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IFI44 is an immune evasion
biomarker for SARS-CoV-2 and
Staphylococcus aureus infection
in patients with RA

Qingcong Zheng1†, Du Wang2†, Rongjie Lin1, Qi Lv1

and Wanming Wang1*

1Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,
2Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

caused a global pandemic of severe coronavirus disease 2019 (COVID-19).

Staphylococcus aureus is one of the most common pathogenic bacteria in

humans, rheumatoid arthritis (RA) is among the most prevalent autoimmune

conditions. RA is a significant risk factor for SARS-CoV-2 and S. aureus

infections, although the mechanism of RA and SARS-CoV-2 infection in

conjunction with S. aureus infection has not been elucidated. The purpose of

this study is to investigate the biomarkers and disease targets between RA and

SARS-CoV-2 and S. aureus infections using bioinformatics analysis, to search

for the molecular mechanisms of SARS-CoV-2 and S. aureus immune escape

and potential drug targets in the RA population, and to provide new directions

for further analysis and targeted development of clinical treatments.

Methods: The RA dataset (GSE93272) and the S. aureus bacteremia (SAB)

dataset (GSE33341) were used to obtain differentially expressed gene sets,

respectively, and the common differentially expressed genes (DEGs) were

determined through the intersection. Functional enrichment analysis utilizing

GO, KEGG, and ClueGO methods. The PPI network was created utilizing the

STRING database, and the top 10 hub genes were identified and further

examined for functional enrichment using Metascape and GeneMANIA. The

top 10 hub genes were intersected with the SARS-CoV-2 gene pool to identify

five hub genes shared by RA, COVID-19, and SAB, and functional enrichment

analysis was conducted using Metascape and GeneMANIA. Using the

NetworkAnalyst platform, TF-hub gene and miRNA-hub gene networks were

built for these five hub genes. The hub gene was verified utilizing GSE17755,

GSE55235, and GSE13670, and its effectiveness was assessed utilizing ROC

curves. CIBERSORTwas applied to examine immune cell infiltration and the link

between the hub gene and immune cells.

Results: A total of 199 DEGs were extracted from the GSE93272 and GSE33341

datasets. KEGG analysis of enrichment pathways were NLR signaling pathway,

cell membrane DNA sensing pathway, oxidative phosphorylation, and viral

infection. Positive/negative regulation of the immune system, regulation of
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the interferon-I (IFN-I; IFN-a/b) pathway, and associated pathways of the

immunological response to viruses were enriched in GO and ClueGO

analyses. PPI network and Cytoscape platform identified the top 10 hub

genes: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L, ISG15, HERC5, and

IFIT5. The pathways are mainly enriched in response to viral and bacterial

infection, IFN signaling, and 1,25-dihydroxy vitamin D3. IFI44, OAS1, IFI44L,

ISG15, and HERC5 are the five hub genes shared by RA, COVID-19, and SAB.

The pathways are primarily enriched for response to viral and bacterial

infections. The TF-hub gene network and miRNA-hub gene network

identified YY1 as a key TF and hsa-mir-1-3p and hsa-mir-146a-5p as two

important miRNAs related to IFI44. IFI44 was identified as a hub gene by

validating GSE17755, GSE55235, and GSE13670. Immune cell infiltration

analysis showed a strong positive correlation between activated dendritic

cells and IFI44 expression.

Conclusions: IFI144 was discovered as a shared biomarker and disease target

for RA, COVID-19, and SAB by this study. IFI44 negatively regulates the IFN

signaling pathway to promote viral replication and bacterial proliferation and is

an important molecular target for SARS-CoV-2 and S. aureus immune escape

in RA. Dendritic cells play an important role in this process. 1,25-Dihydroxy

vitamin D3 may be an important therapeutic agent in treating RA with SARS-

CoV-2 and S. aureus infections.
KEYWORDS

SARS-CoV-2, COVID-19, Staphylococcus aureus, Rheumatoid arthritis, IFI44,
dendritic cells, 1,25-dihydroxy vitamin D3
Introduction

Rheumatoid arthritis (RA) (1) is one of the most prevalent

chronic inflammatory autoimmune diseases and has been the

focus of intense study for decades (1–5). The prevalence of RA is

about 1% (6). The clinical presentation of RA is characterized by

chronic persistent synovitis, which, in turn, destroys bone and

cartilage, leading to joint bone destruction and chronic disability

(7–9). Therefore, patients with RA are more prone than the

general population to requiring hip and knee replacements (10).

There are three main categories of factors that influence the

progression of RA: genetic, environmental, and immune (11,

12), with microbial infections (e.g., bacteria and viruses)

constituting a significant subset of environmental factors that

can trigger, induce, and exacerbate the disease process in RA

(13–17). The balance between the impact of microorganisms on

the host and the immune response of the host to

microorganisms is crucial for maintaining the regular

functioning of the body’s immune system, and an imbalance

between these reactions can exacerbate autoimmune

inflammation in RA (18). In addition, disease-modifying

antirheumatic drugs (DMARDs) and glucocorticoids,
02
commonly used for RA, can affect the immune system to

varying degrees (19–21). Although emerging biologic

medicines (e.g., TNF inhibitors) have been employed in recent

years to treat patients with RA with an inadequate response to

DMARDs (22–25), studies have shown that their usage is linked

with an increased risk of infection in patients with RA (26–28).

Therefore, microbial infection is dangerous for individuals with

RA, either in the illness itself or with the associated medicine, as

well as after arthroplasty (29–31).

Staphylococcus aureus is a gram-positive human

opportunistic pathogen (32) that frequently colonizes the

human nasal cavity (33, 34) and can cause severe systemic or

local infections if the immune system is compromised (35). First,

S. aureus bacteremia (SAB) is a frequent systemic infection that

is characterized by significant morbidity and mortality (36), and

the majority of SAB are endogenous infections, predominantly

from nasally colonized colonies (37). Second, local infections

with S. aureus are prevalent in postoperative surgical-site

infection (SSI) and prosthetic joint infection (PJI) (38, 39),

which are not only the most prevalent postoperative

complications (40) but also catastrophic consequences of joint

replacement surgery (41, 42). According to studies, nasal
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carriage of S. aureus is also a common source of postoperative

infections (43, 44). Patients with RA are more likely than the

general population to carry S. aureus in their nasal vestibules

(45), and RA medications enhance nasal S. aureus carriage (46).

In a Danish national observational cohort study, RA was

identified as a significant risk factor for SAB, and intra-

articular orthopedic implants enhanced the chance of infection

(31). Another prospective cohort study found that patients with

RA had a greater incidence of SAB and death and that RA-

induced osteoarthritic damage made S. aureus more vulnerable

to osteoarthritic infection (47). Patients with RA are susceptible

to S. aureus primarily due to the following factors: First, the

immune system disorder of patients with RA makes S. aureus

easy to invade the host. Second, for the local situation of patients

with RA, the bone and joint damage caused by the disease makes

local infection with S. aureus easier. Third, patients with RA are

susceptible to carrying S. aureus. Fourth, the medication of RA

makes the nasal cavity more susceptible and carries more S.

aureus. Fifth, it is easy for S. aureus to cause SSI and PJI in

patients with RA who have had joint replacement surgery.

Therefore, we aim to investigate the RA population’s

underlying susceptibility mechanism to S. aureus.

In 2019, COVID-19, caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), swiftly affected people

and produced a significant public health concern, which was

eventually classified as a worldwide pandemic (48–52). As of 12

June 2022, over 535 million confirmed cases and over six million

deaths had been reported globally (53). COVID-19 is a systemic

disease that can cause significant damage to several body

systems, manifesting clinically as fever, cough, and respiratory

distress, as well as skeletal and muscular symptoms, including

arthralgia (54–57). SARS-CoV-2 has been reported to

overstimulate the body’s immune system and contribute to

autoantibody production due to potential antigenic cross-

reactivity with the body (58–60). Indeed, patients with

COVID-19 frequently exhibit immunological dysregulation

(61) and can trigger multiple autoimmune diseases (59, 62),

and, conversely, patients with autoimmune disease are more

vulnerable to SARS-CoV-2 infection (63), and the course of

COVID-19 is more severe in hospitalized patients with

autoimmune disease (64). As one of the most prevalent

autoimmune diseases, RA merits in-depth investigation.

