used 70%

of the data from LD and WNV for learning, preserving 30% for

testing. We confirmed the differences between healthy controls

and the LD and WNV subjects when compared at time points

approximating similar periods of infection (M3 in LD and
FIGURE 2

Strip plots of differentially expressed proteins between primary acute infection and recovery in Lyme disease. Serum samples from LD patients
were assessed by the dHSP platform. Differentially expressed proteins were identified in a combined dataset of acute infection and convalescent
time points. Patients with statistically significant proteins were defined with p value ¾= 0.05. Localized Lyme disease infections were statistically
significant across time points for AMBP and C9. CD44 was statistically significant across time points in disseminated Lyme Disease infections,
however, CFD was statistically significant by month 1.
TABLE 3 Proteomic pathways in WNV.

A

GO Description False Discovery Rate

Regulation of complement activation 8.16E-41

Regulation of humoral immune response 2.94E-40

Complement activation 1.33E-31

Complement activation, classical pathway 2.46E-30

Regulation of immune effector process 1.92E-27

B

Description False Discovery Rate

Peptidase regulator activity 4.85E-24

Endopeptidase inhibitor activity 2.13E-23

Enzyme inhibitor activity 2.85E-22

Serine-type endopeptidase inhibitor activity 4.02E-19

Enzyme regulator activity 1.57E-18
Shared biological processes and molecular functions of serum proteins common between
MStern and dHSP platforms analyzed by (A) Gene Ontology (GO) and (B) molecular
function. Pathway analysis conducted through STRING DB.
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WNV). Table 4 lists the proteins identified with random forest

and determined by gini impurity as the most important in

distinguishing all LD subjects from controls and Table 5 lists

those distinguishing all WNV subjects from controls. The

random forest area under the curve (AUC) was determined to

be 1.00 for LD and 0.94 for WNV.

Although the majority of proteins identified as abundantly

increased were found to be identical between the two diseases

(Figures 1A, 4A), in fact machine learning identified several

differences in their importance (Tables 4, 5). ITIH3

contributed most significantly to the differences between

healthy controls and LD subjects but was not a major

contributor for distinguishing WNV subjects from controls.
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In contrast , C4A contributed most significantly to

distinguishing WNV from controls but did not contribute to

distinguishing LD subjects from healthy controls. Of the top 20

contributing proteins for each infection identified by machine

learning, 6 were found to be common to both LD and WNV

(APOD, C4BPB, C7, HP, ITIH3, PGLYRP2), but with varying

degrees of importance in each disease (Tables 4, 5). Table 6 lists

the proteins identified with random forest and determined by

gini impurity that are most pivotal to distinguishing LD from

WNV subjects. The AUC for distinguishing LD from WNV

subjects is 0.73, highlighting that larger cohorts are needed to

ascertain whether serum proteomics can be used to develop

panels that reliably distinguish these two vector-borne diseases.
FIGURE 3

LEGEND - Schematic representation of the overall study. (A) Diseases studied- Lyme disease (tick-borne) and West Nile Virus infection
(mosquito-borne).(B) Blood collection by venipuncture and serum separation (C) Serum protein processing platforms– MStern spotting of one
µl serum on PVDF microtiter membrane without depleting high abundant protein followed by protein denaturation, reduction and alkylation of
cysteine residues, rapid protein digestion, LCMS (top panel) and dHSP with depletion of high abundance blood proteins using spin columns
followed by protein denaturation, reduction and alkylation of cysteine residues, rapid protein digestion and LCMS shotgun proteomics (bottom
panel) (D) Data analysis and data interrogation for marker discovery and underlying molecular mechanisms. Venn Diagram of the analyzed
proteins from both the dHSP and MStern platforms in LD (E) and WNV (F). The optimized depletion-based method is an unbiased approach that
was based on shotgun proteomics method that required 50 ml serum for depletion step and 1mg of tryptic peptides for LC/MS analysis. The
MStern platform starts with 1ml serum on a 96 well-plate-based method with no depletion step required in WNV.
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Discussion

Analysis of serum proteomic changes using mass

spectrometry techniques is increasingly being used to define

clinical biomarkers and to gain insight into potential

mechanisms of disease. Our studies were conducted using two

LC/MS based detection platforms, one a depleting platform

(dHSP) that uses the approach of depleting highly abundant

serum proteins to augment the detection of lower abundant,

biologically significant proteins that may otherwise not be
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detected in human serum (4). The second method, the MStern

platform, utilizes a custom generated protein detection platform,

emphasizing rapid, low-cost and low-throughput detection, that

could be applied for clinical validation, after deeper

interrogations have been conducted. The MStern complements

standard LC/MS platforms, as without depletion of highly

abundant proteins, those with immunologic roles such as

immunoglobulins and acute phase proteins are retained

allowing for a more complete view of the immune status (32).

