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Increasing antibiotic resistance to bacterial infections causes a serious threat to

human health. Efficient detection and treatment strategies are the keys to

preventing and reducing bacterial infections. Due to the high affinity and

antigen specificity, antibodies have become an important tool for diagnosis

and treatment of various human diseases. In addition to conventional

antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were

found in the serum of camelids and sharks. HCAbs binds to the antigen

through only one variable domain Referred to as VHH (variable domain of

the heavy chain of HCAbs). The recombinant format of the VHH is also called

single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an

ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared

with traditional Abs, Nbs have several outstanding properties such as small size,

high stability, strong antigen-binding affinity, high solubility and low

immunogenicity. Furthermore, they are expressed at low cost in

microorganisms and amenable to engineering. These superior properties

make Nbs a highly desired alternative to conventional antibodies, which are

extensively employed in structural biology, unravelling biochemical

mechanisms, molecular imaging, diagnosis and treatment of diseases. In this

review, we summarized recent progress of nanobody-based approaches in

diagnosis and neutralization of bacterial infection and further discussed the

challenges of Nbs in these fields.
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Introduction

With the increasing antibiotic resistance, bacterial infection

constitutes a serious threat to human health. It can lead to

tremendous morbidity and mortality, emphasizing the need for

rapid and effective identification and treatment of bacteria

pathogens (1). At present, clinical bacterial diagnosis mainly

involves bacterial culture, molecular diagnostics and colony

formation methods which are time-consuming, labor intensive

and requiring expensive equipment, all of which limit the utility,

especially in resource limited settings (2–4). Oral and

intravenous antibiotics are the most common treatments

against bacterial infections; however, they are usually

administered against ill-defined pathogens. This abuse of

antibiotics plays an important role in the increase of antibiotic

resistance (5–8). Therefore, it is important to develop fast, cost-

effective, and accurate methods for the detection, identification

and treatment of bacterial infections. Antibodies became

promising molecules for bacterial detection and treatment due

to their high sensitivity and specificity.

Antibodies are essential components of adaptive immunity.

Antibody-based diagnosis and therapeutics are the fastest

growing classes of drugs on the market. The US FDA has

approved over 100 antibodies mainly for treating cancer (45%)

and immune-mediated disorders (27%) while only 8% against

infectious diseases (9). The high production cost, low stability

and large size may be the main obstacles to develop the

antibodies for treating infectious diseases (10). Therefore,

single domain antibodies (sdAbs), which have low production

costs, high stability and small size become a promising

alternative to canonical antibodies (11).

In 1990s, scientists found a unique class of “heavy-chain-

only” antibodies (HCAbs) in the serum of camelids and sharks.

Owing to the absence of light chains, HCAbs binds to the

antigen through only one variable region, referred to as VHH

or also sdAb or nanobody (Nbs). The antigen-binding domain of

shark HCAbs are known as VNAR (12, 13). Their special

structure endowed sdAbs with superior properties and enabled

them to be extensively employed in structural biology (14–16),

unravelling biochemical mechanisms (17), molecular imaging

(18–20), diagnosis and treatment of tumors (21, 22) and

infection diseases (23–27). As for infectious diseases, sdAb

have been widely used in the diagnosis and treatment of a

variety of viral infections (28). It is noteworthy that a lot of

nanobodies have been generated targeting the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-

19), and there have been excellent reviews to summarize the

current research progress (29, 30). This review will focus on the

current progress and perspectives of diagnostic and neutralizing

sdAbs against bacterial infection (Figure 1).
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Structural and physicochemical
features of Single
Domain Antibodies

SdAbs are the smallest known natural antigen-specific

binding functional fragment, with dimensions of 2.5 nm in

diameter and 4 nm in length. They consist of approximately

120 amino acids and merely 12~17 kD in weight, which is only

one-tenth of canonical antibodies (150kD) (31). Similar to the

VH domain of canonical antibodies, sdAbs consist of three

hypervariable antigen-binding loops (complementarity

determining regions, CDR1-CDR3) and four conserved

framework regions (FR1-FR4) (32–34). There are mainly two

differences between sdAbs and VHs of canonical antibodies.

SdAbs have elongated CDR1 and CDR3, which to some extent

compensate the loss of antigen-binding surface contributed by

the light chain CDRs. In addition, the elongated CDR3 can adopt

larger variety of structures and has a preference to interact with

concave shaped antigen surfaces (35). Another notable

difference is the conservative hydrophobic amino acids (Val47,

Gly49, Leu50, and Trp52) in canonical antibody FR2

substitution by hydrophilic amino acids (Phe42, Glu49, Arg50,

and Gly52), increasing solubility and stability of sdAbs (33, 36).

Due to the specific structure, sdAbs possess several

outstanding characteristics compared to the traditional

antibodies. 1) SdAbs represent the smallest naturally

derived antigen-binding functional fragments (~15 kD).