According to studies, patients with RA infected with SARS-
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CoV-2 had a greater likelihood of hospitalization and mortality

than non-RA patients (65, 66). Moreover, viral sequelae/

combined bacterial infections are not only common

consequences (67–69) but also significantly exacerbate disease

severity and death (70–74). Streptococcus pneumoniae, b-
hemolytic streptococci, Haemophilus influenzae, Pseudomonas

aeruginosa, and S. aureus are often coinfected microorganisms

(75–80). In COVID-19, S. aureus was the most common

bacterium for SARS-CoV-2 sequel/combination (81, 82).

The RA population is one of the most numerous in the world

for autoimmune diseases, with S. aureus being one of the most

common human pathogens and COVID-19 caused by SARS-

CoV-2, leading to a global pandemic. These three factors affect a

wide range of populations and have a poor prognosis, and their

combination leads to high rates of disability and mortality,

posing a serious risk to global public health. This study aims

to investigate the causes of RA susceptibility to SARS-CoV-2 and

Aureus infection through bioinformatics analysis, to discover the

common biomarkers and disease targets among the three, to

search for the mechanisms of SARS-CoV-2 and S. aureus

immune escape in the RA population, and to provide new

directions for further analysis of their pathogenesis and

targeted development of clinical treatments.
Materials and methods

Data collection

Three RA (GSE93272, GSE17755, GSE55235) and two S.

aureus infection (GSE33341 and GSE13670) datasets were

included in this study (83–87), using the National Center for

Biotechnology Information Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/) for screening (Table 1). As

test sets, the GSE93272 dataset with 232 patients with RA and 43

healthy individuals’ whole blood samples and the GSE33341

dataset with 31 SAB patients and 43 healthy individuals’ whole

blood samples were utilized to identify the differentially

expressed genes (DEGs). The GSE17755 dataset contains

whole-blood samples from four patients with RA and 12

healthy individuals. The GSE55235 dataset contains synovial

tissue samples from 10 patients with RA and 10 healthy

individuals. GSE13670 dataset contains 15 S. aureus-infected
TABLE 1 Basic information of selected datasets.

Dataset ID Platform Tissue (Homo sapiens) Experimental group Normal control Experiment type Reference

GSE93272 GPL570 Whole blood 232 43 Array Tasaki et al. (83)

GSE33341 GPL571 Whole blood 31 43 Array Ahn et al. (84)

GSE17755 GPL1291 Whole blood 4 12 Array Lee et al. (85)

GSE55235 GPL96 Synovium 10 10 Array Woetzel et al. (86)

GSE13670 GPL570 PBMC 15 15 Array Kozielet al. (87)
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macrophage samples and 15 healthy human macrophage

samples. These three datasets were utilized as validation sets

for the hub genes.
Identification of DEGs

The empirical Bayesian approach of the limma R package

(http://www.bioconductor.org/packages/release/bioc/html/

limma.html) (88, 89) was used for differentially expressed genes

between the RA and HC groups of GSE93272 and the SAB and

HC groups of GSE33341 for analysis. The cutoff was |log2 FC| >

0.5 and P < 0.05. The volcano map was further drawn using the

ggplot2 package to reflect the differential expression of DEGs.

The common DEGs were obtained by taking the intersection of

DEGs (GSE93272) and DEGs (GSE33341) using the Venn-

diagram package in the R software.
GO, KEGG, and ClueGO enrichment
analyses of DEGs

To explore the pathways and functions of the identified

genes, GO and KEGG enrichment analyses of common-DEGs

were performed with the R package “clusterProfiler” (90, 91). P <

0.05 indicates statistical significance. Finally, we visualized the

common DEGs by using ClueGO (a plug-in for Cytoscape that

uses the Kappa statistical analysis method) to display the

interactive gene network map and analyze the function of the

target gene set.
PPI network analysis, machine learning,
and the identification of hub genes

The STRING database (https://string-db.org/) (92) was

utilized to filter and construct PPI networks based on

confidence values greater than 0.40. Machine learning is used

to predict the interactions of PPI networks, specifically using the

k-means algorithm (network is clustered to a specified number

of clusters; number of clusters: 3) for clustering. K-means is an

effective unsupervised machine learning approach for predicting

protein pairings that interact without prior data labeling (93, 94).

We construct and visualize PPI network data using The

Cytoscape platform (95), then analyze PPI molecular networks

using The MCODE (a Added to abbreviations Cytoscape plug-

in). The cytoHubba tool was utilized to find hub genes, analyze

each gene using the maximum centrality (MCC) algorithm, rank

these genes, and filter the top 10 hub genes.
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Metascape and GeneMANIA enrichment
analyses of hub genes

Metascape (https://metascape.org/gp/index.html#/main/

step1) is a statistical approach that can use all genes in the

input genome as an enrichment background. Genes are grouped

into clusters using terms with a P-value of 0.01, a minimum

count of 3, and an enrichment factor > 1.5 to look for

enrichment pathways and related functional annotations of

target genes. In addition, terms with a similarity of greater

than 0.30 were connected point to point by the Cytoscape

visual network program to generate a network diagram that

further illustrates the relationships between terms. GeneMANIA

(http://www.genemania.org) is another website that integrates

different databases and technologies to anticipate and identify

the relevant activities of individual genes in hub genes and

establish gene priority and linkages.
Identification of hub genes between RA,
COVID-19, and SAB and functional
enrichment analysis

The GeneCards database (https://www.genecards.org/) (96)

was accessed and searched for “COVID-19” and “SARS-CoV-2”

as keywords, and 4,778 and 4,055 related genes were found,

respectively. There were 17, 28, and 25 SARS-CoV-2–associated

genes from Ziegler et al. (97), Jain et al. (98), and Xiong et al.

(99), respectively (Table 2). Finally, 5,103 related genes were

obtained after summarizing these five parts of genes and

removing duplicate data. Hub genes were obtained from the

intersection of the top 10 hub genes and 5,103 SARS-CoV-2–

related genes using the Venn Diagram package in R software.

Finally, Metascape and GeneMANIA enrichment analyses of the

hub gene were used.
Construction of TF-hub genes and
miRNA-hub gene network

TF-hub gene and miRNAs-hub gene regulation networks

were constructed utilizing NetworkAnalyst (https://www.

networkanalyst.ca/) (100). We submitted the hub genes

between RA, COVID-19, and SAB to NetworkAnalyst to

acquire TFs from the ENCODE database and miRNA from

miRTarBase v8.0 and TarBase v8.0 for hub genes. Cytoscape was

used to display the networks of TF-hub genes and miRNA-

hub genes.
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Validation of hub genes and
identification of hub genes

The datasets GSE17755, GSE55235, and GSE13670 were

included in our study as validation sets to strengthen the

reliability and correctness of the results. The genes from the

three validation sets were also individually processed using

the limma R package to generate the volcano map of the

corresponding DEGs. The hub genes were identified using the

Venn Diagram tool, and the expression of the hub genes in each

dataset was visualized using a box plot. The subject Receiver

Operating Characteristic Curve (ROC) was then used to estimate

the test’s effect to determine the hub gene’s sensitivity and

specificity in various datasets (101). A value of 0.7 was

regarded as diagnostically significant.
Analysis of immune cell infiltration and
correlation analysis between
immune cells

The CIBERSORT algorithm (http://CIBERSORT.stanford.

edu/) is a method based on linear support vector regression

(102). It was applied to evaluate the composition and quantity of

immune cells in RA and HC. P < 0.05 prompted us to submit the

data to CIBERSORT and receive the immune cell infiltration

matrix. The ggplot2 package was used to display the distribution

of LM22, whereas the corrplot package was utilized to display its

correlation. Finally, we used Pearson’s correlation coefficient

analysis to reveal the relationship between the expression of

target genes and the abundance of immune cells in RA to find

immune cells associated with the target genes. The Github page

for this study is HTTPS(https://github.com/zheng5862/IFI44).