The two platforms utilized in this study provided additive
A

B

FIGURE 4

(A) Protein Expression across WNV Timepoints. Serum samples from WNV patients were assessed by the dHSP platform. The limma package
was used to identify differentially expressed proteins in a combined dataset of healthy controls and patients with statistically significant proteins
defined with FDR ¾= 0.05. A Normalized heatmap displays the progression of abundant proteins (n=38) in both symptomatic and
asymptomatic infections at month 0, 1, and 3 (M0, M1, M3) compared to healthy controls. (B) Strip plots of differentially expressed proteins
between primary acute infection and recovery in West Nile Virus. Serum samples from WNV patients were assessed by the dHSP platform.
Differentially expressed proteins were identified in a combined dataset of acute infection and convalescent time points. Patients with statistically
significant proteins were defined with p value ¾= 0.05. Both asymptomatic and infections were statistically significant across time points for
C4B and CPB2.
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TABLE 4 Proteins distinguishing LD from healthy controls.

Protein Protein Name Importance

ITIH3 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 1.051E-01

KLKB1 Kallikrein B1 5.798E-02

C1R Complement C1r 5.780E-02

C4BPB Complement Component 4 Binding Protein Beta 5.251E-02

C8A Complement C8 Alpha Chain 5.118E-02

C7 Complement C7 5.020E-02

APOC1 Apolipoprotein C1 4.840E-02

HRG Histidine Rich Glycoprotein 4.741E-02

PGLYRP2 Peptidoglycan Recognition Protein 2 4.576E-02

C6 Complement C6 4.514E-02

HP Haptoglobin 4.159E-02

ATRN Attractin 3.427E-02

C5 Complement C5 3.393E-02

SERPINF1 Serpin Family F Member 1 2.539E-02

F10 Coagulation Factor X 1.864E-02

FCN3 Ficolin 3 1.797E-02

IGFBP3 Insulin Like Growth Factor Binding Protein 3 1.576E-02

IGHG2 Immunoglobulin Heavy Constant Gamma 2 1.496E-02

SERPING1 Serpin Family G Member 1 1.289E-02

APOD Apolipoprotein D 1.151E-02
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List of important features that were pivotal in determining the difference between a Lyme Disease patient and healthy control when using a random forest model.
TABLE 5 Proteins distinguishing WNV from healthy controls.

Protein Protein Name Importance

C4A Complement C4A 6.349E-02

C4B Complement C4B 5.340E-02

FGA Fibrinogen Alpha Chain 3.949E-02

GPX3 Glutathione Peroxidase 3 3.824E-02

PPBP Pro-Platelet Basic Protein 3.638E-02

PGLYRP2 Peptidoglycan Recognition Protein 2 3.377E-02

AZGP1 Alpha-2-Glycoprotein 1, Zinc-Binding 3.364E-02

ITIH3 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 2.657E-02

SERPINA7 Serpin Family A Member 7 2.485E-02

HGFAC HGF Activator 2.222E-02

APOB Apolipoprotein B 2.211E-02

HP Haptoglobin 2.118E-02

C4BPB Complement Component 4 Binding Protein Beta 2.048E-02

APOC3 Apolipoprotein C3 1.965E-02

C8G Complement C8 Gamma Chain 1.963E-02

C7 Complement C7 1.911E-02

SERPIND1 Serpin Family D Member 1 1.884E-02

CPB2 Carboxypeptidase B2 1.828E-02

APOA2 Apolipoprotein A2 1.773E-02

APOD Apolipoprotein D 1.306E-02
List of important features that were pivotal in determining the difference between a WNV patient and healthy control when using a random forest model.
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evaluations of serum protein measures and trends, and the

independent platforms using identical samples are validation

for the overlapping proteins identified.