The small size allows sdAbs to penetrate deeper in dense

tissues and might cross the blood-brain barrier(BBB) (37, 38),

and to be quickly eliminated via the kidney (39). Besides, the

higher isoelectric point makes SdAbs positively charged and

easier to penetrate the BBB. Therefore, sdAbs are more

suitable for targeting solid tumors (40, 41) and brain

diseases (37, 42, 43). 2) Compared with traditional

antibodies, the sdAbs have only one domain with disulfide

bonds, which folds into a relatively stable structure.

Amazingly, sdAbs maintained their antigenic binding

ability after being incubated for one week at 37°C. They

even can tolerate higher temperatures of 60-80°C (36). In

some cases, they can regain antigen-binding activity after

thermal denaturation by exposure at high temperatures

(90°C) (44).When exposed to chemical denaturing agents

and proteases, as well as non-physiological pH (pH range

3.0-9.0), sdAbs can also retain most antigen-binding

capabilities (45). These properties permit the use of more

demanding chemical and physical conditions during

treatments or modifications of sdAbs than other types of

antibodies. 3) The longer amino acid sequences of the CDR3

enlarges the antigen binding surface of the sdAbs, increases

their structural repertoire, and further expands the binding
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ability to some hidden antigenic epitopes by creating new

finger-like structures. Thus, they are enhancing the

recognition ability of concave epitopes as well as binding to

such epitope architectures with high affinity (31, 46–51). 4)

The hydrophilic amino acids on the side of VHH,

corresponding to the VL interface of VH domains, improve

the solubility in aqueous solutions and lower the tendency to

aggregate (52). 5) The high degree of sequence identity with

human VH domains of family-3 of VHHs, their small size,

resistance to form aggregates and rapid blood clearance favor

a low immunogenicity. VNARs may have a higher

immunogenicity due to low sequence identity between

VNARs and human VH or VL domains (~ 30% overall)

(53). Overall, the immunogenicity risks with VHHs are low

(54). In addition, the humanization of sdAbs provides a safe
Frontiers in Immunology 03
option for long-term treatment (55, 56). 6) SdAbs can be

efficiently, easily and economically produced recombinantly

in bacteria, mammalian cell lines, yeast and plants at an

affordable cost (11, 57), while the production of canonical

monoclonal antibodies requires mammalian expression

system, which is complex in technology and expensive to

maintain. Apart from these outstanding characteristics,

sdAbs also have some limitations. The biggest drawback of

sdAbs is their inadequate pharmacokinetics. Compared with

conventional antibodies, sdAbs have a faster serum clearance

rate, which limits their application in the field of therapy. In

addition, sdAbs may have some adverse effects and a

humanized tetravalent Nb have been reported with

hepatotoxicity. The characteristics compared between

nanobodies and conventional antibodies are listed in Table 1.
FIGURE 1

The nanobodies take effects in several ways against bacterial infection. In the early stage of infection, pathogenic microorganisms are confined
to the lesion. At this time, the PAMPs and the toxins are released into the bloodstream. The nanobodies binding onto the receptors prevent
PAMPs recognition by PRRs, such as Toll-like receptors, Nod-like receptors and C-type lectins such as Clec4f, leading to a series of bodily
reactions. The toxins, such as CDT, Tcd and BoNT are the major part in bacterial pathogenicity, which serve in different ways to cause damage
in hosts and assist in enlargement of infection foci. The neutralizing nanobodies protect the host through specifically binding the toxins. At late
stage of infection, pathogens are released into blood causing bacteremia. The nanobodies recognizing surface antigens, such as pilus and
flagellum, bind onto the pathogen surface, preventing bacterial attachment.
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Single Domain Antibody use to
diagnose and neutralize infections
by Gram- negative bacteria

Enterotoxigenic E. coli

Enterotoxigenic E. coli (ETEC) is one of the most common

causes of diarrhea in toddlers, adults in the developing world and

in travelers to endemic areas. According to WHO reports, ETEC

related diarrhea is one of the leading causes of death in the

children under the age of 5 in developing countries (58). In

addition, ETEC strains causing severe, watery diarrhea are

responsible for significant death and morbidity in neonatal

and post-weaned piglets, leading to worldwide tremendous

economic losses in pork industry (59).

ETEC is a non-invasive pathogen that mediates small

intestine adherence through bacterial surface structures,

known as colonization factors (CFs). Once bound to the small

intestine, the bacteria produce toxins causing a net flow of water

from enterocytes, leading to watery diarrhea (60). ETEC strains

can also produce many types of fimbriae that are involved in

bacterial attachment. F4 fimbriae are commonly found on ETEC

from diarrheic piglets (61, 62). In 2005, Harmsen et al.