Results

Identification of DEGs

The flowchart shows all our study’s key and important

procedures (Figure 1). A total of 338 DEGs were obtained
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from the GSE93272 dataset, of which 322 were upregulated

genes and 16 were downregulated genes. In addition, 3,174

DEGs were obtained from the GSE33341 dataset, of which

1,429 were upregulated genes and 1,745 were downregulated

genes. The distribution of DEGs for the two datasets was

visualized using a volcano plot (Figure 2) and clustered heat

map analysis (Figure 3). The analysis results of these two datasets

were intersected using the Venn Diagram package to obtain a

total of 199 DEGs (Figure 4A). The 199 DEGs had 192

upregulated genes in GSE93272, seven downregulated genes in

GSE33341, 188 upregulated genes in GSE33341, and 11

downregulated genes in GSE33341. The distribution of the 199

DEGs in the microarray datasets GSE93272 and GSE33341,

respectively, can be seen using the clustered heat map

(Figures 4B,C).
Functional enrichment analyses of DEGs

The GO and KEGG methods were used to explore the

functional correlation between the 199 DEGs sets of RA and

SAB. From the GO analysis, it is clear that BP is mainly

manifested in immune system process, immune response,

defense response, immune effector process, innate immune

response, response to biotic stimulus, response to other

organisms, response to external biotic stimulus, defense

response to other organism, and response to a virus

(Figure 5A). CC is mainly enriched in the cytosol and

cytosolic part (Figure 5B). MF mainly manifests in

oxidoreductase activity, cytochrome-oxidase activity,

pantetheine hydrolase activity, and immunoglobulin receptor

activity (Figure 5C). The KEGG analysis shows the main

enrichment in the NOD-like receptor signaling pathway,

influenza A, oxidative phosphorylation, Epstein–Barr virus

infection, and cytosolic DNA-sensing pathway (Figure 5D).

From the ClueGO analysis, it can be visualized that the main

enrichment is in the following pathways. First, regulation of

innate immune responses includes IFN-I production, regulation

of IFN-I production, regulation of IFN-I–mediated signaling

pathway, IFN-I signaling pathway, IFN-a/b production,
TABLE 2 SARS-CoV-2–associated genes in the relevant reference.

Reference Tissue (Homo sapiens) Experiment
type

Gene ID

Ziegler et al.,
2020 (97)

Nasal polyps, lung lobe,
ethmoid sinus surgical tissue,
ileum

Array STAT1,IFI6,IFNAR1, IFNGR2,GBP2,IFITM1,TRIM27, NT5DC1, ARL6IP1,TMPRSS2, ACE2, TRIM28,
APOA1, FABP6, ENPEP, FI35, XAF1

Jain et al.,
2020 (98)

Nasopharyngeal swabs Array IFI44,IFIT1,IFIT1B, IFIH1,IL6, IL10, IL11, IL19, IL3RA,IL21RA,IL18R1,CXCL5, CXCL12, CCL2, CCL4,
CXCL10,CSF2, TNFSF11, TNFRSF11B, BMP2, BMP7, PDGFA,C4BPA, CCR6, CCR22,
CCR25, SERPINE1, SERPINF2

Xiong et al.,
2020 (99)

Peripheral blood
mononuclear cells,
bronchoalveolar lavage fluid

Array CXCL1, CXCL2, CXCL6, CXCL8,CXCL10, CXCL10/IP-10,CCL2/MCP-1,CCL3/MIP-1A, CCL4/MIP1B,
IL 33, IL18, IL10,TNFSF10, TIMP1, C5, AREG, NRG1, ADA2, HK1, GAT1,PGD, PLA2G15, CTSD,
GAA, LAIR1
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BA

FIGURE 2

DEGs identification. (A) Gray dots represent genes not substantially differently expressed in RA and HC groups (P > 0.05), red triangles represent
upregulated genes (P < 0.05), and green triangles represent downregulated genes (P < 0.05) in the GSE93272 dataset. (B) Gray dots represent
genes not substantially differently expressed in S. aureus and HC groups (P > 0.05), red triangles represent upregulated genes (P < 0.05), and
green triangles represent downregulated genes (P < 0.05) in the GSE33341 dataset.
FIGURE 1

The schematic block diagram of the entire workflow of this study.
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regulation IFN-a/b production, negative regulation of immune

response, and negative regulation of innate immune response.

Second, controlling viral infections involves regulating the viral

replication process and immune, cellular, and defensive

responses to a virus (Figure 5E).
PPI network, machine learning, and the
identification of top 10 hub genes

PPI network data based on the STRING database were

processed using Cytoscape software to further investigate the
Frontiers in Immunology 07
pathogenesis between RA and SAB. The results show that this

PPI network has 184 nodes, 750 edges, an average node degree of

8.15, and an average local clustering coefficient of 0.461. The k-

means cluster analysis graph based on the unsupervised machine

learning algorithm of the PPI network can be seen: the green

hexagon in the lower right corner is exactly the top 10 hub genes

derived using the CytoHubba analysis method (Figure 6A). We

then identified the top 10 genes in the enrichment ranking by the

MCC algorithm of the CytoHubba package in Cytoscape

software: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L,

ISG15, HERC5, and IFIT5 (Figure 6B), consistent with the PPI

network using a k-means clustering algorithm to obtain the
B

A

FIGURE 3

DEG distribution. (A) The clustering heat map shows the DEGs in the GSE93272 dataset. The RA group’s samples are colored blue, whereas the
HC group’s samples are colored red. Red rectangles indicate elevated genes (P < 0.05), whereas blue rectangles indicate downregulated genes
(P < 0.05). (B) The clustering heat map shows the intersection of DEGs in the GSE33341 dataset. The SA group’s samples are colored blue,
whereas the HC group’s samples are colored red. Red rectangles indicate elevated genes (P < 0.05), whereas blue rectangles indicate
downregulated genes (P < 0.05).
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same results. Tables 3, 4 give information about the top 10 hub

genes in the GSE93272 and GSE33341 datasets, respectively.

Functional enrichment analyses of the
top 10 hub genes

The top 10 hub genes were analyzed by the Metascape

platform with the following findings. First, pathway and
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process enrichment analysis is mainly enriched in response to

a virus, defense response to a virus, interferon (IFN) signaling,

non-genomic actions of 1,25-dihydroxy vitamin D3, and cellular

response to cytokine stimulus (Figure 7A). Second, DisGeNET13

was mainly enriched in influenza A, bacterial infections,

rhinovirus infections, and hepatitis C (chronic) (Figure 7B).

Further network connection diagrams are used to visualize the

connections between the pathways (Figure 7C). Finally,
B C

A

FIGURE 4

Common DEG screening. (A) Venn diagram on GSE93272 DEGs and GSE33341 DEGs. (B) Clustered heat map of common DEGs belonging to
the RA group. (C) Clustered heat map of common DEGs in the SA group, with the RA/SA group colored blue and the HC group colored red.
Red rectangles indicate elevated genes (P < 0.05), whereas blue rectangles indicate downregulated genes (P < 0.05).
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FIGURE 5

Functional enrichment analysis: GO, KEGG, and ClueGO analysis of DEGs. (A) BP gene enrichment of DEGs. (B) CC gene enrichment of DEGs.
(C) MF gene enrichment of DEGs. (D) Analysis of DEGs using KEGG. (E) Analysis of DEGs using ClueGO.
BA

FIGURE 6

PPI interworking networks. (A) PPI network with 184 nodes and 750 edges. The green hexagon in the lower right corner is the top 10 hub genes
derived using the CytoHubba analysis method. (B) Analysis of the top 10 hub genes with CytoHubba of Cytoscape.
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GeneMANIA was used to visualize the link between the 10 core

genes and the most closely related genes (Figure 7D).
Identification of the hub genes between
RA, COVID-19, and SAB and functional
enrichment analysis

The genes associated with SARS-CoV-2 were selected from

the Genecard database and related literature, and 5,103 genes

were obtained after summarizing and removing duplicate data.