Our study is novel as it applies these techniques to examine

the evolution of the human proteome response to infection with

two arthropod-transmitted pathogens that differ both in their

vectors (tick vs mosquito) as well as their taxonomic

classification – one a spirochetal bacterium (LD) and the other

a flavivirus (WNV). Both infections elicit type I IFN responses

and give rise to a spectrum of disease states (33–35). Although

these pathogens are quite distinct microbiologically, we found

similarities in the serum proteomes of infected subjects, beyond

the known type I IFN signatures.

In LD, many of the proteins identified were involved in

inflammation (complement and immunoglobulin molecules)

and in innate immune regulation and tissue repair, including

serum amyloid P, apolipoproteins, gelsolin, and serpins. Proteins

identified distinguishing early LD by previous studies (7) were

proteins also identified in our analyses (C9, ITIH2, PGLYRP2)

along with related apolipoproteins, which further validates the

LD findings in this study. These concordant results support the

value of proteomic analyses and the prominent involvement of

innate immune pathways and acute phase proteins in

orchestration of initial pathogen defense and its regulation.

Infection with WNV induced expression of serum proteins

associated with acute phase responses and inflammatory

processes including complement pathway proteins C4B, and
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kallikrein (KLKB1), both of which are involved in complement

activation (36). Both platforms also detected elevated levels of

anti-inflammatory protease regulation pathways SERPINA3, a

serine protease inhibitor with anti-inflammatory effects

inhibiting PMN granule protease cathepsin G (37). Other

elevated proteins include immunoregulatory factors which

may play a protective role in limiting an overexuberant

inflammatory response potentially contributing to permeability

of the blood brain barrier and encephalitis. These pathways

include apolipoprotein B (APOB) which has a structural role in

LDL as well as limiting inflammation in infection (38);

carboxypeptidase (CPB2) which functions to inhibit

fibrinolysis; and immune related proteins such as zinc binding

alpha-2 glycoprotein-1 (AZGP1), a glucocorticoid regulated

fatty acid-binding protein with homology to MHC I molecules

and a role in inhibiting the TGFb signaling pathway (39). A

single protein, the classical complement pathway factor C2, was

lower in WNV infected individuals at acute infection (month 0)

compared to healthy controls. While no global proteomic studies

of human study participants with WNV infection have been

reported to date for comparison, murine models suggest a

critical role for complement in response to WNV infection

(40). A lower level of C2 may be expected reflecting its

consumption in response to the WNV infection (40).

A striking finding is that significant changes in the

proteomes were present for several months after the initial

infection despite clinical resolution of disease. For WNV,
TABLE 6 Proteins distinguishing LD and WNV.

Protein Protein Name Importance

FN1 Fibronectin 1 4.245E-02

AZGP1 Alpha-2-Glycoprotein 1, Zinc-Binding 4.126E-02

ITIH3 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3 4.111E-02

KNG1IsoformLMW Kininogen 1 Lower Molecular Weight Isoform 3.735E-02

RBP4 Retinol Binding Protein 4 3.138E-02

C1R Complement C1r 2.786E-02

GPLD1 Glycosylphosphatidylinositol Specific Phospholipase D1 2.642E-02

CPN1 Carboxypeptidase N Subunit 1 2.234E-02

VTN Vitronectin 2.209E-02

SERPINA1 Serpin Family A Member 1 2.083E-02

APOE Apolipoprotein E 2.020E-02

APOD Apolipoprotein D 1.990E-02

C4B Complement C4B 1.952E-02

IGHG1 Immunoglobulin Heavy Constant Gamma 1 1.940E-02

PLG Plasminogen 1.773E-02

AMBP Alpha-1-Microglobulin/Bikunin Precursor 1.688E-02

TTR Transthyretin 1.660E-02

SERPINA6 Serpin Family A Member 6 1.630E-02

HP Haptoglobin 1.621E-02

IGKC Immunoglobulin Kappa Constant 1.614E-02
Important features that were pivotal in distinguishing between LD and WNV were determined by gini impurity analysis.
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analysis of samples collected at 12 months after diagnosis

revealed that most protein levels had returned to baseline

levels present in healthy controls, suggesting that it takes

longer than 3 months for proteomic evidence of infection in

sera to resolve. Twelve-month convalescent samples were not

available for the LD cohort, although our STEM analysis

suggested that there is some convergence of localized and

disseminated expression at 3 months of infection. An earlier

transcriptional analysis of PBMCs of LD subjects documented

sustained differential gene expression at 6 months after infection

(18), consistent with ongoing immune perturbations.