immunized a llama with F4ac fimbriae from the F4-positive

(F4+) ETEC strain CVI-1000 and obtained a few monoclonal

VHHs. However, the best monovalent VHH, K609, could not

significantly reduce diarrhea and reduced piglet mortality was

poor (63). In contrast, orally administration of the linker

connected bivalent VHH could enhance the clearance of F4+

ETEC and decrease the number of infected piglets (64). The

different in vivo activity of mono- and bivalent VHH suggested

that the ability to agglutinate bacteria may have a higher impact

on infection, consistent with other studies where only bivalent

antibodies showed in vivo protection (65–67). In another study,

Moonens et al. (59) fused four different variable domains of

llama heavy chain-only antibodies (V1-4), raised against F4ac, to

the Fc domain of a porcine immunoglobulin IgA. These four

different VHH targeted conserved epitopes of FaeG, a major

adhesive subunit of F4. The four VHHs were fused to porcine

IgA-Fc and subsequently expressed in Arabidopsis thaliana
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seeds to feed piglets . The oral feed-based passive

immunization strategy protected piglets as demonstrated by (i)

the progressive decline in shedding of F4 positive ETEC bacteria,

(ii) the significantly lower immune responses of the piglets to F4

fimbriae, which suggest a reduced exposure to the ETEC

pathogen, and (iii) a significantly higher body weight in

comparison with control piglets (63, 68). The structural study

of V1-4 in complex with FaeG indicated that they sterically

hindered FaeG associating with the F4 receptor but they did not

directly interfere with the carbohydrate binding site (59). Besides

F4+ ETEC, four VHHs targeting F18 fimbriae FedF domain were

generated by llama immunization and selection as well. They

could inhibit F18+ ETEC attaching to piglet enterocytes in vitro,

and either sterically hinder or induce conformational changes of

the binding surface of FedF (69). In a recent study,

Amcheslavsky (60) and his colleagues immunized two male

llamas with N-terminal fragments of eight class-5 ETEC

adhesins to generate nanobodies with broad cross-reactivity

against ETEC adhesins. They identified single nanobodies that

show cross protective potency against eleven major pathogenic

ETEC strains in vitro and inhibited ETEC colonization in vivo.

Molecular docking and mutagenesis analysis revealed that

nanobodies recognized a highly conserved epitope within the

putative receptor binding region of ETEC adhesins (60).
Shiga toxin-producing Escherichia coli

Shiga toxin-producing Escherichia coli (STEC) are a subset of

E. coli pathogens leading to illnesses such as diarrhea, hemolytic

uremic syndrome (HUS) and even death. Shiga toxins, the main

virulence factors are divided in two groups: Stx1 and Stx2, of

which the latter is more frequently associated with severe

pathologies in humans and newly weaned pigs (70). Stx2e

consists of an enzymatically active A subunit and five B

subunits that bind to globotriaosylceramide (Gb3) on host

cells (71). Lo et al. reported the discovery and characterization

of a VHH, NbStx2e1, isolated from a llama phage display library

that confers potent neutralizing capacity against Stx2e toxin.

Structural analysis revealed that for each B subunit of Stx2e, one

NbStx2e1 is interacting in a head-to-head orientation and
TABLE 1 Characteristics compared between nanobodies and conventional antibodies.

Characteristics Nanobodies Conventional antibodies

The molecular weight Low (~15 kDa) High (~150 kDa)

Stability High Low

Affinity High Low

Solubility High Low

Immunogenicity Low High

Cost Economic Expensive

Serum clearance rate Fast Slow
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directly competing with the glycolipid receptor binding site

on the surface of the B subunit. The neutralizing NbStx2e1

can be used to prevent or treat edema disease in the future.

Tremblay et al. immunized llama with Stx1 and 2 together and

identified a panel of neutralizing VHHs, two of which

demonstrated cross activity to Stx1 and 2 (72). A VHH

heterodimer consisting of one Stx1-specific VHH/Stx2-specific

VHH, and one Stx1/Stx2 cross-specific VHH, significantly

improved the survival and reduced the kidney damage of mice

challenged with Stx1 or 2. In addition, co-administration of the

heterodimeric VHH with an effector Ab that binds to the VHH

heterodimer, was effective in preventing all symptoms of

intoxication from Stx1 and Stx2. In 2016, Mejıás and his

colleagues reported the generation of a family of Stx2B-

binding VHHs that neutralize Stx2 in vitro at a nanomolar to

subnanomolar range. The anti-Stx2B VHH, 2vb27, was selected

and two copies were fused to an anti-human serum albumin

VHH. This engineered antibody showed increased retention in

circulation and was able to neutralize Stx2 in three different

mouse models. This novel and simple antitoxin agent should

offer new therapeutic options for treating STEC infections to

prevent or ameliorate HUS outcome (73). In another study,

Navarro et al. described the identification and characterization

of a nanobody (Nb113) with the potential to neutralize the Stx2a

and Stx2c toxins that are associated with human clinical

infections. The crystal structural study revealed that each B

subunit in the pentameric B5 ring is associated with a single

Nb113 molecule. A detailed analysis of the epitope targeted by

Nb113 suggests that this Nb prevents the formation of the

Stx2a–Gb3 complex, thereby impeding the subsequent steps of

the internalization and enzymatic activity of the Stx2a

holotoxin (70).