The top 10 hub genes intersected with the SARS-CoV-2 gene set

with five genes: IFI44, OAS1, IFI44L, ISG15, and HERC5

(Figure 8A). The expression of these five genes in the

GSE93272 and GSE33341 datasets was analyzed using split-

face violin plots, and it can be seen that the expression of all five

genes in the RA and SAB datasets was significantly higher than

that in the control group (P < 0.01) (Figures 8B, C). The

functional enrichment analysis results using the Metascape

platform are as follows. First, pathway and process enrichment

analysis is mainly enriched in response to a virus, defense

response to a virus, and response to a bacterium (Figure 9A).
Frontiers in Immunology 10
Second, DisGeNET13 was mainly enriched in bacterial infections

(Figure 9B). Further network connection diagrams are utilized to

more precisely depict the links between the channels

(Figure 9C). Finally, GeneMANIA was utilized to illustrate the

relationship between the five hub genes and their closest

relatives (Figure 9D).
Analyses of the network of TF-hub genes
and miRNA-hub genes

The TF of five hub genes was predicted using the ENCODE

database and the NetworkAnalyst web tool. The miRNAs of five

hub genes were analyzed using the miRTarBase v8.0 package and

the TarBase v8.0 package of the NetworkAnalyst web tool to

build the networks of TF-hub genes and miRNA-hub genes,

respectively. The TF-hub gene network includes three seeds, 81

edges, and 81 nodes (Figure 10A), and the simplified minimum

network includes three seeds, four edges, and five nodes

(Figure 10B). YY1 has the potential to regulate ISG15 and

IFI44, and SIN3A and ZNF580 have the potential to regulate

ISG15 and HERC5. The network structure of miRNA-hub genes

analyzed using the miRTarBase v8.0 package includes four seeds,

26 edges, and 26 nodes (Figure 10C). The simplified minimum

network includes four seeds, six edges, and six nodes

(Figure 10D). The network structure of miRNA-hub genes

analyzed by the TarBase v8.0 package includes five seeds, 188

edges, and 94 nodes (Figure 10E). The simplified minimum

network includes five seeds, 16 edges, and 10 nodes (Figure 10F).

The intersection of these two miRNA-hub gene networks could

reveal that hsa-mir-1-3p and hsa-mir-146a-5p may play an

important role in the expression of IFI44.
Validation of hub genes

To improve the reliability and reproducibility of the results,

we used the datasets GSE17755, GSE55235, and GSE13670 for
TABLE 3 Information of the top 10 hub genes in GSE93272.

Gene ID AveExpr Log2FC(b) P-Value

IFI44L 8.904949446 0.918840944 1.35 × 10−4

ISG15 10.63569449 0.665205667 1.02 × 10−4

OAS1 8.99533725 0.593634568 5.15 × 10−5

RSAD2 9.132164541 1.008119022 4.29 × 10−5

GBP1 8.752490808 0.489189707 2.69 × 10−5

HERC5 9.587406065 0.69666656 1.19 × 10−5

IFI44 7.849963939 1.017400799 1.66 × 10−6

RTP4 7.814543847 0.590690331 3.71 × 10−7

IFIT3 10.88045227 0.681499851 3.43 × 10−7

IFIT5 8.712338631 0.698362888 1.02 × 10−10
TABLE 4 SARS-CoV-2-associated genes in the relevant reference.

Reference Tissue(Homo sapiens) Experiment
type

Gene ID

Ziegler et al., 2020
(97)

Nasal polyps,Lung lobe,ethmoid sinus surgical tissue, Ileum Array STAT1,IFI6,IFNAR1, IFNGR2,GBP2,IFITM1,TRIM27,
NT5DC1, ARL6IP1,TMPRSS2, ACE2, TRIM28, APOA1,

FABP6, ENPEP, FI35, XAF1

Jain et al., 2020 (98) Nasopharyngeal swabs Array IFI44,IFIT1,IFIT1B, IFIH1,IL6, IL10, IL11, IL19,
IL3RA,IL21RA,IL18R1,CXCL5, CXCL12, CCL2, CCL4,
CXCL10,CSF2, TNFSF11, TNFRSF11B, BMP2, BMP7,
PDGFA,C4BPA, CCR6, CCR22, CCR25, SERPINE1,

SERPINF2

Xiong et al., 2020
(99)

Peripheral blood mononuclear cells,Bronchoalveolar lavage
fluid

Array CXCL1, CXCL2, CXCL6, CXCL8,CXCL10, CXCL10/IP-
10,CCL2/MCP-1,CCL3/MIP-1A, CCL4/MIP1B,IL

33, IL18, IL10,TNFSF10, TIMP1, C5, AREG, NRG1, ADA2,
HK1, GAT1,PGD, PLA2G15, CTSD, GAA, LAIR1
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validation. A total of 669 DEGs were obtained from the

GSE17755 dataset, of which 471 were upregulated genes and

198 were downregulated genes. In addition, 2,230 DEGs were

obtained from the GSE55235 dataset, of which 1,279 were

upregulated genes and 951 were downregulated genes. A total

of 3063 DEGs were obtained from the GSE13670 dataset, of

which 1,100 upregulated genes and 1,963 downregulated genes

were used. The distribution of DEGs in these three datasets was

visualized using a volcano map, respectively (Figures 11A–C).

The Venn diagram of five hub genes with the three validation

sets of DEGs shows that IFI44 is the only intersection result

(Figure 11D). IFI44 was highly expressed in all three validation

sets (P < 0.01) (Figures 12A–C). Finally, the diagnostic validity

of IFI44 as a biomarker was verified by ROC curves, which

showed that the AUC values of IFI44 on the datasets GSE17755,

GSE55235, and GSE13670 were 0.96 (95% CI, 0.95–0.96), 0.90

(95% CI, 0.77–1.00), and 0.79 (95% CI, 0.59–0.98). All had high

sensitivity and high specificity (Figures 12D–F).
Immune infiltration analysis

We mapped 22 immune cell proportions in RA samples

using CIBERSORT (Figure 13A) and then analyzed the

differences in immune cell infiltration between RA and HC
Frontiers in Immunology 11
using box plots (Figure 13B). The results indicated that RA

enriched four types of immune cells: B-cell memory, T-cell

gamma delta, activated dendritic cells (DCs), and neutrophils

(P < 0.05). Further correlation matrix analysis revealed that

activated DCs were positively correlated with B-cell memory and

T-cell gamma delta and negatively correlated with neutrophils

(P < 0.05) (Figure 13C). Finally, we revealed the relationship

between the expression of IFI44 and the abundance of immune

cells in RA by Pearson’s correlation coefficient analysis

(Figure 13D), which showed that only activated DCs were

closely and positively correlated with IFI44 (R = 0.68, P =

3.7e-39), and activated DCs were highly enriched in RA. Thus,

IFI44 may be involved in RA progression by regulating immune

cell infiltration, and activated DCs may play an important role in

this regard.
Discussion

In this study, a total of 199 DEGs were obtained using a

dataset of whole blood samples from RA and SAB (GSE93272

and GSE33341), and they were found to be closely associated

with positive/negative regulation of the immune system and

regulation of the IFN-I (IFN-a/b) pathway and related pathways
of the immune system response to a virus by KEGG, GO, and
B