Our study presents a novel profiling of proteomic responses

to infection, however, substantial conclusions about the

infectious course are limited by the small sample size in the

exploratory study design of this report. Nevertheless, our

bioinformatic and statistical data analyses allowed us to define

features of the proteome and pathophysiological processes that

can distinguish each infection from healthy controls. Using

machine learning with random forest analyses, we found that

the DEPs identified for each disease reliably distinguish infected

individuals from healthy controls regardless of disease severity,

with AUC’s of 1.0 and 0.94 for LD andWNV respectively. It also

showed limitations, however, in using the proteome alone to

distinguish between infectious diseases. The random forest

analyses aimed at identifying distinct subsets of proteins that

might distinguish LD andWNV infection could not be identified

in this rather small number of patients in each infection group.

These results together with the identification of largely

overlapping lists of DEPs from each disease further support

the conclusion that acute responses to microbiologically distinct

infections transmitted by different vectors induce very similar

serum proteome responses. Moreover, these responses persist

for at least three months post infection, independent of initial

disease severity, even when clinical data indicate that the disease

signs have largely resolved.

Some of the proteins that were elevated for at least 3 months

post-infection in LD subjects or in both LD and WNV

participants have also been differentially abundant in other

human infections. F13B (coagulation), HRG (platelet

degranulation) and APOC1 (lipid metabolism) found in lower

levels in patients with severe COVID-19 infection with lowest

amounts in those whose disease has progressed (41).

Interestingly, we find the opposite in LD subjects, who have

higher abundance of these proteins than controls. GSN

(coagulation) is also down regulated in COVID-19 patients

with increasing severity correlated with the lowest levels. GSN

is in higher abundance in both LD (in particular the localized

disease subjects) and WNV infection for at least three months.

There are also similarities between LD subjects and severe

COVID-19 subjects with KNG (pro coagulation-platelet

degranulat ion) , LRG1 (antimicrobia l) , and PROS1

(anticoagulant), which are found in higher abundance in both.

The protein IGFALS, which distinguishes severity of WNV
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infection, facilitates ubiquitination of signaling mediators

IRAK1 and TRAF6 to inhibit influenza viral replication and

has recently been shown to be a sensitive biomarker of COVID-

19 infection (42, 43).

In summary, the substantial overlap in DEP between LD and

WNV study participants regardless of their disease presentation

suggests that serum proteomic profiles may hold important clues

about acute inflammatory responses that are more generalizable

than was previously thought. Advances in proteomics are rapidly

revealing multiple unexpected functions of circulating proteins

such as APOL3, recently demonstrated to have detergent-like

antibacterial activity beyond its expected role in cholesterol

transport (44). Future studies may identify common pathways

and processes induced by a variety of pathogens—rather than

disease-specific profiles–which may be targets for disease

modifying interventions.
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SUPPLEMENTARY FIGURE 1

Proteome comparison in localized and disseminated LD participants over
time. (A) Analysis of differentially expressed proteins (DEPs) and

immunoglobulins (DEIgs) between the localized (orange) and the

disseminated (blue) LD samples at M0 (A), M1 (B) and M3 (C) time
points. For each cluster, the protein names were exported into the

STRING interaction network. The white dotted lines represent the
median of the Log2 difference of all proteins in the cluster. The proteins

highlighted in red are involved in the acute phase response, in blue
the proteins involved in the complement cascade, in green the proteins

involved in the negative regulation of proteolysis, in yellow the

proteins involved in the protein activation cascade, and in pink the
proteins involved in the blood coagulation. (B-D). Longitudinal analysis
using the STEM program for clustering of the averaged protein intensity
profiles across the 3 time points for the disseminated LD group and

applying the protein cluster to the localized LD group.
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