Besides Stx2-neutralizing VHHs, two VHHs were identified

from immunized llama for detection of Stx2 using ELISA, which

was even more sensitive than commercial ELISA kits (74). The

ELISA was best for the major subtype Stx2a and less sensitive for

Stx2f. VHH based ELISA is expected to be more cost effective

than IgG ELISA.
Other Gram- negative bacteria

Pseudomonas aeruginosa is one of the leading causes of

hospital-acquired infections. It is difficult to treat the infections

due to the high intrinsic antibiotic resistance and the organism’s

capability to occur in biofilms in the host. Adams et al.

immunized a llama with P. aeruginosa antigens and identified

monoclonal anti-flagellin VHHs. In an in vitro assay, they

showed that the anti-flagellin VHHs are capable of inhibiting

P. aeruginosa from swimming and that they prevented biofilm

formation (75).

Helicobacter pylori infection is associated with gastritis,

gastric and duodenal ulcers, and even gastric adenocarcinoma.
Frontiers in Immunology 05
It is important to seek alternative therapeutic strategies due to

the increasing occurrence of antibiotic resistance. Some studies

reported the isolation and purification of nanobodies with high

affinity against UreC subunit of urease enzyme from H. pylori.

These nanobodies could be a novel class of treatments against H.

pylori infection (76, 77). The sdAbs employed for diagnosis and

neutralization of Gram- negative bacterial infection are listed

in Table 2.
Single Domain Antibody usage for
diagnosis and neutralization of
Gram-positive bacterial infection

Clostridium difficile

Clostridium difficile is an opportunistic pathogen residing in

the gastrointestinal tract of humans, causing antibiotic-

associated diarrhea and pseudomembranous colitis (78).

Antibiotics metronidazole and/or vancomycin are the primary

treatment for C. difficile-associated disease (CDI) and surgeries

are often required in the case of fulminant CDI (79). Due to the

difficulties of treatment and high rates of recurrence, it’s

necessary to explore new therapeutic agents (80). The Gram-

positive bacterium produces two large clostridial exotoxins,

toxin A (TcdA) and toxin B (TcdB), which are the major

virulence factors responsible for CDI and are potential targets

for CDI therapy (81). TcdA and TcdB are homologous to each

other, having a similar domain organization including

glucosyltransferase domain (GTD), cysteine protease domain

(CPD), delivery and receptor binding domain (RBD) and

combined repetitive oligopeptide domain (CROPs) (82, 83). In

2011, Hussack and his colleagues isolated after phage display

from an immune sdAb llama library four VHHs specifically

targeting partial CROPs of TcdA or TcdB. In vitro assay on

fibroblast cells demonstrated potent protection from the

cytopathic effects of toxin A by these VHHs. Moreover, the

protection efficiency was further enhanced when VHHs were

administered in a manner of paired or triplet combinations (81).

In another study, they characterized a panel of VHHs against

partial RBD and CROPs of TcdB. Unfortunately, none of these

VHHs exhibited inhibitory effects against TcdB cytotoxicity in a

cell-based assay, given that several VHHs showed high affinity to

toxin. This incapability of neutralization is probably due to TcdB

accepting multiple proteins as receptors (84–86) and blockage of

a single epitope might not be effective inhibition of TcdB

toxicity. Nevertheless, when bivalent VHHs fused to the Fc

fragment, their neutralization efficiency reached to the level of

the recently approved anti-toxin B monoclonal antibody,

bezlotoxumab (87). Furthermore, VHHs targeting different

vulnerable regions on TcdB were also developed. SdAb named

E3, 7F and 5D were demonstrated to bind with GTD, the
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connecting region between GTD and CPD, and RBD,

respectively. Among which, E3 showed the best inhibition of

TcdB cytotoxicity (88, 89). Yang and his colleagues created a

tetravalent and bispecific antibody called “ABA” which

comprised two VHHs against both, TcdA and TcdB. ABA was

capable of binding to both toxins simultaneously and

neutralizing toxins from clinical C. difficile isolates. Therefore,

ABA showed a significantly enhanced neutralizing activity both

in vitro and in vivo (90). Schimdt and colleagues constructed a

heteromultimeric VHH-based neutralizing agent, which

potently neutralized both C.difficile toxins in cell assays and

protected animals from CDI to different extents (88). In addition

to development of VHHs, strategies to administer VHHs were

also explored. For example, adenovirus, engineered Lactobacillus

and probiotic Saccharomyces boulardii, expressing different

forms of VHHs, were utilized to treat CDI effectively in

animal models and proved to be promiscuous for combating

the diseases invoked by C. difficile (91–93). Beside TcdA and

TcdB, surface layer proteins (SLPs), mediating adherence to host

cells, represents an alternative target for CDI treatment.