C

A D

FIGURE 7

Functional enrichment analysis: Metascape and GeneMANIA of top 10 hub genes. (A) Pathway and process richness analysis of the Metascape
platform. (B) Summary of enrichment analysis of DisGeNET 13 on Metascape platform. (C) The network is visualized using Cytoscape 5, colored
by cluster IDs, and nodes sharing the same cluster ID are usually close to each other. (D) The gene–gene interaction network of the top 10 hub
genes with the 20 most adjacent genes was analyzed using the GeneMANIA database. Each node represents a gene. The color of the linkage of
the nodes represents the linkage between the corresponding genes.
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ClueGO analyses. Ten hub genes were obtained using the PPI

network and Cytoscape platform: RSAD2, IFIT3, GBP1, RTP4,

IFI44, OAS1, IFI44L, ISG15, HERC5, and IFIT5, which were

analyzed by Metascape platform and found to be associated with

IFN signaling regulation and immune system response to viral

infection and bacterial infection and were closely related. Five

hub genes shared by RA, COVID-19, and SAB were IFI44,

OAS1, IFI44L, ISG15, and HERC5, and they were found to be

closely associated with the immune system response to viral

infection and bacterial infection using Metascape analysis. TF-

hub gene network and miRNA-hub gene network was

constructed for these five hub genes, and one important TF

(YY1) and two important miRNAs (hsa-mir-1-3p and hsa-mir-

146a-5p) associated with IFI44 were obtained. To verify the

reliability and comprehensiveness of the results, not only whole

blood samples from RA (GSE17755) but also synovial tissue

samples from RA (GSE55235) and blood samples from

S. aureus-infected human mononuclear cells (GSE13670) were

used to validate a core gene, which was obtained as IFI44. IFI44

was highly expressed in all five datasets, and its test efficacy was

verified using ROC. Immune infiltration analysis reveals that the
Frontiers in Immunology 12
immune cells closely associated with IFI44 are activated DCs,

which may play a significant connection between RA, SARS-

CoV-2, and S. aureus infection. The pathway enrichment

analysis revealed that 1,25-dihydroxy vitamin D3 might be an

effective therapeutic agent for RA’s SARS-CoV-2 and S.

aureus infections.
Association of this study with The IFN-
ISG pathways

IFNs are a family of cytokines having pleiotropic effects in

humans (103, 104)—first recognized by Isaacs and Lindenmann

in 1957 (105, 106) and characterized as antiviral inhibitors (107,

108). After more than 50 years of research by biologists, it was

discovered that IFN is an essential regulator of the body’s

immune system (109), which plays a crucial role not only in

viral infections (110–112) but also in bacterial infections (113,

114) and autoimmune illnesses (115, 116). There are three types

of IFNs: IFN-I (IFN-a, b, ϵ, k, and w), IFN-II (IFN-g), and IFN-
B C

A

FIGURE 8

Identification of the hub gene between RA, COVID-19, and SAB. (A) Venn diagram of the top 10 hub genes and the SARS-CoV-2 gene set.
(B, C) The expression of IFI44, OAS1, IFI44L, ISG15, and HERC5 in the GSE93272 and GSE33341 datasets was analyzed using split-face violin
plots. Red indicates the RA group, yellow indicates the S. aureus group, and blue indicates the HC group.
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III (IFN-l), with IFN signaling through the Janus kinase (JAK)/

STAT pathway (117).

Pattern recognition receptors (PRRs) recognize pathogen-

associated molecular patterns (PAMPs) (118–120) and can

activate transcription factors like IRF-3 and IRF-7, as well as

the NF-kB pathway of B cells (121–124). NOD-like receptors are

among the important PRRs that initiate the IFN pathway. TBK-1

and IKKϵ phosphorylate IRF-3 and IRF-7 to stimulate the

transcription of IFN and proinflammatory genes (125, 126),

with STING serving as the upstream signaling molecule that

recruits TBK-1 and IKK (127). cGAS is an important cytosolic

DNA sensing that can induce IFN formation by generating the

cGAMP pathway that activates STING to form the cGAS-

STING pathway (128–130). Activation of the cGAS-STING

pathway is a double-edged sword that plays not only a crucial

function in fighting viruses (131, 132) and bacteria (133, 134)

but also an aberrant activation of cGAS by its DNA, which can

provoke autoimmune disorders (135). The NOD-like receptor

signaling pathway, oxidative phosphorylation, and cytosolic

DNA sensing in the KEGG pathway of the intersecting genes

of RA and SAB in this study are reflected in the IFN pathway. In

cells that are not activated by the signal, NF-kB is prevented in

the cytoplasm by IkBs, and only when IkBs are phosphorylated
and hydrolyzed by proteases does NF-kB migrate to the nucleus

to induce the production of IFN and proinflammatory genes
Frontiers in Immunology 13
(136, 137). IKK is responsible for the phosphorylation of IkBs,
and it consists of two kinase subunits (IKKa and IKKb) and one
regulatory subunit (IKKg) (138, 139). Notably, FKBP5 activates

IKKϵ (140), interacts with the three subunits of IKK, and

promotes IKK synthesis, leading to phosphorylation of IkBs,
activation of NF-kB, and its migration into the nucleus, which

eventually initiates the IFN signaling pathway (141, 142).

The receptor that binds IFN-I is composed of IFNAR1 and

IFNAR2 subunits (143–145), whereas the receptor that binds

IFN-III is composed of IFNLR1 and IL-10R subunits (146–148).

By interacting with the receptor, IFN activates JAK1 and

tyrosine kinase 2 (TYK2) (149–151). Activated JAK1 and

TYK2 phosphorylate and activate STAT1 and STAT2 (152–

154), whereas active STAT1 and STAT2 recruit and bind IRF-9

to form ISGF3 (155, 156). The ISGF3 complex can move from

the cytoplasm to the nucleus and bind to the ISRE region in the

ISG promoter, thereby beginning ISG transcription (143, 157,

158). ISGs influence cell activation and death in addition to viral

aspects (159), and the antiviral, antiproliferative, and

immunological stress actions of ISGs allow cells and organisms

to survive (160). Although IFN-I and IFN-III produce ISGs

through the same mechanism, the IFN-I pathway can induce

ISG expression earlier, more swiftly, and more efficiently (157,

161), and IFN-I has been the subject of most studies, triggering

the production of more than 300 ISGs (162). In this study,
B
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FIGURE 9

Functional enrichment analysis: Metascape and GeneMANIA of five hub genes. (A) Pathway and process richness analysis of the Metascape
platform. (B) Summary of enrichment analysis of DisGeNET 13 on Metascape platform. (C) The network is visualized using Cytoscape 5, colored
by cluster IDs, and nodes sharing the same cluster ID are usually close to each other. (D) The gene–gene interaction network of the five hub
genes with the 20 most adjacent genes was analyzed using the GeneMANIA database. Each node represents a gene. The color of the linkage of
the nodes represents the linkage between the corresponding genes.
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FIGURE 10

Construction of TF-hub gene and miRNA-hub gene network using NetworkAnalyst. (A, B) TF-hub gene network and simplified diagram. Red
circles are genes, and yellow squares are TF. (C, D) miRNA-hub gene network (miRTarBase v8.0) and simplified diagram. (E, F) miRNA-hub gene
network (TarBase v8.0) and simplified diagram. Circles are genes, and squares are miRNAs.
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FIGURE 11

Screening for key genes. (A, B) Gray dots represent genes not substantially differently expressed in RA and HC groups (P > 0.05), red triangles
represent upregulated genes (P < 0.05), and green triangles represent downregulated genes (P < 0.05) in GSE17755 and GSE55235 datasets.
(C) Gray dots represent genes not substantially differently expressed in S. aureus and HC groups (P > 0.05), red triangles represent upregulated
genes (P < 0.05), and green triangles represent downregulated genes (P < 0.05) in the GSE13670 dataset. (D) The Venn diagram of five hub
genes with the three validation sets of DEGs.
B C

D E F

A

FIGURE 12

Validation of key genes. (A–C) The expression of IFI44 in GSE17755, GSE55235, and GSE13670. Red for RA/S. aureus group, and cyan for HC
group. (D–F) The AUC of the ROC curve verifies the diagnostic validity of IFI44 in GSE17755, GSE55235, and GSE13670 (P < 0.05).
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ClueGO was used to analyze the intersectional gene enrichment

pathways of RA and SAB in IFN-I production, regulation of

IFN-I production, regulation of IFN-I–mediated signaling

pathway, IFN-I signaling pathway, IFN-a/b production,

regulation IFN-a/b production, negative regulation of immune

response, negative regulation of innate immune response,

regulation of viral replication process, response to a virus,
Frontiers in Immunology 16
defense response to viruses, and cellular response to a virus,

which is reflected in the IFN-I pathway.

IFN, ISG, and IFI44 in RA

On the basis of the findings of this study, a portion of the

route of the top 10 hub genes of RA and SAB was enriched in
B
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A

FIGURE 13

Analysis of immune cell infiltration. (A) A histogram of the proportion of LM22 in RA samples is depicted using the CIBERSORT algorithm, with
the horizontal coordinate representing the sample and the vertical coordinate representing the percentage of individual immune cells. (B)
Comparison of immune infiltrating cells between the RA and HC groups; red represents RA and cyan represents HC. (C) Correlation matrix
between immune cells within the RA group. The horizontal and vertical coordinates are LM22, with red representing positive correlations and
blue representing negative correlations (*P < 0.05, ** P < 0.01, and *** P < 0.001). (D) Correlation analysis between the expression of IFI44 and
LM22.
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IFN signaling and cellular response to cytokine stimulus;

therefore, the association between RA and the IFN signaling

pathway piqued our interest. Studies have shown that enhanced

autoimmune responses can be detected in the presence of disease

treated with IFN-a (163) and that 34% of patients have elevated

rheumatoid factors (164), and that IFN-a treatment can

contribute to the progression of RA (165, 166). In addition,

the use of IFN-b1 in the treatment of MS promotes the

development of RA (167). In contrast, TNF, a key driver of

RA, enhances mtDNA release and initiates a cGAS/STING-

dependent IFN response in inflammatory arthritis (168), and

prolonged TNF therapy induces the creation of high quantities

of IFN-I via a mechanism that stimulates IRF1 and IRF3 (169,

170). It has also been shown that significant amounts of IFN-I

can be discovered in the peripheral blood of both patients with

preclinical and clinical RA (115) and the synovial fluid of

patients with RA (171). In reality, it dates back to 1979, when

it was discovered that IFN levels were elevated in individuals

with AID and positively linked with the disease’s activity (172).

The possible reason for this is that PAMPs are recognized by

PRRs that produce IFN-I. These PRRs include TLR, RLR, and

cGAS receptors that can sense nucleic acids (173, 174).

Interestingly, these PRRs can recognize viral nucleic acids

and their nucleic acids to trigger AID (175). RA is one of the

most common AIDs, and IFN-I plays an important role in

contributing to the development of RA (115, 176). Furthermore,

IFN-I can be used as an RA biomarker and a predictor of disease

progression in patients with RA (177). Recent investigations

have identified a significant expression of IFN-I–induced ISGs in

the peripheral blood of patients with RA (176), and this elevated

expression of ISGs induced by the IFN-I signaling pathway is

referred to as the IFN signature of RA (178). In peripheral blood

(179, 180) and synovial fluid of patients with RA (171, 176),

elevated amounts of ISGs were found. Although patients with

RA correlate unequally with IFN-I and ISGs (181), IFN-I and

ISGs play a role in RA susceptibility (177), and thus, IFN and

ISGs are considered biomarkers and disease targets for RA (179,

182, 183).

In combating pathogenic infections, many ISGs act directly

on the signaling pathways of the pathogen’s life cycle to inhibit

its proliferation (158, 184). However, in RA, the excessive innate

immune response and signaling dysregulation produce large

amounts of IFNs that damage the organism (185). IFN

desensitization is, therefore, of particular importance (158).

The first aspect is cell intrinsic, which reduces signaling by

blocking the JAK-STAT pathway via endocytosis and turnover

of IFN receptors (186–189). The second aspect is that, during the

immune response, some ISGs function as negative feedback

regulators to maintain cellular homeostasis (158, 190, 191),

and some ISGs can act as inhibitory proteins to reduce IFN

pathway transduction (192). Common ISGs with negative
Frontiers in Immunology 17
regulatory functions include SOCS and USP18. Increased

SOCS protein levels decrease the sensitivity of the JAK-STAT

system, whose mechanism of action is to suppress JAK activity

by binding to IFN receptors and tyrosine residues on JAK, thus

preventing STAT-1 activation (193). By binding to the IFN-I

receptor, USP18 can also prevent JAK activation and induce

IFN-I desensitization (194). In addition, it was reported for the

first time in 2019 that IFI44 also functions as a negative regulator

of the IFN signaling pathway and that IFN-a treatment induces

high expression of IFI44 (195) and also triggers the development

of RA (196), which corresponds to our study’s finding of high

expression of IFI44 in patients with RA.

IFI44 is one of the IFN-I–induced ISGs (197, 198), which

was initially found in hepatitis C virus–associated microtubule

aggregation protein isolation (199). Therefore, we also observed

hepatitis C (chronic) pathway enrichment in the top 10 hub

genes of RA versus SAB. IFI44, with the assistance of FKBP5, is

capable of exhibiting the two actions listed below. First, IFI44

significantly decreases the kinase activity of IKKb, which inhibits
the phosphorylation of IkBs, which, in turn, limits NF-kB
activation and restricts its migration into the nucleus (200).

Second, IFI44 can reduce the kinase activity of IKKϵ, resulting in
the inhibition of IRF-3 phosphorylation (125), the restriction of

STAT1 phosphorylation, and the reduction of ISG production

(153). The reason for the high expression of IFI44 in patients

with RA is that the high expression of IFNs and ISGs in patients

with RA leads to an increase in the expression of IFI44 as an ISG,

and it is the negative feedback regulation of IFI44 that makes its

expression significantly higher than that of the healthy

population. In the results of this study, a portion of the

pathways of the top 10 hub genes of RA and SAB were

enriched in immune responses to viral and bacterial infections.

A portion of the pathways of the top five hub genes of RA, SAB,

and COVID-19 was also enriched in immune responses to viral

and bacterial infections. Therefore, we followed this thought

regarding the IFN pathway and continued exploring the

relationship between RA, SAB, and COVID-19.
Crosstalk between RA and SAB in terms
of IFN, ISG, and IFI44

The average life expectancy of the RA population is reported

to be shortened by 8 to 15 years, with infections, cardiovascular

disease, and kidney disease being the three leading reasons (201–

203). S. aureus seems inseparable from the topic of infection in

patients with RA, as studies from the 1950s indicate that patients

with RA are at a significantly increased risk of infection with S.

aureus (201) and that invasion of patients with RA by S. aureus

can result in severe deep bone and joint infections, as well as

high rates of disability and mortality (47, 204). IFN-I has a
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crucial role in bacterial invasion of the host (205, 206), which can

be both useful and damaging to the organism (207, 208),

depending on the type of invading bacteria and the organism’s

regulatory mechanisms (113, 209). IFN-I generated by S. aureus

exacerbates the recruitment of leukocytes and the release of

inflammatory cytokines, with detrimental effects on the

organism (210–212). Because RA is an autoimmune disease

capable of producing large levels of cytokines such as IFNs

and ISGs, the relationship between RA and SAB via the IFN-I

pathway can be described as follows.