Kandalaft and his colleagues used SLPs isolated from C.

difficile hypervirulent strain QCD32g58 (027 ribotype) to
Frontiers in Immunology 06
immunize a llama and identified a panel of SLP-specific

VHHs, which exhibited inhibition of C. difficile QCD32g58

motility in vitro. Therefore, targeting SLPs with VHHs may be

a viable therapeutic approach against CDI (94).
Bacillus anthracis

Anthrax is a severe and fatal disease caused by the Gram-

positive Bacillus anthracis. Anthrax toxin is a mixture of one

non-toxic protein, protective antigen (PA) and two toxins,

edema factor (EF) and lethal factor (LF). Protective antigen

(PA) could bind to anthrax toxin receptors on cell surface

forming oligomer pore and translocate the lethal factor (LF)

and edema factor (EF) into the cytosol to take effects (95). In

2015, Moayeri and his colleagues identified two classes VHHs

(JIK-B8 and JKH-C7) targeting two epitopes of PA from

immunized alpacas. The two VHHs were expressed as a

heterodimeric VHH-based neutralizing agent (VNA2-PA) and

displayed improved neutralizing potency in in vitro and in vivo

assays compared with monomeric VHH (96). In another study,

they used a gene therapy approach using recombinant
TABLE 2 SdAb reports to diagnose and/or neutralizing infections by Gram-negative bacteria.

Nanobody Source Target Structure (IC50)/KD Function Diagnosis/
Neutralizing

Ref.

K609 Immune
library

ETEC F4
fimbriae

– – prevented F4+ ETEC attachment Neutralizing (63)

V1 V2 V3 – ETEC F4
FaeG

4WEM
4WEN
4WEU

0.1 to 7.7 µM prevent F4+ ETEC attachment Neutralizing (59)

NbFedF6
NbFedF7
NbFedF9

Immune
library

ETEC F18
FedF

4W6W
4W6X
4W6Y

– inhibit F18+ ETEC attachment Neutralizing (69)

2R215 2R23 naive
library

ETEC
CfaE

– 0.4125 to 13.3
µM(IC100)

broad cross-protection against 11 major disease causing ETEC
strains and prevented colonization in vivo

Neutralizing (60)

1D7
1H4

Immune
library

ETEC
CfaE

– – prevented bacterial colonization in animals. Neutralizing (60)

NbStx2e1 Immune
library

STEC
Stx2e

4P2C 8 nM direct interaction with the Stx2e B subunit binding site for
glycolipid, thereby impeding toxin-host cell receptor contacts

Neutralizing (71)

2VB27 Immune
library

STEC
Stx2B

neutralized Stx2 in vitro at subnanomolar concentrations Neutralizing (73)

Nb113 Immune
library

STEC
rStx2aB

6FE4 9.6 nM neutralized Stx2a by competing for the Gb3 receptor Neutralizing (70)

Stx-A4
Stx-A5

Immune
library

STEC
Stx1/Stx2

– 7.2-12.5 nM neutralized Stx1 and Stx2 and prevented all symptoms of
intoxication from Stx1 and Stx2

Neutralizing (72)

1vb1- 2vb10
2vb21-2vb10

Immune
library

STEC
Stx2

– – early detection of STEC infections Diagnosis (74)

7G
9D

Immune
library

P.
aeruginosa
flagellum

– 2.5 nM
4.7 nM

inhibit P. aeruginosa from swimming and prevent biofilm formation
in vitro

Neutralizing (75)

nanobody
against UreC

Immune
library

UreC – 0.05nM bind to UreC and inhibit urease activity Neutralizing (76)

HMR23 Immune
library

UreC – 0.0263nM bind to UreC and inhibit urease activity Neutralizing (77)
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replication-incompetent human adenovirus serotype 5 (Ad5)

vector to express and secret the VNA (Ad/VNA2-PA) into the

serum, and found that it can protect mice against an anthrax

toxin challenge and anthrax spore infection (97). Apart from PA,

the same group identified a set of 15 VHHs against EF and/or LF.

Six of these VHHs were cross-reactive with both, EF and LF N-

terminal domain, which is responsible for association with PA.

Unlike the other selected VHHs, one LF specific VHH bound the

C-terminal of LF inhibiting its enzymatic activity. Two bispecific

heterodimers of the selected neutralizing VHHs demonstrated

full protection against lethal anthrax spore infection (98).

The cell surface of B. anthracis is covered by a protective

surface layer or S-layer, composed of the highly-conserved S-

layer protein (Sap). S-layers are proposed to function (i) as

exoskeletons, (ii) as protection against harmful environments,

(iii) as scaffolding structures for surface-localized enzymes and

adhesins, (iv) as molecular sieves for nutrient uptake and (v) as a

contact zone with the extracellular environment, including host

cells in case of pathogenic bacteria (99). Fioravanti et al.

generated Sap self-assembly inhibiting nanobodies, which

exhibited disruption of the S-layer and attenuated the bacterial

growth. Subcutaneous injection of the Sap inhibiting nanobodies

cleared anthrax infection and prevented death in a mouse model

of anthrax (100).
Clostridium Botulinum

Botulinum neurotoxins (BoNTs) are a category of bacterial

toxins produced by Clostridium Botulinum and related strains,

they are dangerous potential bioterrorism agents (Category A

and Tier 1 select agent) (101). BoNTs cause a life-threatening

disease called botulism, which develops flaccid paralysis and

autonomic dysfunctions. Once infected, patients have to stay in

the intensive care unit (ICU) and rely on mechanical ventilation

for weeks to months, which is costly and time consuming (102).