On the one hand, the following points are of interest from

the perspective of IFN-I–positive signaling. First, the TLR9

receptor identifies the DNA of S. aureus, causing DCs to

produce IFN-I (213). Second, S. aureus detects TLR9-IRF1 via

the Xr domain of SpA to activate the JAK-STAT pathway and

NF-kB signaling pathway, resulting in the production of

inflammatory cytokines such as TNF and IL-6, which promote

inflammation and contribute to the progression of RA (211).

Third, the autolysis process of S. aureus that produces

peptidoglycan, among others, activates the NOD2/IRF5

pathway of DCs to mediate the IFN-I pathway, which

enhances the virulence of S. aureus in the host to increase

bacterial pathogenicity and also over-recruits neutrophils to

promote inflammatory responses (210). Therefore, when

patients with RA are infected with S. aureus, it leads to a

severe proinflammatory response, probably because the

superposition of the two proinflammatory mechanisms leads

to an excessive inflammatory response and a severe imbalance in

the immune system, followed by a collapse of the immune

system, leading to a decrease in the body’s defenses and

further aggravating the S. aureus infection, thus creating a

vicious circle. On the other hand, examining the issue from

the standpoint of ISGs with a negative feedback regulatory effect

on the IFN-I pathway yields the following conclusions. First,

SOCS has a pro-bacterial effect because it makes it easier for S.

aureus to invade an organism’s defenses (214). SOCS not only

inhibits the MYD88 molecule in macrophages to affect their

antimicrobial effect (215, 216) but also inhibits the NF-kB
pathway to reduce TNF release to act as an inhibitor of

inflammation, thereby causing problems for host clearance of

S. aureus (217), and an increase in phagocytosis and killing of S.

aureus by the organism is observed when SOCS is inhibited

(214). Second, USP18 can boost the susceptibility of S. aureus by

negatively regulating the IFN-I pathway to reduce TNF-a
signaling, and inhibition of USP18 can improve the body’s

bacterial infection status (218).

SOCS and USP18 proteins have been reported to promote

bacterial infection, whereas few IFI44 proteins have been

studied. In our study, IFI44 was found to be a key crosstalk

gene between RA and SAB, and IFI44 is also an IFN-I–negative

regulator, which can give a decrease in antimicrobial
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inflammatory factors by negatively regulating the NF-kB
pathway and can also inhibit STAT1 activation from blocking

the production of IFN-I and ISGs (195). Thus, IFI44 may also

potentially promote RA susceptibility to S. aureus. Many studies

have suggested that the IFN-I pathway acts as a paradoxical

immune response during bacterial infection of the host (218),

which may be due to the different focus of the IFN-I pathway on

the different stages of bacterial infection. The high expression of

IFI44 protein in patients with early RA facilitates further

invasion of the organism by S. aureus, which is one of the

reasons for S. aureus susceptibility, and the vicious cycle of

immune imbalance in the organism resulting from the excessive

IFN-I cascade response prompted by late RA and S. aureus

stimulation is one of the reasons for the poor prognosis and high

mortality. We, therefore, suggest that the negative regulation of

the IFN-I pathway by IFI44 expression may be one of the

mechanisms of immune escape from S. aureus. However, most

of the functions of IFI44 are unknown, and further investigation

of its mechanisms in bacterial infection is a direction of interest.
Crosstalk between RA, COVID-19, and
SAB in terms of IFN, ISG, and IFI44

The coronavirus class is typically characterized by pandemic

transmission and high pathogenicity; SARS-COV-2 is the ninth

coronavirus identified as a severe threat to human health in 2019

(219–221). SARS-COV-2 is an enveloped virus of the genus

Betacoronavirus with a positive-stranded single-stranded RNA

genome of 26–32 kb in length (222–225). A virus is divided into

four genera: a-, b-, d-, and g-CoV, characterized by high

mutation rates and diverse recombination rates (226–229), and

from 2019 to November 2021, the World Health Organization

(WHO) has published Alpha (B.1.1.7), Beta (B.1.351), Gamma

(P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) for a total of

five variants of concern (VOCs) (230). RA is associated with

COVID-19 in the following points. On the one hand, SARS-

CoV-2 can overstimulate the body’s immune system and has the

potential for antigenic cross-reactivity with the body to trigger

the creation of autoantibodies (58, 60, 62). Thus, SARS-CoV-2

infection is considered a trigger for autoimmune disease and

results in a worse prognosis (231–235). On the other hand,

studies indicate that patients with rheumatic disorders are at a

larger risk of SARS-COV-2 infection than the general

population, with a worse prognosis and increased mortality

(236, 237). In the COVID-19 Global Rheumatology Alliance

(C19-GRA) Global Registry and other studies, the most

common rheumatic disease among patients with COVID-19

was RA (238–241). Therefore, we prefer to propose that SARS-

CoV-2 infection triggers the progression of RA, that patients

with RA are more susceptible to SARS-CoV-2 infection, and that
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the crosstalk between the two results in a vicious cycle of mutual

disease progression that increases the risk of hospitalization and

death (242–244), and that the crosstalk mechanism cannot be

separated from the immune system and related inflammatory

pathways (245).

In addition, COVID-19 combined/secondary S. aureus

infection results in a considerable increase in mortality (246)

primarily due to the following factors. First, patients with

COVID-19 on admission had fewer coinfections with bacteria

(3.5%) due to preventive administration of antibiotics, the most

prevalent of which was S. aureus (81, 247–250). Second, in literature

comprising 10 studies, a total of 132 bacterial species were reported

as coinfections/secondary infections in patients with COVID-19

after admission, with S. aureus being the most common (n =

41.31%) (251). Third, according to a French study, 28% of critically

ill COVID-19 patients admitted to the ICU had coinfections with

bacteria, primarily S. aureus (252). We list a portion of the relevant

literatures between RA, SAB, and COVID-19 (Table 5). In another

bioinformatics investigation, S. aureus infection was shown to be

the second highest in the KEGG analysis pathway enrichment order

table for RA and COVID-19 (253), a result that was confirmed in

our work, suggesting that there may be a connection between the

IFN-I pathway in RA, COVID-19, and SAB.

IFN-I is among the most effective cytokines secreted by the

organism against SARS-CoV-2 (254, 255). However, it is not

always protective for the organism. In the late stage of COVID-

19, the continual strong expression of IFN-I causes

inflammatory damage to the immune system and many

organs, increasing the organism’s burden (256–258). It is

undeniable that the IFN-I pathway had an important role in

antagonizing the early stages of COVID-19 infection by

secreting ISGs during the SARS-CoV-2 invasion (259, 260).

However, the ISGs are not the only antiviral factors. Although

most ISGs encode proteins capable of inhibiting different stages

of the SARS-CoV-2 replication cycle (143, 261, 262), a few ISGs,

including SOCS, USP18, and IFI44, can promote viral infection
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of the host (263–268). It was shown that silencing of IFI44

inhibits viral replication and overexpression of IFI44 promotes

viral production due to negative regulation of the IFN-I pathway

by IFI44 (195). Viruses mentioned in this study are not limited

to SeV, LCMV, VSV, and IAV. Therefore, we suggest that the

negative regulation of the IFN-I pathway by the expression of

IFI44 may be one of the mechanisms of SARS-CoV-2

immune escape.

High expression of IFN-a in RA contributed to elevated

levels of IFI44, promoted viral replication during the early stages

of SARS-CoV-2 invasion, and increased susceptibility of S.

aureus. Therefore, IFI44 may be an important target for the

immune escape of SARS-CoV-2 and S. aureus infection in RA.