There are seven known serotypes of BoNTs (BoNT/A to BoNT/

G), in which serotypes A, B and E are often associated with

human botulism (103). Currently, antitoxins such as equine

antitoxin and human botulism immunoglobulin represent the

main strategy for treatment. However, adverse reactions,

including early anaphylactic shock and late serum sickness,

have been reported (103), which poses the necessity for

developing new therapeutics to treat botulism. To this end,

nanobodies could play an important role in such tasks.

For this purpose, a variety of VHHs against BoNT/A were

generated in the past years from phage or yeast display libraries

derived from camel, alpaca and llama, respectively.

Thanongsaksrikul et al. reported a neutralizing nanobody,

VHH17, binding specifically to the catalytic cleft in light chain

of BoNT/A via its CDR2 region, which is inaccessible to

conventional antibodies due to their large size (104). In a

similar study, Dong et al. identified a VHH Aa1 using yeast
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display. Rather than binding to the catalytic site of BoNT/A, Aa1

targeted the non-catalytic a-exosite binding region and inhibited
enzyme activity of the toxin. Besides, Aa1 exhibited

extraordinary thermal and reducing stability, which is optimal

for therapeutic purposes (105). Tremblay and colleagues

identified and characterized two VHHs ALc-B8 and ALc-H7

having affinity up to the nanomolar level to the light chain of

BoNT/A. They further confirmed that ALc-B8 was able to

inhibit SNAP-25 proteolysis in neuronal cells intoxicated by

BoNT/A (106), which demonstrated its potential for therapy. In

a recent study, Lam et al. discussed the inhibitory mechanism of

VHHs against BoNT/A light chain via structural studies and

found that the recognized epitopes of the light chain are quite

conserved across different subtypes, laying the foundation for

structure-based drug design (107, 108). Besides the protease

domain, VHHs such as ciA-C2, specifically recognizing the

receptor binding domain of BoNT/A were also identified

and proven to exert an inhibitory function (109). Furthermore,

various strategies to enhance the efficacy of VHHs neutralization

of BoNT/A have been exploited, such as (i) tagging the VHHs

for better and faster clearance of bound toxin (110), (ii) fusing

the VHHs with human Fc fragment or Glycophorin A on red

blood cell surface to increase their circulation half-life (111, 112),

or (iii) expressing VHHs in replication-incompetent adenovirus

to provide prolonged protection (113). With similar strategies,

several VHHs bound to BoNT/E were also produced

and characterized. Bakherad et al. selected a VHH, BMR2,

specifically targeting the receptor binding domain of BoNT/E,

which completely neutralized 3LD50 of BoNT/E in mice (103).

Lately, Tremblay et al. identified plenty of BoNT/E-neutralizing

VHHs and Lam et al. characterized two of them, JLE-E5 and

JLE-E9, targeting the translocation domain of BoNT/E. They

confirmed that these two VHHs blocked a structural change of

BoNT/E in acidic pH, a process necessary for its biological

function, which could hamper toxicity of BoNT/E (114). The

pitfall to treat botulism is that no drugs are able entering into

neurons to take effect once the toxins are endocytosed. A

hallmark application of VHH for treating botulism was to

deliver VHHs into neural cells by coupling them to

intoxicated BoNTs. Utilizing this strategy, two independent

groups successfully delivered VHHs into neurons and

provided animals with full recovery from botulism, which

opened new avenues of using VHHs to treat diseases (115, 116).
Other Gram-positive bacteria

In addition to the bacteria mentioned above, nanobodies

also play an important role in the diagnosis and therapy of other

bacteria. Nanobodies can also be used to establish immuno-

assays to uncover bacteria contaminations in foods.

Staphylococcus aureus is one of the most common food-borne

pathogens. Hu et al. selected a specific nanobody Nb147 to
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develop an immuno-assay detecting S. aureus in milk (117).

Staphylococcal enterotoxins (SEs) are the major causes of

staphylococcal food poisoning (SFP) and various other

diseases. Ji et al. developed a double nanobody-based sandwich

immunoassay for the detection of staphylococcal enterotoxin C

in dairy products (118) while Zanganeh et al. developed a rapid

and sensitive detection of staphylococcal enterotoxin B by

recombinant nanobodies (119). Listeria monocytogenes (LM)

causes listeriosis, a potentially fatal food-borne disease

especially harmful to pregnant women. Tu and his colleagues

developed an ELISA using the VHH clone L5-79 and a

monoclonal antibody to detect LM in pasteurized milk (120).