Of course, we still need basic experiments and clinical trials to

validate the results of our bioinformatics analysis.
1,25(OH)2VD3 may be an effective
therapeutic agent in treating RA with
SARS-CoV-2 and S. aureus infections

Finally, we also found that part of the pathway of the top 10

hub genes of RA and SAB was enriched in non-genomic actions

of 1,25-dihydroxy vitamin D3 and that IFI44 was positively

correlated with DCs in an immune infiltration correlation

analysis in RA. We put 1,25(OH)2VD3 in series with RA, S.

aureus infection, COVID-19, IFI44, and DCs (Figure 14). First,

in RA, 1,25(OH)2VD3 insufficiency is commonly reported

among patients with RA (269–271). In a meta-analysis of 24

studies, 1,25(OH)2VD3 was found to be inversely linked with RA

disease activity (272), and the degree of deficiency was utilized as

an indication of RA progression (273). Second, in SAB, 1,25

(OH)2VD3 was able to prevent the invasion of S. aureus by

boosting the expression of mature macrophages, upregulating

macrophage complement receptor immunoglobulin (CRIg), and

encouraging macrophage phagocytosis (274, 275). Studies have
TABLE 5 Literature related to coinfection between RA, SAB, and COVID-19.

Reference Disease Coinfection Conclusion

Dieperink et al., 2022
(31)

RA S. aureus RA is a high risk for SAB, and orthopedic implants increase the risk.

Joost et al., 2017 (47) RA S. aureus Patients with RA exhibit a complex course of SAB and high mortality, and RA causes a significantly increased
risk of leading to OAI.

Garcia-Vidal et al., 2021
(81)

COVID-
19

S. aureus Coinfection at COVID-19 diagnosis was mainly S. aureus.

Hughes et al., 2020 (82) COVID-
19

S. aureus The most common co-infecting pathogen in early COVID-19 patients is S. aureus.

Conway et al., 2022
(236)

RA SARS-CoV-2 Patients with RA have higher rates of SARS-CoV-2 infection and higher mortality.

Akiyama et al., 2021
(237)

RA SARS-CoV-2 Patients with RA are at increased risk of contracting COVID-19.
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shown that 1,25(OH)2VD3 levels are significantly lower in S.

aureus-infected populations than in non–S. aureus–infected

populations (276), and 1,25(OH)2VD3 analogs reduce the

incidence of PJI in S. aureus infections (277, 278). Third, in

COVID-19, according to a study conducted in Israel, 1,25(OH)

2VD3 levels were adversely correlated with COVID-19 (279),

and COVID-19 populations were frequently associated with

vitamin D deficiency (280–282). 1,25(OH)2VD3 insufficiency is

positively associated with the severity and complications of

COVID-19 and increases the chance of SARS-CoV-2 infection

(283–286). The main reason for this is the ability to inhibit the

cytokine storm and excessive inflammatory response in COVID-

19 (287); thus, vitamin D can play a role in the prevention (288,

289), mitigation (285, 290), and treatment (291, 292) of COVID-

19 (293). Fourth, in IFI44, the addition of 1,25(OH)2VD3 to

MDDCs in autoimmune diseases (SLE) resulted in a 34%

reduction in IFI44 expression and the concentration of 1,25

(OH)2VD3 was negatively correlated with the activity of MDDCs

in SLE (294). In our study, the expression of IFI44 was found to

be positively correlated with DCs, so 1,25(OH)2VD3 may also

have some correlation with DCs. Fifth, in DCs, it was discovered

that 1,25(OH)2VD3 and its analogs inhibited DC chemotactic

activity and IFN-a production, which decreased the expression

of ISGs (295, 296). In addition, it has also been shown that DCs
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are potential target cells of 1,25(OH)2VD3 for RA inhibition

(297). Therefore, in this study, 1,25(OH)2VD3 was found to be a

drug target through the enrichment pathway of the shared genes

of RA and SAB, and 1,25(OH)2VD3 was found to be negatively

associated with the expression of RA, COVID-19, SAB, IFI44,

and the production and chemotactic activity of IFN-a in DCs

from a new perspective.
Conclusions

In our present study, we screened the shared DEGs based on

two datasets of RA (GSE93272) and SAB (GSE33341) and

identified pathways associated with immunity and viral

infection by multi-platform functional enrichment analysis.

The following intersections were taken with the COVID-19

gene library to obtain hub genes, and functional enrichment

analysis was performed to validate the pathway linkage of hub

genes associated with RA, COVID-19, and SAB. The biomarker

and disease target shared by RA, COVID-19, and SAB were

validated and identified as IFI144 by GSE17755, GSE55235, and

GSE13670 datasets. IFI44, a negative regulator of the IFN

signaling pathway, promotes viral replication and bacterial

proliferation and is an important molecular target for SARS-
frontiersin.o
FIGURE 14

RA, SAB, and COVID-19 are often associated with vitamin D deficiency. This diagram shows that 1,25(OH)2VD3 is the common target drug for
RA, SAB, COVID-19, IFI44, and dendritic cells.
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CoV-2 and S. aureus immune escape in RA. DC activation was

positively correlated with the expression of IFI44. 1,25(OH)

2VD3 may be an important therapeutic agent in treating RA with

SARS-CoV-2 and S. aureus infections. Our research can provide

new directions for further analysis of its pathogenesis and

targeted development of clinical treatments.
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Heterogeneity of the type I interferon signature in rheumatoid arthritis: A potential
limitation for its use as a clinical biomarker. Front Immunol (2018) 8:2007.
doi: 10.3389/fimmu.2017.02007

182. van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE,
Rustenburg F, Baggen JM, et al. Rheumatoid arthritis subtypes identified by
genomic profiling of peripheral blood cells: assignment of a type I interferon
signature in a subpopulation of patients. Ann Rheum Dis (2007) 66(8):1008–14.
doi: 10.1136/ard.2006.063412

183. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat
Rev Rheumatol (2018) 14(4):214–28. doi: 10.1038/nrrheum.2018.31

184. Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev
Immunol (2014) 14(5):315–28. doi: 10.1038/nri3665
Frontiers in Immunology 25
185. Rönnblom L. The type I interferon system in the etiopathogenesis of
autoimmune diseases. Ups J Med Sci (2011) 116(4):227–37. doi: 10.3109/
03009734.2011.624649
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Go Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI Protein-Protein Interaction

TF Transcription Factor

ROC Receiver Operating Characteristic Curve

NLR NOD-Like Receptor

RSAD2 Radical S-adenosyl Methionine Domain-containing Protein 2

IFIT3 Interferon Induced Protein with Tetratricopeptide Repeats 3

GBP1 Guanylate-Binding Protein 1

RTP4 Receptor Transporter Protein 4

IFI44 Interferon-Induced Protein 44

OAS1 2',5'-Oligoadenylate Synthetase 1

IFI44L Interferon-induced Protein 44-Like

ISG15 Interferon-stimulated Gene 15

HERC5 HECT Domain and RCC1-Like Domain-Containing Protein 5

IFIT5 Interferon-Induced Protein with tetratricopeptide repeats 5

HC Healthy Controls

NOD Nucleotide-Binding Oligomerization Domain

AUC Area Under the Curve

STAT Signal Transducer and Activator of Transcription

IRF-3 Interferon Regulatory Factor 3

NF-kB Nuclear Factor-kappa B

TBK-1 TANK-binding Kinase 1

cGAS Cyclic GMP-AMP Synthase

IkBs IkB proteins

ISGF3 Interferon-Stimulted Gene Factor 3

AID Autoimmune Disease

TLR Toll-Like Receptor

RLR RIG-I-Like Receptor

SOCS Suppressors of Cytokine Signaling

USP18 Ubiquitin-Specific Peptidase 18

SeV Sendai Virus

LCMV Lymphocytic Choriomeningitis Virus

VSV Vesicular Stomatitis Virus

IAV Influenza A Virus

SLE Systemic Lupus Erythematosus
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