King et al. identified a group of VHHs targeting internalin B

(InlB) of LM which were competitive inhibitors preventing

bacterial invasion. These results point to the potential of VHH

as a novel class of therapeutics for the prevention of listeriosis
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(121). The sdAbs applications to diagnose and neutralize Gram-

positive bacterial infection are overviewed in Table 3.
Single Domain Antibodies against
pattern recognition receptor

Pattern recognition receptors (PRRs) are a class of receptors

that play crucial roles in detecting conserved pathogen associated

molecular patterns (PAMPs) shared among many microorganisms

or endogenous damage-associated molecular patterns (DAMPs) to

initiate downstream signaling (123–126). PRRs have been identified

and are notably classified into the following families: Toll-like

receptors (TLRs), the Ctype lectin receptors(CLRs), the

nucleotide-binding oligomerisation (NOD)-like receptors (NLRs),

the RIG-I-like receptors, the absent in melanoma 2 (AIM2)-like
TABLE 3 SdAb reports to diagnosis and neutralization of infection by Gram-positive bacteria.

Nanobody Source Target Structure (IC50)/
KD

Function Diagnosis/
Neutralizing

Ref.

A4.2 A5.1 A20.1
A26.8

Immune
library

CD
TcdA

– – neutralized toxin A by binding to sites other than the carbohydrate
binding pocket of the toxin

Neutralizing (81)

B39 B69 B71 B74
B94 B131 B167

Immune
library

CD
TcdB

– – neutralized toxin B when formatted as bivalent VHH-Fc fusions Neutralizing (87)

5D,E3,7F Immune
library

CD
TcdB

6oQ6
6oQ7
6oQ8

– neutralized toxin B Neutralizing (89)

ABA Immune
library

CD
TcdA
TcdB

– – bound to both toxins simultaneously and displayed a significantly
enhanced neutralizing activity both in vitro and in vivo

Neutralizing (90)

SLP-VHH Immune
library

CD-SLP – – bound SLPs with high affinity bloking the adherence to host cells Neutralizing (94)

VNA2-PA Immune
library

Bacillus
anthracis
PA

– – displayed improved neutralizing potency in vitro and in vivo than
the separate component VHHs

Neutralizing (96)
(97)

JMN-D10 JMO-
G1

Immune
library

Bacillus
anthracis
EF/LF

– – block binding of EF/LF to the protective antigen C-terminal binding
interface and preventing toxin entry into the cell

Neutralizing (98)

Nbs-NbAF684
nbaf694

Immune
library

Bacillus
anthracis
SAP

– – prevented the assembly of Sap and depolymerized existing Sap S-
layers

Neutralizing (100)

VHH17 naive
library

BoNTs
BoTxA/
LC

– 11.6nm neutralized the SNAP25 hydrolytic activity of BoTxA/LC Neutralizing (104)

BMR2 Immune
library

BONT/E HC – – neutralized BoNT/E Neutralizing (103)

Aa1 naive
library

BONT/A-LC 3K3Q 4.7×10-
10M

targeted the non-catalytic a-exosite binding region and inhibited
enzyme activity of toxin

Neutralizing (105)

ALc-B8
ALc-H7

Immune
library

BONT/A-LC – – neutralized BoNT/A-LC and inhibit SNAP-25 proteolysis in
neuronal cells

Neutralizing (106)

JLK-G12
JLO-G11

Immune
library

BONT/B-HC 6UFT
6UL4

– block BoNT/B1 binding to host receptors Neutralizing (108)

(Continued)
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receptors and the OAS like receptors (127–130). PRRs connect

PAMPs or DAMPs to trigger a variety of signal pathways,

eventually activating interferon regulatory factor (IRFs), nuclear

factor-kappa B (NF-k B), mitogen-activated protein kinase

(MAPKs) and etc., which promotes the expression of pro-

inflammatory cytokines (131–133). The sdAbs against Pattern

Recognition Receptor are listed in Table 4.
TLR4

Toll-like receptor 4 (TLR4) is a member of the TLR family,

which participates in innate immunity and mediates

inflammation by recognizing lipopolysaccharide (LPS) or

bacterial endotoxin (125, 136, 137). Overactivation of TLR4

can trigger the production of various inflammatory factors,
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which are related to the occurrence and development of a series

of diseases including sepsis (138), endotoxemia, pregnancy-

related disorders (139, 140), cardiovascular disease (141, 142),

intestinal inflammation (143), rheumatoid arthritis (144),

acute kidney injury (AKI) (145, 146), and acute lung injury

(147). Therefore, the drug design and development for this

target have high therapeutic potential and the anti-

inflammatory effect of TLR4 inhibitors has been confirmed

by several studies (148–150). Liao and his colleagues (134)

identified an anti-TLR4 intermediate and C-terminal domain-

recognizing nanobodies using phage display. Then, through in

vitro and in vivo experiments, they confirmed that the anti-

TLR4 nanobody can effectively reduce the release of

inflammatory factors and improve the animal survival rate.

The effect is even more pronounced when two different

nanobodies are combined.
TABLE 3 Continued

Nanobody Source Target Structure (IC50)/
KD

Function Diagnosis/
Neutralizing

Ref.

JLI-G10
JLI-H11

6UHT
6UC6

ciA-B5
ciA-H7
ciA-C2

Immune
library

BONT/A1-
HN LC HC

6UL6
6UI1
5L21

– block membrane insertion of boNT/A1 translocation domain,
interfere with the unfolding of the protease domain,
block host receptor binding

Neutralizing (108,
109)

B11 G3 Immune
library

BoNT/A – – neutralized BoNT/A Neutralizing (111)

H7/B5/ABP Immune
library

BoNT/A – <3 nM neutralized BoNT/A Neutralizing (122)
(113)
(112)

JLE-E5
JLE-E9

Immune
library

BoNT/E1 7K84
7K7Y

– block membrane association of BoNT/E1 Neutralizing (114)

A8-J10-ciBoNT/
XA

Immune
library

BoNT/A
BoNT/B

– – neutralize both BoNT/A and BoNT/B Neutralizing (115)

Nb147 Immune
library

S. aureus – – screen for S. aureus contaminations in foods Diagnosis (117)

C6
C11

Immune
library

SEC – – detected SEC in dairy products Diagnosis (118)

nanobody against
SEB

Immune
library

SEB – – detected SEB in suspicious foods Diagnosis (119)

L5-78
L5-79

naive
library

LM – – detected foodborne LM in food Diagnosis (120)

R303
R330
R326

naive
library

LM InlB 6DBA
6DBE
6DBD

– bound at the c-Met interaction site on InlB and preventing bacterial
invasion

Neutralizing (121)
frontiers
TABLE 4 Single Domain Antibody against Pattern Recognition Receptor.

Nanobody Source Target Structure (IC50)/
KD

Function Diagnosis/
Neutralizing

Ref.

nanobody against
TLR4

Immune
library

TLR4 – – reduce the release of inflammatory factors and improve the survival
rate of animals

Neutralizing (134)

Nb1.46 Nb2.22 Immune
library

Clec4F 7DJX
7DJY

0.2-2 nM structural and functional investigation and as molecular imaging and
therapeutic agents

Diagnosis
Neutralizing

(135)
i
n.org
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Clec4f

C-type lectins can recognize a variety of ligands and play an

important role in a variety of physiological functions.

Particularly, C-type lectins contribute to innate and adaptive

antibacterial immune responses by recognizing surface

polysaccharides of specific pathogens (151). Clec4f is a

member of the type II C-type lectin family and is only

expressed by Kupffer cells (152–154). In addition, studies have

shown that Clec4f is involved in a-galactose ceramide

presentation and Listeria monocytogenes infection in mouse

liver (155). Zheng et al. developed a series of nanobodies from

an alpaca immunized with recombinant mouse Kupffer cell

receptor Clec4F by using a phage display. After bio-panning

selections, they obtained 14 different nanobodies against Clec4F

with an affinity ranging from 0.2 to 2 nM. Furthermore, they

have characterized the structure of two Clec4F nanobodies,

Nb1.46 and Nb2.22, with different CDR2 and CDR3 sequence

features. These works may contribute to the study of Clec4F

structure and function as well as its use as a molecular imaging

agent and therapeutic agent (135). In another study, they

indicated that Clec4F nanobodies could be used to track

changes in Kupffer cell (KCs) dynamics in mice via non-

invasive imaging (153).
Conclusion and perspectives

As bacterial antibiotic resistance is developed at increasing

pace, there is a great urgency to develop a non-antibiotic

approach to treat bacterial infections. SdAbs are versatile

molecules with favorable properties representing an alternative

tactic for both therapeutic and diagnostic applications in

bacterial infections. SdAbs are characterized by minimal size,

high stability, strong affinity, good solubility, and low

immunogenicity which open pathways to target antigens that

were previously inaccessible during bacterial infection.

Therapeutic nanobodies are still in early phase development,

however they have a promising future. The first therapeutic

nanobody-based drug, Caplicizumab (Cablivi), was approved by

EMA in August 2018 and by FDA in March 2019 for the

treatment of blood clot t ing disorder . S ince then ,

Ciltacabtagene autoleucel (Carvykti) a nanobody based

Chimeric Antigen Receptor T cell (CAR-T)-based medication

against relapsed or refractory multiple myeloma was approved
Frontiers in Immunology 10
by FDA and EMA (February and May, 2022) and Envafolimab, a

subcutaneous injectable sdAb directed against PD-L1 (approved

in November 2021) by the Chinese National Medical Products

Administration (NMPA) for adult patients with microsatellite

instability-high or mismatch repair deficient advanced solid

tumors followed soon after. These successes demonstrate the

flexibility in engineering and administration of sdAbs as well as

the variety of diseases that can be tackled. It will probably not

take long before sdAbs with their considerable potential as a

diagnostic and therapeutic agent will enter the market for

bacterial infectious diseases and will contribute to public health.
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